Big Data, Moocs, and ... (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Big Data, Moocs, and ... (PDF) HHMI Constellation Studios for Science Education November 13-15, 2015 | HHMI Headquarters | Chevy Chase, MD Big Data, MOOCs, and Quantitative Education for Biologists Co-Chairs Pavel Pevzner, University of California- San Diego Sarah Elgin, Washington University Studio Objectives Discuss existing challenges in bioinformatics education with experts in computational biology and quantitative biology education, Evaluate best practices in teaching quantitative and computational biology, and Collaborate with scientist educators to develop instructional modules to support a biology curriculum that includes quantitative approaches. Friday | November 13 4:00 pm Arrival Registration Desk 5:30 – 6:00 pm Reception Great Hall 6:00 – 7:00 pm Dinner Dining Room 7:00 – 7:15 pm Welcome K202 David Asai, HHMI Cynthia Bauerle, HHMI Pavel Pevzner, University of California-San Diego Sarah Elgin, Washington University Alex Hartemink, Duke University 7:15 – 8:00 pm How to Maximize Interaction and Feedback During the Studio K202 Cynthia Bauerle and Sarah Simmons, HHMI 8:00 – 9:00 pm Keynote Presentation K202 "Computing + Biology = Discovery" Speakers: Ran Libeskind-Hadas, Harvey Mudd College Eliot Bush, Harvey Mudd College 9:00 – 11:00 pm Social The Pilot Saturday | November 14 7:30 – 8:15 am Breakfast Dining Room 8:30 – 10:00 am Lecture session 1 K202 Moderator: Pavel Pevzner 834a-854a “How is body fat regulated?” Laurie Heyer, Davidson College 856a-916a “How can we find mutations that cause cancer?” Ben Raphael, Brown University “How does a tumor evolve over time?” 918a-938a Russell Schwartz, Carnegie Mellon University “How fast do ribosomes move?” 940a-1000a Carl Kingsford, Carnegie Mellon University 10:05 – 10:55 am Breakout working groups Rooms: S221, (coffee available in each room) N238, N241, N140 1. “How is body fat regulated?” (S221) 2. “How can we find mutations that cause cancer?” (N238) 3. “How does a tumor evolve over time?” (N241) 4. “How fast do ribosomes move?” (N140) 11:00 am – 12:30 pm Lecture session 2 K202 Moderator: Sally Elgin 1104a-1124a “How neurons do integrals” Mark Goldman, University of California-Davis 1126a-1146a “A hitchhiker’s guide to coevolution” Ran Libeskind-Hadas, Harvey Mudd College 1148p-1208p “Predicting evolution of HIV drug resistance” Christopher Lee, University of California-Los Angeles HHMI Constellation Studios for Science Education November 13-15, 2015 | HHMI Headquarters | Chevy Chase, MD Saturday | November 14 (Cont.) 12:30 - 1:30 pm Lunch Dining Room 1:40 - 2:30 pm Breakout working groups Rooms: S221, (coffee available in each room) N238, N241 1. “How neurons do integrals” (S221) 2. “A hitchhiker’s guide to coevolution” (N238) 3. “Predicting evolution of HIV drug resistance” (N241) 2:35 – 4:05 pm Lecture session 3 K202 Moderator: Phillip Compeau 239p-259p “To be or not to be: male, female or both?” Véronique Delesalle, Gettysburg College 301p-321p “How does principal component analysis work with biological data?” Claudia Neuhauser, University of Minnesota 323p-343p “Designing vaccines to target viruses” Steven Skiena, SUNY Stonybrook “Using divide-and-conquer to construct the tree of life” 345p-405p Tandy Warnow, University of Illinois Urbana-Champaign 4:10 - 5:00 pm Breakout working groups Rooms: S221, (coffee available in each room) N238, N241, N140 1. “To be or not to be: male, female or both?” (S221) 2. “How does principal component analysis work with biological data?” (N238) 3. “Designing vaccines to target viruses” (N241) 4. “Using divide-and-conquer to construct the tree of life” (N140) 5:05 – 5:30 pm Group Photo Atrium 5:35 – 6:30 pm Break/Reception Great Hall 6:30 – 7:25 pm Dinner Dining Hall 7:30 – 8:30 pm Brainstorming Breakout session D115, D116, Discussion 1: Identifying other resources to support quantitative education (D115) North & South Discussion 2: Defining quantitative learning outcomes for undergraduate biology students (D116) Lounges Discussion 3: Adapting and implementing quantitative education resources (North Lounge) Discussion 4: TBA, South Lounge D124 & D125 8:30 – 9:30 pm Full Group Report Out and Discussion Moderator, Alex Hartemink, Duke University 8:30 – 10:30 pm Re-recording Session (6 slots available for speakers from Session 1/2/3) K202 9:30 – 11:00 pm Social The Pilot Sunday | November 15 7:30 – 8:15 am Breakfast Dining Room 8:30 – 10:00 am Lecture session 4 K202 Moderator: Alexander Hartemink 834a-854a “Compressive genomics in the next-gen world” Bonnie Berger, Massachusetts Institute of Technology 856a-916a “Searching for a sequence needle in a genome haystack” Eleazar Eskin, University of California-Los Angeles 918a-938a “How to fit 6 billion DNA nucleotides in a 10 micron nucleus” Bill Noble, Washington University “How genome assembly tracked the 2001 anthrax attacks to their source” 940a-1000a Steven Salzberg, Johns Hopkins University 10:05 – 10:55 am Breakout working groups Rooms: S221, (coffee available in each room) N238, N241, N140 1. “Compressive Genomics : Scaling faster than light” (S221) 2. “Searching for a sequence needle in a genome haystack” (N238) 3. “How to fit 6 billion DNA nucleotides in a 10 micron nucleus” (N241) 4. “How genome assembly tracked the 2001 anthrax attacks to their source” (N140) 11:00 am – 11:50 am Closing Discussion K202 Pavel Pevzner, University of California-San Diego Sarah Elgin, Washington University Alex Hartemink, Duke University 12:00 – 1:00 pm Lunch Dining Hall 1:00 – 2:30 pm Re-recording Session (6 slots available for speakers from Session 3/4 ) K202 .
Recommended publications
  • Algorithms for Computational Biology 8Th International Conference, Alcob 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings
    Lecture Notes in Bioinformatics 12715 Subseries of Lecture Notes in Computer Science Series Editors Sorin Istrail Brown University, Providence, RI, USA Pavel Pevzner University of California, San Diego, CA, USA Michael Waterman University of Southern California, Los Angeles, CA, USA Editorial Board Members Søren Brunak Technical University of Denmark, Kongens Lyngby, Denmark Mikhail S. Gelfand IITP, Research and Training Center on Bioinformatics, Moscow, Russia Thomas Lengauer Max Planck Institute for Informatics, Saarbrücken, Germany Satoru Miyano University of Tokyo, Tokyo, Japan Eugene Myers Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany Marie-France Sagot Université Lyon 1, Villeurbanne, France David Sankoff University of Ottawa, Ottawa, Canada Ron Shamir Tel Aviv University, Ramat Aviv, Tel Aviv, Israel Terry Speed Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia Martin Vingron Max Planck Institute for Molecular Genetics, Berlin, Germany W. Eric Wong University of Texas at Dallas, Richardson, TX, USA More information about this subseries at http://www.springer.com/series/5381 Carlos Martín-Vide • Miguel A. Vega-Rodríguez • Travis Wheeler (Eds.) Algorithms for Computational Biology 8th International Conference, AlCoB 2021 Missoula, MT, USA, June 7–11, 2021 Proceedings 123 Editors Carlos Martín-Vide Miguel A. Vega-Rodríguez Rovira i Virgili University University of Extremadura Tarragona, Spain Cáceres, Spain Travis Wheeler University of Montana Missoula, MT, USA ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Bioinformatics ISBN 978-3-030-74431-1 ISBN 978-3-030-74432-8 (eBook) https://doi.org/10.1007/978-3-030-74432-8 LNCS Sublibrary: SL8 – Bioinformatics © Springer Nature Switzerland AG 2021 This work is subject to copyright.
    [Show full text]
  • Computational Pan-Genomics: Status, Promises and Challenges
    bioRxiv preprint doi: https://doi.org/10.1101/043430; this version posted March 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Computational Pan-Genomics: Status, Promises and Challenges Tobias Marschall1,2, Manja Marz3,60,61,62, Thomas Abeel49, Louis Dijkstra6,7, Bas E. Dutilh8,9,10, Ali Ghaffaari1,2, Paul Kersey11, Wigard P. Kloosterman12, Veli M¨akinen13, Adam Novak15, Benedict Paten15, David Porubsky16, Eric Rivals17,63, Can Alkan18, Jasmijn Baaijens5, Paul I. W. De Bakker12, Valentina Boeva19,64,65,66, Francesca Chiaromonte20, Rayan Chikhi21, Francesca D. Ciccarelli22, Robin Cijvat23, Erwin Datema24,25,26, Cornelia M. Van Duijn27, Evan E. Eichler28, Corinna Ernst29, Eleazar Eskin30,31, Erik Garrison32, Mohammed El-Kebir5,33,34, Gunnar W. Klau5, Jan O. Korbel11,35, Eric-Wubbo Lameijer36, Benjamin Langmead37, Marcel Martin59, Paul Medvedev38,39,40, John C. Mu41, Pieter Neerincx36, Klaasjan Ouwens42,67, Pierre Peterlongo43, Nadia Pisanti44,45, Sven Rahmann29, Ben Raphael46,47, Knut Reinert48, Dick de Ridder50, Jeroen de Ridder49, Matthias Schlesner51, Ole Schulz-Trieglaff52, Ashley Sanders53, Siavash Sheikhizadeh50, Carl Shneider54, Sandra Smit50, Daniel Valenzuela13, Jiayin Wang70,71,72, Lodewyk Wessels56, Ying Zhang23,5, Victor Guryev16,12, Fabio Vandin57,34, Kai Ye68,69,72 and Alexander Sch¨onhuth5 1Center for Bioinformatics, Saarland University, Saarbr¨ucken, Germany; 2Max Planck Institute for Informatics, Saarbr¨ucken,
    [Show full text]
  • 120421-24Recombschedule FINAL.Xlsx
    Friday 20 April 18:00 20:00 REGISTRATION OPENS in Fira Palace 20:00 21:30 WELCOME RECEPTION in CaixaForum (access map) Saturday 21 April 8:00 8:50 REGISTRATION 8:50 9:00 Opening Remarks (Roderic GUIGÓ and Benny CHOR) Session 1. Chair: Roderic GUIGÓ (CRG, Barcelona ES) 9:00 10:00 Richard DURBIN The Wellcome Trust Sanger Institute, Hinxton UK "Computational analysis of population genome sequencing data" 10:00 10:20 44 Yaw-Ling Lin, Charles Ward and Steven Skiena Synthetic Sequence Design for Signal Location Search 10:20 10:40 62 Kai Song, Jie Ren, Zhiyuan Zhai, Xuemei Liu, Minghua Deng and Fengzhu Sun Alignment-Free Sequence Comparison Based on Next Generation Sequencing Reads 10:40 11:00 178 Yang Li, Hong-Mei Li, Paul Burns, Mark Borodovsky, Gene Robinson and Jian Ma TrueSight: Self-training Algorithm for Splice Junction Detection using RNA-seq 11:00 11:30 coffee break Session 2. Chair: Bonnie BERGER (MIT, Cambrige US) 11:30 11:50 139 Son Pham, Dmitry Antipov, Alexander Sirotkin, Glenn Tesler, Pavel Pevzner and Max Alekseyev PATH-SETS: A Novel Approach for Comprehensive Utilization of Mate-Pairs in Genome Assembly 11:50 12:10 171 Yan Huang, Yin Hu and Jinze Liu A Robust Method for Transcript Quantification with RNA-seq Data 12:10 12:30 120 Zhanyong Wang, Farhad Hormozdiari, Wen-Yun Yang, Eran Halperin and Eleazar Eskin CNVeM: Copy Number Variation detection Using Uncertainty of Read Mapping 12:30 12:50 205 Dmitri Pervouchine Evidence for widespread association of mammalian splicing and conserved long range RNA structures 12:50 13:10 169 Melissa Gymrek, David Golan, Saharon Rosset and Yaniv Erlich lobSTR: A Novel Pipeline for Short Tandem Repeats Profiling in Personal Genomes 13:10 13:30 217 Rory Stark Differential oestrogen receptor binding is associated with clinical outcome in breast cancer 13:30 15:00 lunch break Session 3.
    [Show full text]
  • BIOGRAPHICAL SKETCH NAME: Berger
    BIOGRAPHICAL SKETCH NAME: Berger, Bonnie eRA COMMONS USER NAME (credential, e.g., agency login): BABERGER POSITION TITLE: Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science EDUCATION/TRAINING (Begin with baccalaureate or other initial professional education, such as nursing, include postdoctoral training and residency training if applicable. Add/delete rows as necessary.) EDUCATION/TRAINING DEGREE Completion (if Date FIELD OF STUDY INSTITUTION AND LOCATION applicable) MM/YYYY Brandeis University, Waltham, MA AB 06/1983 Computer Science Massachusetts Institute of Technology SM 01/1986 Computer Science Massachusetts Institute of Technology Ph.D. 06/1990 Computer Science Massachusetts Institute of Technology Postdoc 06/1992 Applied Mathematics A. Personal Statement Advances in modern biology revolve around automated data collection and sharing of the large resulting datasets. I am considered a pioneer in the area of bringing computer algorithms to the study of biological data, and a founder in this community that I have witnessed grow so profoundly over the last 26 years. I have made major contributions to many areas of computational biology and biomedicine, largely, though not exclusively through algorithmic innovations, as demonstrated by nearly twenty thousand citations to my scientific papers and widely-used software. In recognition of my success, I have just been elected to the National Academy of Sciences and in 2019 received the ISCB Senior Scientist Award, the pinnacle award in computational biology. My research group works on diverse challenges, including Computational Genomics, High-throughput Technology Analysis and Design, Biological Networks, Structural Bioinformatics, Population Genetics and Biomedical Privacy. I spearheaded research on analyzing large and complex biological data sets through topological and machine learning approaches; e.g.
    [Show full text]
  • Computational Methods Addressing Genetic Variation In
    COMPUTATIONAL METHODS ADDRESSING GENETIC VARIATION IN NEXT-GENERATION SEQUENCING DATA by Charlotte A. Darby A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland June 2020 © 2020 Charlotte A. Darby All rights reserved Abstract Computational genomics involves the development and application of computational meth- ods for whole-genome-scale datasets to gain biological insight into the composition and func- tion of genomes, including how genetic variation mediates molecular phenotypes and disease. New biotechnologies such as next-generation sequencing generate genomic data on a massive scale and have transformed the field thanks to simultaneous advances in the analysis toolkit. In this thesis, I present three computational methods that use next-generation sequencing data, each of which addresses the genetic variations within and between human individuals in a different way. First, Samovar is a software tool for performing single-sample mosaic single-nucleotide variant calling on whole genome sequencing linked read data. Using haplotype assembly of heterozygous germline variants, uniquely made possible by linked reads, Samovar identifies variations in different cells that make up a bulk sequencing sample. We apply it to 13cancer samples in collaboration with researchers at Nationwide Childrens Hospital. Second, scHLAcount is a software pipeline that computes allele-specific molecule counts for the HLA genes from single-cell gene expression data. We use a personalized reference genome based on the individual’s genotypes to reveal allele-specific and cell type-specific gene expression patterns. Even given technology-specific biases of single-cell gene expression data, we can resolve allele-specific expression for these genes since the alleles are often quite different between the two haplotypes of an individual.
    [Show full text]
  • Computational Biology and Bioinformatics
    Vol. 30 ISMB 2014, pages i1–i2 BIOINFORMATICS EDITORIAL doi:10.1093/bioinformatics/btu304 Editorial This special issue of Bioinformatics serves as the proceedings of The conference used a two-tier review system, a continuation the 22nd annual meeting of Intelligent Systems for Molecular and refinement of a process begun with ISMB 2013 in an effort Biology (ISMB), which took place in Boston, MA, July 11–15, to better ensure thorough and fair reviewing. Under the revised 2014 (http://www.iscb.org/ismbeccb2014). The official confer- process, each of the 191 submissions was first reviewed by at least ence of the International Society for Computational Biology three expert referees, with a subset receiving between four and (http://www.iscb.org/), ISMB, was accompanied by 12 Special eight reviews, as needed. These formal reviews were frequently Interest Group meetings of one or two days each, two satellite supplemented by online discussion among reviewers and Area meetings, a High School Teachers Workshop and two half-day Chairs to resolve points of dispute and reach a consensus on tutorials. Since its inception, ISMB has grown to be the largest each paper. Among the 191 submissions, 29 were conditionally international conference in computational biology and bioinfor- accepted for publication directly from the first round review Downloaded from matics. It is expected to be the premiere forum in the field for based on an assessment of the reviewers that the paper was presenting new research results, disseminating methods and tech- clearly above par for the conference. A subset of 16 papers niques and facilitating discussions among leading researchers, were viewed as potentially in the top tier but raised significant practitioners and students in the field.
    [Show full text]
  • Cloud Computing and the DNA Data Race Michael Schatz
    Cloud Computing and the DNA Data Race Michael Schatz April 14, 2011 Data-Intensive Analysis, Analytics, and Informatics Outline 1. Genome Assembly by Analogy 2. DNA Sequencing and Genomics 3. Large Scale Sequence Analysis 1. Mapping & Genotyping 2. Genome Assembly Shredded Book Reconstruction • Dickens accidentally shreds the first printing of A Tale of Two Cities – Text printed on 5 long spools It was theIt was best the of besttimes, of times, it was it wasthe worstthe worst of of times, times, it it was was the the ageage of of wisdom, wisdom, it itwas was the agethe ofage foolishness, of foolishness, … … It was theIt was best the bestof times, of times, it was it was the the worst of times, it was the theage ageof wisdom, of wisdom, it was it thewas age the of foolishness,age of foolishness, … It was theIt was best the bestof times, of times, it was it wasthe the worst worst of times,of times, it it was the age of wisdom, it wasit was the the age age of offoolishness, foolishness, … … It was It thewas best the ofbest times, of times, it wasit was the the worst worst of times,of times, itit waswas thethe ageage ofof wisdom,wisdom, it wasit was the the age age of foolishness,of foolishness, … … It wasIt thewas best the bestof times, of times, it wasit was the the worst worst of of times, it was the age of ofwisdom, wisdom, it wasit was the the age ofage foolishness, of foolishness, … … • How can he reconstruct the text? – 5 copies x 138, 656 words / 5 words per fragment = 138k fragments – The short fragments from every copy are mixed
    [Show full text]
  • BENG181/CSE 181/BIMM 181 Molecular Sequence Analysis ​ ​ ​ ​ ​ ​ Instructor: Pavel Pevzner ​
    COURSE ANNOUNCEMENT FOR WINTER 2021 BENG181/CSE 181/BIMM 181 Molecular Sequence Analysis https://sites.google.com/site/ucsdcse181 ​ ​ ​ ​ ​ ​ Instructor: Pavel Pevzner ​ ● phone: (858) 822-4365 ● e.mail: [email protected] ​ ● web site: bioalgorithms.ucsd.edu Teaching Assistants: ● Andrey Bzikadze ([email protected]) ​ ​ ● Hsuan-lin (Charlene) Her ([email protected]) ​ ​ Time: 6:30-7:50 Mon/Wed, Place: online (seminar Friday 4:00-4:50 online) ​ ​ ​ ​ ​ Zoom link for the class: https://ucsd.zoom.us/j/99782745100 ​ Zoom link for the seminar: https://ucsd.zoom.us/j/96805484881 ​ Office hours: PP: (Th 3-5 online), TAs (online Tue 1-2 PM and 4-5 PM or by appointment ​ online) PP zoom link: https://ucsd.zoom.us/j/96986851791 ​ Andrey Bzikadze zoom link: https://ucsd.zoom.us/j/94881347266 ​ Hsuan-lin (Charlene) Her zoom link: https://ucsd.zoom.us/j/95134947264 ​ Prerequisites: The course assumes some prior background in biology, some algorithmic ​ culture (CSE 101 course on algorithms as a prerequisite), and some programming skills. Flipped online class. Starting in 2014, the Innovative Learning Technology Initiative (ILTI) ​ ​ ​ at University of California encourages professors to transform their classes into online ​ ​ offerings available across various UC campuses. Dr. Pevzner is funded by the ILTI and NIH to develop new online approaches to bioinformatics education at UCSD. Since 2014, well before the COVID-19 pandemic, all lectures in this class are available online rather than presented in the classroom. Multi-university class. This class closely follows the textbook Bioinformatics Algorithms: ​ ​ an Active Learning Approach that has now been adopted by 140+ instructors from 40+ ​ ​ countries.
    [Show full text]
  • An Efficient, Scalable and Exact Representation of High-Dimensional Color Information Enabled Via De Bruijn Graph Search
    bioRxiv preprint doi: https://doi.org/10.1101/464222; this version posted November 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An Efficient, Scalable and Exact Representation of High-Dimensional Color Information Enabled via de Bruijn Graph Search Fatemeh Almodaresi1, Prashant Pandey1, Michael Ferdman1, Rob Johnson2;1, and Rob Patro1 1 Computer Science Dept., Stony Brook University ffalmodaresit,ppandey,mferdman,[email protected] 2 VMware Research [email protected] Abstract. a The colored de Bruijn graph (cdbg) and its variants have become an important combinatorial structure used in numerous areas in genomics, such as population-level variation detection in metagenomic samples, large scale sequence search, and cdbg-based reference sequence indices. As samples or genomes are added to the cdbg, the color information comes to dominate the space required to represent this data structure. In this paper, we show how to represent the color information efficiently by adopting a hierarchical encoding that exploits correlations among color classes | patterns of color occurrence | present in the de Bruijn graph (dbg). A major challenge in deriving an efficient encoding of the color information that takes advantage of such correlations is determining which color classes are close to each other in the high-dimensional space of possible color patterns. We demonstrate that the dbg itself can be used as an efficient mechanism to search for approximate nearest neighbors in this space.
    [Show full text]
  • Steven L. Salzberg
    Steven L. Salzberg McKusick-Nathans Institute of Genetic Medicine Johns Hopkins School of Medicine, MRB 459, 733 North Broadway, Baltimore, MD 20742 Phone: 410-614-6112 Email: [email protected] Education Ph.D. Computer Science 1989, Harvard University, Cambridge, MA M.Phil. 1984, M.S. 1982, Computer Science, Yale University, New Haven, CT B.A. cum laude English 1980, Yale University Research Areas: Genomics, bioinformatics, gene finding, genome assembly, sequence analysis. Academic and Professional Experience 2011-present Professor, Department of Medicine and the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University. Joint appointments as Professor in the Department of Biostatistics, Bloomberg School of Public Health, and in the Department of Computer Science, Whiting School of Engineering. 2012-present Director, Center for Computational Biology, Johns Hopkins University. 2005-2011 Director, Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies 2005-2011 Horvitz Professor, Department of Computer Science, University of Maryland. (On leave of absence 2011-2012.) 1997-2005 Senior Director of Bioinformatics (2000-2005), Director of Bioinformatics (1998-2000), and Investigator (1997-2005), The Institute for Genomic Research (TIGR). 1999-2006 Research Professor, Departments of Computer Science and Biology, Johns Hopkins University 1989-1999 Associate Professor (1996-1999), Assistant Professor (1989-1996), Department of Computer Science, Johns Hopkins University. On leave 1997-99. 1988-1989 Associate in Research, Graduate School of Business Administration, Harvard University. Consultant to Ford Motor Co. of Europe and to N.V. Bekaert (Kortrijk, Belgium). 1985-1987 Research Scientist and Senior Knowledge Engineer, Applied Expert Systems, Inc., Cambridge, MA. Designed expert systems for financial services companies.
    [Show full text]
  • Daniel Aalberts Scott Aa
    PLOS Computational Biology would like to thank all those who reviewed on behalf of the journal in 2015: Daniel Aalberts Jeff Alstott Benjamin Audit Scott Aaronson Christian Althaus Charles Auffray Henry Abarbanel Benjamin Althouse Jean-Christophe Augustin James Abbas Russ Altman Robert Austin Craig Abbey Eduardo Altmann Bruno Averbeck Hermann Aberle Philipp Altrock Ferhat Ay Robert Abramovitch Vikram Alva Nihat Ay Josep Abril Francisco Alvarez-Leefmans Francisco Azuaje Luigi Acerbi Rommie Amaro Marc Baaden Orlando Acevedo Ettore Ambrosini M. Madan Babu Christoph Adami Bagrat Amirikian Mohan Babu Frederick Adler Uri Amit Marco Bacci Boris Adryan Alexander Anderson Stephen Baccus Tinri Aegerter-Wilmsen Noemi Andor Omar Bagasra Vera Afreixo Isabelle Andre Marc Baguelin Ashutosh Agarwal R. David Andrew Timothy Bailey Ira Agrawal Steven Andrews Wyeth Bair Jacobo Aguirre Ioan Andricioaei Chris Bakal Alaa Ahmed Ioannis Androulakis Joseph Bak-Coleman Hasan Ahmed Iris Antes Adam Baker Natalie Ahn Maciek Antoniewicz Douglas Bakkum Thomas Akam Haroon Anwar Gabor Balazsi Ilya Akberdin Stefano Anzellotti Nilesh Banavali Eyal Akiva Miguel Aon Rahul Banerjee Sahar Akram Lucy Aplin Edward Banigan Tomas Alarcon Kevin Aquino Martin Banks Larissa Albantakis Leonardo Arbiza Mukul Bansal Reka Albert Murat Arcak Shweta Bansal Martí Aldea Gil Ariel Wolfgang Banzhaf Bree Aldridge Nimalan Arinaminpathy Lei Bao Helen Alexander Jeffrey Arle Gyorgy Barabas Alexander Alexeev Alain Arneodo Omri Barak Leonidas Alexopoulos Markus Arnoldini Matteo Barberis Emil Alexov
    [Show full text]
  • Bringing Folding Pathways Into Strand Pairing Prediction
    Bringing folding pathways into strand pairing prediction Jieun Jeong1,2, Piotr Berman1, and Teresa Przytycka2 1 Computer Science and Engineering Department The Pennsylvania State University University Park, PA 16802 USA 2 National Center for Biotechnology Information US National Library of Medicine, National Institutes of Health Bethesda, MD 20894 email: [email protected], [email protected], [email protected] Abstract. The topology of β-sheets is defined by the pattern of hydrogen- bonded strand pairing. Therefore, predicting hydrogen bonded strand partners is a fundamental step towards predicting β-sheet topology. In this work we report a new strand pairing algorithm. Our algorithm at- tempts to mimic elements of the folding process. Namely, in addition to ensuring that the predicted hydrogen bonded strand pairs satisfy basic global consistency constraints, it takes into account hypothetical folding pathways. Consistently with this view, introducing hydrogen bonds be- tween a pair of strands changes the probabilities of forming other strand pairs. We demonstrate that this approach provides an improvement over previously proposed algorithms. 1 Introduction The prediction of protein structure from protein sequence is a long-held goal that would provide invaluable information regarding the function of individ- ual proteins and the evolution of protein families. The increasing amount of sequence and structure data, made it possible to decouple the structure predic- tion problem from the problem of modeling of protein folding process. Indeed, a significant progress has been achieved by bioinformatics approaches such as homology modeling, threading, and assembly from fragments [16]. At the same time, the fundamental problem of how actually a protein acquires its final folded state remains a subject of controversy.
    [Show full text]