The Anatomy of Successful Computational Biology Software

Total Page:16

File Type:pdf, Size:1020Kb

The Anatomy of Successful Computational Biology Software FEATURE The anatomy of successful computational biology software Stephen Altschul1, Barry Demchak2, Richard Durbin3, Robert Gentleman4, Martin Krzywinski5, Heng Li6, Anton Nekrutenko7, James Robinson6, Wayne Rasband8, James Taylor9 & Cole Trapnell10 Creators of software widely used in computational biology discuss the factors that contributed to their success he year was 1989 and Stephen Altschul What factors determine whether scientific tant thing is that Thad a problem. Sam Karlin, the brilliant software is successful? Cufflinks, Bowtie mathematician whose help he needed, was Stephen Altschul: BLAST was the first program (which is mainly Ben so convinced of the power of a mathemati- to assign rigorous statistics to useful scores of Langmead’s work) cally tractable but biologically constrained local sequence alignments. Before then people and TopHat were in measure of protein sequence similarity that had derived many large part at the right he would not listen to Altschul (or anyone different scoring sys- place at the right time. else for that matter). So Altschul essentially tems, and it wasn’t We were stepping into tricked him into solving the problem sty- clear why any should Cole Trapnell fields that were poised mying the field of computational biology have a particular developed the Tophat/ to explode, but which by posing it in terms of pure mathematics, advantage. I had made Cufflinks suite of short- really had a vacuum in devoid of any reference to biology. The treat a conjecture that read analysis tools. terms of usable tools. from that trick became known as the Karlin- every scoring system You get two things Altschul statistics that are a key part of that people proposed from being first. One is a startup user base. The Nature America, Inc. All rights reserved. America, Inc. Nature BLAST, arguably the most successful piece of Stephen Altschul co- using was implicitly a second is the opportunity to learn directly from 4 computational biology software of all time. developed BLAST. log-odds scoring sys- people what the right way, or one useful way, to Nature Biotechnology spoke with Altschul tem with particular do the analysis would be. © 201 and several other originators of computa- ‘target frequencies’, tional biology software programs widely and that the best scoring system would be one Heng Li (developed MAQ, BWA, SAMtools used today (Table 1). The conversations where the target frequencies were those you and other genomics tools): I agree timing is npg explored what makes certain software tools observed in accurate alignments of real proteins. important. When MAQ came out, there was no successful, the unique challenges of develop- It was the mathematician Sam Karlin who other software that could do integrated mapping ing them for biological research and how the proved this conjecture and derived the for- and SNP [single-nucleotide polymorphism] field of computational biology, as a whole, mula for calculating the statistics of the scores calling. BWA was among the first batch of can move research agendas forward. What [E-values] output by BLAST. This was the Burrows-Wheeler–based aligners (BWA, Bowtie follows is an edited compilation of inter- gravy to the algorithmic innovations of David and SOAP2 were all developed at about the same views. Lipman, Gene Myers, Webb Miller and Warren time). Similarly, SAMtools was the first generic Gish that yielded BLAST’s unprecedented SNP caller that worked with any aligner, as long combination of sensitivity and speed. as the aligner output SAM format. 1National Center for Biotechnology Another great aspect of the popularity of Information, Bethesda, Maryland. 2University BLAST was that over time it was seamlessly Robert Gentleman: of California San Diego, La Jolla, California. linked to NCBI’s sequence and literature data- The real big success of 3Wellcome Trust Sanger Institute, Hinxton, bases, which were updated daily. When we R, I think, was around UK. 4Genentech, South San Francisco, developed BLAST, the databases available were the package system. California. 5British Columbia Cancer Research in relatively poor shape. In many instances, you Anybody that wanted Centre, Vancouver, Canada. 6Broad Institute, had to wait for over a year between the publica- to could write a pack- Cambridge, Massachusetts. 7Penn State tion of a paper and when its sequences appeared age to carry out a par- University, University Park, Pennsylvania. in a database. A lot of very talented and dedi- ticular analysis. At the 8 National Institute of Mental Health, Bethesda, cated people worked to construct the infra- Robert Gentleman is same time, this sys- 9 Maryland. Emory University, Atlanta, structure at NCBI that allowed you to search co-creator of the R tem allowed the stan- Georgia. 10Harvard University, Cambridge, up-to-date databases online. language for statistical dard R language to be Massachusetts. Cole Trapnell: Pro bably the most impor- analyses. developed, designed 894 VOLUME 31 NUMBER 10 OCTOBER 2013 NATURE BIOTECHNOLOGY featURE and driven forward by a core group of people. Windows. And fourth, ImageJ is open source, to build the maps available to external scientists For Bioconductor, which provides tools in so users can inspect, modify and fix the source so they could look at the evidence and the data. R for analyzing genomic data, interoperability code. It’s important, I think, to generate data at the was essential to its success. We defined a hand- same time as writing software for those data, ful of data structures that we expected people to Richard Durbin: I think a key thing is that being driven by problems that are at hand. use. For instance, if everybody puts their gene software or a data format does a clean job cor- expression data into the same kind of box, it rectly, that it works. For the software I’ve been Does scientific software development doesn’t matter how the data came about, but involved with, I think differ from that for other types of software? that box is the same and can be used by ana- support isn’t a criti- Durbin: Scientific software often requires quite lytic tools. Really, I think it’s data structures that cal thing, in a strange a strong insight—that is, algorithmic develop- drive interoperability. way. Rather, it’s the ment. The algorithm implements novel ideas, is lack of need for sup- based on deep scientific understanding of data Wayne Rasband: Several factors have contrib- port that’s important. and the problem, and takes a step beyond what uted to the usability of ImageJ. First, it has a Also, I have always has been done previously. In contrast, a lot of relatively simple graphical user interface, simi- wanted to use the commercial software is doing specific cases of lar to popular desk- software I developed, fairly straightforward things—book-keeping top software, such as Richard Durbin led or my group has and moving things around and so on. Photoshop. Second, the development of wanted to use it to there is a large com- many tools and data do our own job. John Gentleman: I have found that real hardcore munity of users and standards in genomics. Sulston taught me to software engineers tend to worry about prob- developers willing try to write something lems that are just not existent in our space. They to answer questions, that does the best possible job for yourself and keep wanting to write clean, shiny software, contribute plugins enables others to see what you would want to get when you know that the software that you’re and macros, and find out of the data. Don’t think that you’ll produce using today is not the software you’re going and fix bugs. Third, one version for yourself and then somehow to be using this time next year. At Genentech Wayne Rasband because it is written have a different tool for others. For example, (S. San Francisco, California), we develop test- developed the ImageJ in Java, ImageJ runs the people who built the C. elegans physical ing and deployment paradigms that are on image analysis software. on Linux, Macs and maps in the ’80s made the same software used somewhat shorter cycles. Table 1 Software for the ages Software Purpose Creators Key capabilities Year released Citationsa BLAST Sequence alignment Stephen Altschul, Warren Gish, First program to provide statistics for 1990 35,617 Nature America, Inc. All rights reserved. America, Inc. Nature Gene Myers, Webb Miller, sequence alignment, combination of 4 David Lipman sensitivity and speed R Statistical analyses Robert Gentleman, Ross Ihaka Interactive statistical analysis, 1996 N/A © 201 extendable by packages ImageJ Image analysis Wayne Rasband Flexibility and extensibility 1997 N/A Cytoscape Network visualization and analysis Trey Ideker et al. Extendable by plugins 2003 2,374 npg Bioconductor Analysis of genomic data Robert Gentleman et al. Built on R, provides tools to enhance 2004 3,517 reproducibility of research Galaxy Web-based analysis platform Anton Nekrutenko, James Taylor Provides easy access to high- 2005 309b performance computing MAQ Short-read mapping Heng Li, Richard Durbin Integrated read mapping and SNP call- 2008 1,027 ing, introduced mapping quality scores Bowtie Short-read mapping Ben Langmead, Cole Trapnell, Fast alignment allowing gaps and 2009 1,871 Mihai Pop, Steven Salzberg mismatches based on Burrows- Wheeler Transform Tophat RNA-seq read mapping Cole Trapnell, Lior Pachter, Discovery of novel splice sites 2009 817 Steven Salzberg BWA Short-read mapping Heng Li, Richard Durbin Fast alignment allowing gaps and 2009 1,556 mismatches based on Burrows- Wheeler Transform Circos Data visualization Martin Krzywinski et al. Compact representation of similarities 2009 431 and differences arising from compari- son between genomes SAMtools Short-read data format and utilities Heng Li, Richard Durbin Storage of large nucleotide sequence 2009 1,551 alignments Cufflinks RNA-seq analysis Cole Trapnell, Steven Salzberg, Transcript assembly and quantification 2010 710 Barbara Wold, Lior Pachter IGV Short-read data visualization James Robinson et al.
Recommended publications
  • BIOGRAPHICAL SKETCH NAME: Berger
    BIOGRAPHICAL SKETCH NAME: Berger, Bonnie eRA COMMONS USER NAME (credential, e.g., agency login): BABERGER POSITION TITLE: Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) EDUCATION/TRAINING DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY Brandeis University, Waltham, MA AB 06/1983 Computer Science Massachusetts Institute of Technology SM 01/1986 Computer Science Massachusetts Institute of Technology Ph.D. 06/1990 Computer Science Massachusetts Institute of Technology Postdoc 06/1992 Applied Mathematics A. Personal Statement Advances in modern biology revolve around automated data collection and sharing of the large resulting datasets. I am considered a pioneer in the area of bringing computer algorithms to the study of biological data, and a founder in this community that I have witnessed grow so profoundly over the last 26 years. I have made major contributions to many areas of computational biology and biomedicine, largely, though not exclusively through algorithmic innovations, as demonstrated by nearly twenty thousand citations to my scientific papers and widely-used software. In recognition of my success, I have just been elected to the National Academy of Sciences and in 2019 received the ISCB Senior Scientist Award, the pinnacle award in computational biology. My research group works on diverse challenges, including Computational Genomics, High-throughput Technology Analysis and Design, Biological Networks, Structural Bioinformatics, Population Genetics and Biomedical Privacy. I spearheaded research on analyzing large and complex biological data sets through topological and machine learning approaches; e.g.
    [Show full text]
  • Computational Methods Addressing Genetic Variation In
    COMPUTATIONAL METHODS ADDRESSING GENETIC VARIATION IN NEXT-GENERATION SEQUENCING DATA by Charlotte A. Darby A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland June 2020 © 2020 Charlotte A. Darby All rights reserved Abstract Computational genomics involves the development and application of computational meth- ods for whole-genome-scale datasets to gain biological insight into the composition and func- tion of genomes, including how genetic variation mediates molecular phenotypes and disease. New biotechnologies such as next-generation sequencing generate genomic data on a massive scale and have transformed the field thanks to simultaneous advances in the analysis toolkit. In this thesis, I present three computational methods that use next-generation sequencing data, each of which addresses the genetic variations within and between human individuals in a different way. First, Samovar is a software tool for performing single-sample mosaic single-nucleotide variant calling on whole genome sequencing linked read data. Using haplotype assembly of heterozygous germline variants, uniquely made possible by linked reads, Samovar identifies variations in different cells that make up a bulk sequencing sample. We apply it to 13cancer samples in collaboration with researchers at Nationwide Childrens Hospital. Second, scHLAcount is a software pipeline that computes allele-specific molecule counts for the HLA genes from single-cell gene expression data. We use a personalized reference genome based on the individual’s genotypes to reveal allele-specific and cell type-specific gene expression patterns. Even given technology-specific biases of single-cell gene expression data, we can resolve allele-specific expression for these genes since the alleles are often quite different between the two haplotypes of an individual.
    [Show full text]
  • Big Data, Moocs, and ... (PDF)
    HHMI Constellation Studios for Science Education November 13-15, 2015 | HHMI Headquarters | Chevy Chase, MD Big Data, MOOCs, and Quantitative Education for Biologists Co-Chairs Pavel Pevzner, University of California- San Diego Sarah Elgin, Washington University Studio Objectives Discuss existing challenges in bioinformatics education with experts in computational biology and quantitative biology education, Evaluate best practices in teaching quantitative and computational biology, and Collaborate with scientist educators to develop instructional modules to support a biology curriculum that includes quantitative approaches. Friday | November 13 4:00 pm Arrival Registration Desk 5:30 – 6:00 pm Reception Great Hall 6:00 – 7:00 pm Dinner Dining Room 7:00 – 7:15 pm Welcome K202 David Asai, HHMI Cynthia Bauerle, HHMI Pavel Pevzner, University of California-San Diego Sarah Elgin, Washington University Alex Hartemink, Duke University 7:15 – 8:00 pm How to Maximize Interaction and Feedback During the Studio K202 Cynthia Bauerle and Sarah Simmons, HHMI 8:00 – 9:00 pm Keynote Presentation K202 "Computing + Biology = Discovery" Speakers: Ran Libeskind-Hadas, Harvey Mudd College Eliot Bush, Harvey Mudd College 9:00 – 11:00 pm Social The Pilot Saturday | November 14 7:30 – 8:15 am Breakfast Dining Room 8:30 – 10:00 am Lecture session 1 K202 Moderator: Pavel Pevzner 834a-854a “How is body fat regulated?” Laurie Heyer, Davidson College 856a-916a “How can we find mutations that cause cancer?” Ben Raphael, Brown University “How does a tumor evolve over time?” 918a-938a Russell Schwartz, Carnegie Mellon University “How fast do ribosomes move?” 940a-1000a Carl Kingsford, Carnegie Mellon University 10:05 – 10:55 am Breakout working groups Rooms: S221, (coffee available in each room) N238, N241, N140 1.
    [Show full text]
  • Lior Pachter Genome Informatics 2013 Keynote
    Stories from the Supplement Lior Pachter! Department of Mathematics and Molecular & Cell Biology! UC Berkeley! ! November 1, 2013! Genome Informatics, CSHL The Cufflinks supplements • C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg, B.J. Wold and L. Pachter, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation, Nature Biotechnology 28, (2010), p 511–515. Supplementary Material: 42 pages. • C. Trapnell, D.G. Hendrickson, M. Sauvageau, L. Goff, J.L. Rinn and L. Pachter, Differential analysis of gene regulation at transcript resolution with RNA-seq, Nature Biotechnology, 31 (2012), p 46–53. Supplementary Material: 70 pages. A supplementary arithmetic progression? • C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg, B.J. Wold and L. Pachter, Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation, Nature Biotechnology 28, (2010), p 511–515. Supplementary Material: 42 pages. • C. Trapnell, D.G. Hendrickson, M. Sauvageau, L. Goff, J.L. Rinn and L. Pachter, Differential analysis of gene regulation at transcript resolution with RNA- seq, Nature Biotechnology, 31 (2012), p 46–53. Supplementary Material: 70 pages. • A. Roberts and L. Pachter, Streaming algorithms for fragment assignment, Nature Methods 10 (2013), p 71—73. Supplementary Material: 98 pages? The nature methods manuscript checklist The nature methods manuscript checklist Emperor Joseph II: My dear young man, don't take it too hard. Your work is ingenious. It's quality work. And there are simply too many notes, that's all.
    [Show full text]
  • Modeling and Analysis of RNA-Seq Data: a Review from a Statistical Perspective
    Modeling and analysis of RNA-seq data: a review from a statistical perspective Wei Vivian Li 1 and Jingyi Jessica Li 1;2;∗ Abstract Background: Since the invention of next-generation RNA sequencing (RNA-seq) technolo- gies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date. Results: We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations. Conclusion: The development of statistical and computational methods for analyzing RNA- seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statical models and exhibit dif- ferent performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development. 1 Introduction RNA sequencing (RNA-seq) uses the next generation sequencing (NGS) technologies to reveal arXiv:1804.06050v3 [q-bio.GN] 1 May 2018 the presence and quantity of RNA molecules in biological samples. Since its invention, RNA- seq has revolutionized transcriptome analysis in biological research. RNA-seq does not require any prior knowledge on RNA sequences, and its high-throughput manner allows for genome-wide profiling of transcriptome landscapes [1,2].
    [Show full text]
  • Cloud Computing and the DNA Data Race Michael Schatz
    Cloud Computing and the DNA Data Race Michael Schatz April 14, 2011 Data-Intensive Analysis, Analytics, and Informatics Outline 1. Genome Assembly by Analogy 2. DNA Sequencing and Genomics 3. Large Scale Sequence Analysis 1. Mapping & Genotyping 2. Genome Assembly Shredded Book Reconstruction • Dickens accidentally shreds the first printing of A Tale of Two Cities – Text printed on 5 long spools It was theIt was best the of besttimes, of times, it was it wasthe worstthe worst of of times, times, it it was was the the ageage of of wisdom, wisdom, it itwas was the agethe ofage foolishness, of foolishness, … … It was theIt was best the bestof times, of times, it was it was the the worst of times, it was the theage ageof wisdom, of wisdom, it was it thewas age the of foolishness,age of foolishness, … It was theIt was best the bestof times, of times, it was it wasthe the worst worst of times,of times, it it was the age of wisdom, it wasit was the the age age of offoolishness, foolishness, … … It was It thewas best the ofbest times, of times, it wasit was the the worst worst of times,of times, itit waswas thethe ageage ofof wisdom,wisdom, it wasit was the the age age of foolishness,of foolishness, … … It wasIt thewas best the bestof times, of times, it wasit was the the worst worst of of times, it was the age of ofwisdom, wisdom, it wasit was the the age ofage foolishness, of foolishness, … … • How can he reconstruct the text? – 5 copies x 138, 656 words / 5 words per fragment = 138k fragments – The short fragments from every copy are mixed
    [Show full text]
  • BENG181/CSE 181/BIMM 181 Molecular Sequence Analysis ​ ​ ​ ​ ​ ​ Instructor: Pavel Pevzner ​
    COURSE ANNOUNCEMENT FOR WINTER 2021 BENG181/CSE 181/BIMM 181 Molecular Sequence Analysis https://sites.google.com/site/ucsdcse181 ​ ​ ​ ​ ​ ​ Instructor: Pavel Pevzner ​ ● phone: (858) 822-4365 ● e.mail: [email protected] ​ ● web site: bioalgorithms.ucsd.edu Teaching Assistants: ● Andrey Bzikadze ([email protected]) ​ ​ ● Hsuan-lin (Charlene) Her ([email protected]) ​ ​ Time: 6:30-7:50 Mon/Wed, Place: online (seminar Friday 4:00-4:50 online) ​ ​ ​ ​ ​ Zoom link for the class: https://ucsd.zoom.us/j/99782745100 ​ Zoom link for the seminar: https://ucsd.zoom.us/j/96805484881 ​ Office hours: PP: (Th 3-5 online), TAs (online Tue 1-2 PM and 4-5 PM or by appointment ​ online) PP zoom link: https://ucsd.zoom.us/j/96986851791 ​ Andrey Bzikadze zoom link: https://ucsd.zoom.us/j/94881347266 ​ Hsuan-lin (Charlene) Her zoom link: https://ucsd.zoom.us/j/95134947264 ​ Prerequisites: The course assumes some prior background in biology, some algorithmic ​ culture (CSE 101 course on algorithms as a prerequisite), and some programming skills. Flipped online class. Starting in 2014, the Innovative Learning Technology Initiative (ILTI) ​ ​ ​ at University of California encourages professors to transform their classes into online ​ ​ offerings available across various UC campuses. Dr. Pevzner is funded by the ILTI and NIH to develop new online approaches to bioinformatics education at UCSD. Since 2014, well before the COVID-19 pandemic, all lectures in this class are available online rather than presented in the classroom. Multi-university class. This class closely follows the textbook Bioinformatics Algorithms: ​ ​ an Active Learning Approach that has now been adopted by 140+ instructors from 40+ ​ ​ countries.
    [Show full text]
  • Steven L. Salzberg
    Steven L. Salzberg McKusick-Nathans Institute of Genetic Medicine Johns Hopkins School of Medicine, MRB 459, 733 North Broadway, Baltimore, MD 20742 Phone: 410-614-6112 Email: [email protected] Education Ph.D. Computer Science 1989, Harvard University, Cambridge, MA M.Phil. 1984, M.S. 1982, Computer Science, Yale University, New Haven, CT B.A. cum laude English 1980, Yale University Research Areas: Genomics, bioinformatics, gene finding, genome assembly, sequence analysis. Academic and Professional Experience 2011-present Professor, Department of Medicine and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University. Joint appointments as Professor in the Department of Biostatistics, Bloomberg School of Public Health, and in the Department of Computer Science, Whiting School of Engineering. 2012-present Director, Center for Computational Biology, Johns Hopkins University. 2005-2011 Director, Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies 2005-2011 Horvitz Professor, Department of Computer Science, University of Maryland. (On leave of absence 2011-2012.) 1997-2005 Senior Director of Bioinformatics (2000-2005), Director of Bioinformatics (1998-2000), and Investigator (1997-2005), The Institute for Genomic Research (TIGR). 1999-2006 Research Professor, Departments of Computer Science and Biology, Johns Hopkins University 1989-1999 Associate Professor (1996-1999), Assistant Professor (1989-1996), Department of Computer Science, Johns Hopkins University. On leave 1997-99. 1988-1989 Associate in Research, Graduate School of Business Administration, Harvard University. Consultant to Ford Motor Co. of Europe and to N.V. Bekaert (Kortrijk, Belgium). 1985-1987 Research Scientist and Senior Knowledge Engineer, Applied Expert Systems, Inc., Cambridge, MA. Designed expert systems for financial services companies.
    [Show full text]
  • Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Human and Mouse Gene Structure: Comparative Analysis and Application to Exon Prediction Serafim Batzoglou,1,4,7 Lior Pachter,2,7 Jill P. Mesirov,3 Bonnie Berger,1,4,6 and Eric S. Lander3,5,6 1Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA; 2Department of Mathematics, University of California Berkeley, Berkeley, California 94720 USA; 3Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142 USA; 4Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA; 5Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA We describe a novel analytical approach to gene recognition based on cross-species comparison. We first undertook a comparison of orthologous genomic loci from human and mouse, studying the extent of similarity in the number, size and sequence of exons and introns. We then developed an approach for recognizing genes within such orthologous regions by first aligning the regions using an iterative global alignment system and then identifying genes based on conservation of exonic features at aligned positions in both species. The alignment and gene recognition are performed by new programs called GLASS and ROSETTA, respectively. ROSETTA performed well at exact identification of coding exons in 117 orthologous pairs tested. A fundamental task in analyzing genomes is to identify by comparison of syntenic human and mouse genomic the genes. This is relatively straightforward for organ- sequences. isms with compact genomes (such as bacteria, yeast, It is well known that cross-species sequence com- flies and worms) because exons tend to be large and the parison can help highlight important functional ele- introns are either non-existent or tend to be short.
    [Show full text]
  • Eric S. Lander
    Chancellor's Distinguished Fellows Program 2004-2005 Selective Bibliography UC Irvine Libraries Eric S. Lander February 25, 2005 Prepared by: John E. Sisson Biological Sciences Librarian [email protected] Journal Articles (Selected from over 220 articles he has authored or co-authored) Poirier, C., Y. J. Qin, C.P. Adams, Y. Anaya, J. B. Singer, A. E. Hill, Eric S. Lander, J.H. Nadeau, and C. E. Bishop. "A complex interaction of imprinted and maternal-effect genes modifies sex determination in odd sex (Ods) mice." Genetics 168, no. 3 (2004): 1557-1562. Skuse, D. H., S. Purcell, M. J. Daly, R. J. Dolan, J. S. Morris, K. Lawrence, Eric S. Lander, and P. Sklar. "What can studies on Turner syndrome tell us about the role of X- linked genes in social cognition?." American Journal of Medical Genetics Part B- Neuropsychiatric Genetics 130B, no. 1 (2004): 8-9. Rioux, J. D., H. Karinen, K. Kocher, S. G. McMahon, P. Karkkainen, E. Janatuinen, M. Heikkinen, R. Julkunen, J. Pihlajamaki, A. Naukkarinen, V. M. Kosma, M. J. Daly, Eric S. Lander, and M. Laakso. "Genomewide search and association studies in a Finnish celiac disease population: Identification of a novel locus and replication of the HLA and CTLA4 loci." American Journal of Medical Genetics Part A 130A, no. 4 (2004): 345- 350. Michalkiewicz, M., T. Michalkiewicz, R. A. Ettinger, E. A. Rutledge, J. M. Fuller, D. H. Moralejo, B. Van Yserloo, A. J. MacMurray, A. E. Kwitek, H. J. Jacob, Eric S. Lander, and A. Lernmark. "Transgenic rescue demonstrates involvement of the Ian5 gene in T cell development in the rat." Physiological Genomics 19, no.
    [Show full text]
  • THE BIG CHALLENGES of BIG DATA As They Grapple with Increasingly Large Data Sets, Biologists and Computer Scientists Uncork New Bottlenecks
    TECHNOLOGY FEATURE THE BIG CHALLENGES OF BIG DATA As they grapple with increasingly large data sets, biologists and computer scientists uncork new bottlenecks. EMBL–EBI Extremely powerful computers are needed to help biologists to handle big-data traffic jams. BY VIVIEN MARX and how the genetic make-up of different can- year, particle-collision events in CERN’s Large cers influences how cancer patients fare2. The Hadron Collider generate around 15 petabytes iologists are joining the big-data club. European Bioinformatics Institute (EBI) in of data — the equivalent of about 4 million With the advent of high-throughput Hinxton, UK, part of the European Molecular high-definition feature-length films. But the genomics, life scientists are starting to Biology Laboratory and one of the world’s larg- EBI and institutes like it face similar data- Bgrapple with massive data sets, encountering est biology-data repositories, currently stores wrangling challenges to those at CERN, says challenges with handling, processing and mov- 20 petabytes (1 petabyte is 1015 bytes) of data Ewan Birney, associate director of the EBI. He ing information that were once the domain of and back-ups about genes, proteins and small and his colleagues now regularly meet with astronomers and high-energy physicists1. molecules. Genomic data account for 2 peta- organizations such as CERN and the European With every passing year, they turn more bytes of that, a number that more than doubles Space Agency (ESA) in Paris to swap lessons often to big data to probe everything from every year3 (see ‘Data explosion’). about data storage, analysis and sharing.
    [Show full text]
  • UNIVERSITY of CALIFORNIA RIVERSIDE RNA-Seq
    UNIVERSITY OF CALIFORNIA RIVERSIDE RNA-Seq Based Transcriptome Assembly: Sparsity, Bias Correction and Multiple Sample Comparison A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science by Wei Li September 2012 Dissertation Committee: Dr. Tao Jiang , Chairperson Dr. Stefano Lonardi Dr. Marek Chrobak Dr. Thomas Girke Copyright by Wei Li 2012 The Dissertation of Wei Li is approved: Committee Chairperson University of California, Riverside Acknowledgments The completion of this dissertation would have been impossible without help from many people. First and foremost, I would like to thank my advisor, Dr. Tao Jiang, for his guidance and supervision during the four years of my Ph.D. He offered invaluable advice and support on almost every aspect of my study and research in UCR. He gave me the freedom in choosing a research problem I’m interested in, helped me do research and write high quality papers, Not only a great academic advisor, he is also a sincere and true friend of mine. I am always feeling appreciated and fortunate to be one of his students. Many thanks to all committee members of my dissertation: Dr. Stefano Lonardi, Dr. Marek Chrobak, and Dr. Thomas Girke. I will be greatly appreciated by the advice they offered on the dissertation. I would also like to thank Jianxing Feng, Prof. James Borneman and Paul Ruegger for their collaboration in publishing several papers. Thanks to the support from Vivien Chan, Jianjun Yu and other bioinformatics group members during my internship in the Novartis Institutes for Biomedical Research.
    [Show full text]