Species It Is Permitted to Hunt in France

Total Page:16

File Type:pdf, Size:1020Kb

Species It Is Permitted to Hunt in France Species it is permitted to hunt in France Subject to hunting laws. This list does not mean that all of these species can be hunted in every department throughout the season. Each year individual departments issue a list which may contain restrictions on species and the time periods allowed. Oiseaux chassés Gibier sedentaire Colin de Virginie * Northern Bobwhite Colinus Virginian us Colin de Californie* California Quail Callipepla californica Corbeau freux** Rook Corvus frugilegus Corneille noire** Carrion Crow Corvus corone Etourneau sansonnet** Common Starling Sturnus vulgaris Faisan de Colchide Common Pheasant Phasianus colchicus Faisan argent* Silver Pheasant Lophura nycthemera Faisan doré* Golden Pheasant Chrysolophus pictus Faisan vénéré* Reeves Pheasant Phasianus reevesi Geai des chênes** Eurasian Jay Garrulus glandarius Gelinotte des bois Hazel Grouse Bonasa bonasia Lagopéde des Alpes Rock Ptarmigan Lagopus mutus Perdrix bartavelle Rock Partridge Alectoris graeca Perdrix rouge Red Legged Partridge Alectoris rufa Perdrix grise Grey Partridge Perdix perdix Pie bavarde** Magpie Pica pica Tétras lyre Black Grouse Tetrao tetrix Grand tétras Capercaille Tetrao urogallus Gibier d'eau Oie des moissons Bean Goose Anser fabalis Oie cendre Greylag Goose Anser anser Oie rieuse Greater White Fronted Goose Anser albifrons Canard siffleur Eurasian Wigeon Anas penelope Canard chipeau Gadwell Anas strepera Canard colvert Common Mallard Anas platyrhynchos Canard pilet Northern Pintail Anas acuta Canard souchet Northern Shoveler Anas clypeata Eider duvet Common Eider Somateria mollissima Fuligule milouin Common Pochard Aythya ferina Fuligule morillon Tufted Duck Aythya fuligula Fuligule milouinan Greater Scaup Aythya marila Garrot à œœœil dor Common Goldeneye Bucephala clangula Harelde de Miquelon Long Tailed Duck Clangula hyemalis Macreuse noire Black Scoter Melanitta nigra Macreuse brune Velvet Scoter Melanitta fusca Nette rousse Red-Crested Pochard Netta rufina Sarcelle d'été Garganey Anas querquedula Sarcelle d'hiver Common Teal Anas crecca Barge rousse Bar-Tailed Godwit Limosa lapponoca Barge à queue noire Black-Tailed Godwit Limosa limosa Bécassine sourde Jack Snipe Lymnocryptes minimus Bécassine des marais Common Snipe Gallinago gallinago Bécasseau maubéche Red Knot Calidris canutus Chevalier combattant Ruff Philomachus pugnax Chevalier aboyeur Common Greenshank Tringa nebularia Chevalier gambette Common Redshank Tringa totanus Chevalier arlequin Spotted Redshank Tringa erythropus Courlis cendré Common Curlew Numenius arquata Courlis corlieu Whimbrel Numenius phaeopus Hutrier pie Eurasian Oystercatcher Haematopus ostralegus Pluvier doré European Golden-Plover Pluvialis apricaria Pluvier argent Grey Plover Pluvialis aquatorola Vanneau huppé Lapwing Vanellus vanellus Foulque macroule Common Coot Fulica atra Râle d'eau Water Rail Rallus aquaticus Poule d'eau Moorhen Gallinula chloropus Oiseaux de passage Alouette des champs Skylark Alauda arvensis Bécasse des bois Eurasian Woodcock Scolopax rusticola Caille des blés Common Quail Coturnix coturnix Grive draine Mistle Thrush Turdus viscivorus Grive mauvis Redwing Turdus iliacus Grive musicienne Song Thrush Turdus philomelos Grive litorne Fieldfare Turdus pilaris Merle noir Blackbird Turdus merulu Pigeon ramier** Common Woodpigeon Columba palumbus Pigeon colombin Stock Dove Columba oenas Pigeon biset Rockpigeon Columba livia Tourterelle des bois European Turtle Dove Streptopelia turtur Tourterelle turque Collared Dove Streptopelia decaocto 68 espces d'oiseaux Mammifres chassés Blaireau Badger Meles meles Belette** Weasel Mustela nivalis Cerf élaphe Red Deer Cervus elaphus Cerf sika Sika Deer Cervus nippon Chamois/Isard Chamois Rupicapra rupicapra Chevreuil Roe Deer Capreolus capreolus Chien viverrin** Raccoon Dog Nyctereutes procyonoides Daim Fallow Deer Dama dama Fouine** Stone Marten Martes foina Hermine Stoat Mustela erminea Lapin de garenne** Rabbit Oryctolagus cuniculus Liévre brun Brown Hare Lepus europaeus Liévre variable Mountain Hare Lepus timidus Marmotte Marmot Marmota marmota Martre** Pine Marten Martes martes Mouflon Mouflon Ovis ammon musimon Putois** Polecat Mustela puitorius Ragondin** Coypu Myocastor coypus Rat musqué** Musk Rat Ondatra zibethicus Raton laveur** Raccoon Procyon lotor Renard** Fox Vulpes vulpes Sanglier** Wild Boar Sus scrofa Vison d'Amrique** American Mink Mustela vison 23 espces de mammifres *espèces récemment introduites pour la chasse **espèces susceptibles d'être ègalement classes "nuisibles" .
Recommended publications
  • Bird Studies Overview
    Chapter 7. Bird Studies Overview teigerwald Lake National Wildlife Refuge provides a variety of habitats for many species of birds. Thousands of breeding birds rely on the resources of the refuge to Srest, eat, and raise their young. In addition, the refuge supports wetlands that are vital to the survival of migratory birds. The activities that follow offer an excellent opportunity for students to learn about and to observe the different species of birds — their behaviors and adaptations to the habitats on the refuge. Background The actively managed refuge wetlands and grasslands, when combined with the natural floodplain vegetative communities, provide habitat that supports over 200 species of birds. Hundreds of thousands of birds migrate along the lower Columbia River every year. The refuge hosts thousands of migratory birds that fly thousands of miles from their breeding grounds in Arctic Canada and Alaska to their wintering grounds in Baja California or South America, a route known as the Pacific Flyway. The few remaining areas of wetland habitat along the lower Columbia River are vital to the flyway. Some birds spend their winter on refuge wetlands, returning north to nest; some nest here but migrate to milder climates in the south for the winter; and some do not migrate at all but remain in the area as permanent residents. Several of the songbirds found in the summer spend our winters in Central and South America, migrating thousands of miles annually between their summer and winter habitats. Birds using the refuge are specifically adapted to the type of food they eat and the type of habitat they occupy (open water, freshwater wetland, field, riparian woodland, or upland woodland).
    [Show full text]
  • Supplementary Material
    Aythya ferina (Common Pochard) European Red List of Birds Supplementary Material The European Union (EU27) Red List assessments were based principally on the official data reported by EU Member States to the European Commission under Article 12 of the Birds Directive in 2013-14. For the European Red List assessments, similar data were sourced from BirdLife Partners and other collaborating experts in other European countries and territories. For more information, see BirdLife International (2015). Contents Reported national population sizes and trends p. 2 Trend maps of reported national population data p. 6 Sources of reported national population data p. 9 Species factsheet bibliography p. 17 Recommended citation BirdLife International (2015) European Red List of Birds. Luxembourg: Office for Official Publications of the European Communities. Further information http://www.birdlife.org/datazone/info/euroredlist http://www.birdlife.org/europe-and-central-asia/european-red-list-birds-0 http://www.iucnredlist.org/initiatives/europe http://ec.europa.eu/environment/nature/conservation/species/redlist/ Data requests and feedback To request access to these data in electronic format, provide new information, correct any errors or provide feedback, please email [email protected]. THE IUCN RED LIST OF THREATENED SPECIES™ BirdLife International (2015) European Red List of Birds Aythya ferina (Common Pochard) Table 1. Reported national breeding population size and trends in Europe1. Country (or Population estimate Short-term population trend4
    [Show full text]
  • The Systematic Position of the Ring-Necked Duck
    460 Hollister, Ring-necked Duck. [o"t. into consideration the evanescence of the diagnostic markings, and the inaccessibility of the coastal marshes where the bird breeds, together with the fact that the few ornithologists who seem to have visited them were generally armed only with cameras, it is perhaps not so odd after all. In assembling the data upon which these notes are based, besides those already mentioned, to whom I am particularly indebted, my thanks are due to Messrs. Stanley C. Arthur, O. Bangs, Howarth S. Boyle, William Brewster, Jonathan Dwight, J. H. Flemming, Harry C. Oberholser, Wilfred H. Osgood, T. S. Palmer, H. S. Swarth, P. A. Taverner, W. E. Clyde Todd, and John E. Thayer. THE SYSTEMATIC POSITION OF THE RING-NECKED DUCK. BY N. HOLLISTER. The group of fuliguline Ducks now called Marila in the American ' Ornithologists' Union Check-List ' has had its full share of nomen- clatorial shifts and changes, and many schemes have been proposed for its division into genera or subgenera. It has always seemed to me that the question of the number and rank of the named super- specific sections within this group is of little importance in com- parison to the error involved in the sequence given the species in the ' Check-List,' where the Canvasback is placed between the Redhead and the Scaups, and the Ring-necked Duck is put at the end of the series in the typical subgenus Marila. From a study of the literature of American Ducks it is evident that the belief prevails that the Ring-necked Duck (Marila col- laris) is a Scaup, very closely related to the Greater and Lesser Bluebills (Marila marila and M.
    [Show full text]
  • Bird Species Checklist
    6 7 8 1 COMMON NAME Sp Su Fa Wi COMMON NAME Sp Su Fa Wi Bank Swallow R White-throated Sparrow R R R Bird Species Barn Swallow C C U O Vesper Sparrow O O Cliff Swallow R R R Savannah Sparrow C C U Song Sparrow C C C C Checklist Chickadees, Nuthataches, Wrens Lincoln’s Sparrow R U R Black-capped Chickadee C C C C Swamp Sparrow O O O Chestnut-backed Chickadee O O O Spotted Towhee C C C C Bushtit C C C C Black-headed Grosbeak C C R Red-breasted Nuthatch C C C C Lazuli Bunting C C R White-breasted Nuthatch U U U U Blackbirds, Meadowlarks, Orioles Brown Creeper U U U U Yellow-headed Blackbird R R O House Wren U U R Western Meadowlark R O R Pacific Wren R R R Bullock’s Oriole U U Marsh Wren R R R U Red-winged Blackbird C C U U Bewick’s Wren C C C C Brown-headed Cowbird C C O Kinglets, Thrushes, Brewer’s Blackbird R R R R Starlings, Waxwings Finches, Old World Sparrows Golden-crowned Kinglet R R R Evening Grosbeak R R R Ruby-crowned Kinglet U R U Common Yellowthroat House Finch C C C C Photo by Dan Pancamo, Wikimedia Commons Western Bluebird O O O Purple Finch U U O R Swainson’s Thrush U C U Red Crossbill O O O O Hermit Thrush R R To Coast Jackson Bottom is 6 Miles South of Exit 57.
    [Show full text]
  • Ohio Birding Checklist with Difficulty Codes Daily/Year/Life
    Ohio Birding Checklist with ____ Common Merganser 2 ____ Belted Kingfisher 1 ____ Louisiana Waterthrush 2 ____ Red-breasted Merganser 1 ____ Red-headed Woodpecker 2 ____ Northern Waterthrush 2 Difficulty Codes ____ Ruddy Duck 1 ____ Red-bellied Woodpecker 1 ____ Blue-winged Warbler 1 ____ Wild Turkey 2 ____ Yellow-bellied Sapsucker 2 ____ Black-and-white Warbler 1 Daily/Year/Life ________________ ____ Pied-billed Grebe 1 ____ Downy Woodpecker 1 ____ Prothonotary Warbler 2 ____ Horned Grebe 1 ____ Hairy Woodpecker 1 ____ Tennessee Warbler 2 This checklist is arranged in three sections, each ____ Rock Pigeon 1 ____ Northern Flicker 1 ____ Nashville Warbler 1 corresponding to a pair of difficulty codes. The ____ Mourning Dove 1 ____ Pileated Woodpecker 1 ____ Kentucky Warbler 2 six codes/descriptions are based primarily on the ____ Yellow-billed Cuckoo 2 ____ American Kestrel 1 ____ Common Yellowthroat 1 collective experience of Greg Miller and Dan ____ Common Nighthawk 2 ____ Eastern Wood-Pewee 2 ____ Hooded Warbler 1 Sanders. Overall abundance and ease of ____ Chimney Swift 1 ____ Acadian Flycatcher 2 ____ American Redstart 1 identification have been factored into each of the ____ Ruby-throated Hummingbird 1 ____ Willow Flycatcher 2 ____ Cape May Warbler 2 six codes and are as follows: ____ Virginia Rail 2 ____ Least Flycatcher 1 ____ Cerulean Warbler 2 ____ Sora 1 ____ Eastern Phoebe 1 ____ Northern Parula 2 Easier to See Birds ____ Common Gallinule 2 ____ Great Crested Flycatcher 1 ____ Magnolia Warbler 1 1. Readily found within expected habitat ____ American Coot 1 ____ Eastern Kingbird 1 ____ Bay-breasted Warbler 2 during at least one season of the year.
    [Show full text]
  • Red and Fallow Deer Determine the Density of Ixodes Ricinus Nymphs Containing Anaplasma Phagocytophilum
    Red and Fallow Deer Determine the Density of Ixodes Ricinus Nymphs Containing Anaplasma Phagocytophilum Katsuhisa Takumi ( [email protected] ) Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands Tim Hofmeester Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Hein Sprong Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands Research Keywords: Ixodes ricinus nymphs, Anaplasma phagocytophilum, phagocytophilum, anaplasmosis Posted Date: October 26th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-96286/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 19th, 2021. See the published version at https://doi.org/10.1186/s13071-020-04567-4. 1 Red and fallow deer determine the density of Ixodes ricinus 2 nymphs containing Anaplasma phagocytophilum 1, 2 1 3 Katsuhisa Takumi ✉, Tim R. Hofmeester , and Hein Sprong 4 1 Centre for Zoonoses and Environmental Microbiology Centre for Infectious Disease Control 5 National Institute for Public Health and the Environment (RIVM) Bilthoven The Netherlands 6 2 Department of Wildlife Fish and Environmental Studies Swedish University of Agricultural 7 Sciences Skogsmarksgränd 7 907 36 Umeå Sweden 8 ✉ Correspondence: Katsuhisa Takumi <[email protected]> 9 1 10 Abstract 11 Background: The density of Ixodes ricinus nymphs infected with Anaplasma phagocytophilum 12 is one of the parameters that determines the risk for humans and domesticated animals to 13 contract anaplasmosis.
    [Show full text]
  • 03/16/2020 9:21 Am
    ACTION: Withdraw Proposed DATE: 03/16/2020 9:21 AM 1501:31-7-05 Seasons and limits on rail, common snipe (Wilson's snipe), woodcock, gallinules (common moorhens), teal, geese and mourning doves. (A) Throughout the state, it shall be unlawful for any person to hunt, kill, wound, take, or attempt to take, or to possess any of the migratory game birds specified in this rule except as provided in this rule or other rules of the Administrative Code. (1) It shall be unlawful for any person to hunt, take, or possess any rails except sora and Virginia, which may be hunted and taken from September 1, 20192020 through November 9, 20192020. (2) It shall be unlawful for any person to take or possess more than twenty-five rails singly or in the aggregate in one day, or to possess more than seventy-five rails singly or in the aggregate at anytime after the second day. (3) It shall be unlawful for any person to hunt, take, or possess common snipe (Wilson's snipe) at any time, except from September 1, 20192020 through November 26, 201924, 2020 and December 14, 201912, 2020 through January 2December 31, 2020. (4) It shall be unlawful for any person to hunt, take, or possess woodcock at any time, except from October 12, 201910, 2020 through November 25, 201923, 2020. (5) It shall be unlawful for any person to hunt or take rails, common snipe (Wilson's snipe), woodcock, or gallinules (common moorhens) at any time, except from sunrise to sunset daily during the open season.
    [Show full text]
  • Foraging Flight Distances of Wintering Ducks and Geese: a Review
    VOLUME 9, ISSUE 2, ARTICLE 2 Johnson, W. P., P. M. Schmidt, and D. P. Taylor. 2014. Foraging flight distances of wintering ducks and geese: a review. Avian Conservation and Ecology 9(2): 2. http://dx.doi.org/10.5751/ACE-00683-090202 Copyright © 2014 by the author(s). Published here under license by the Resilience Alliance. Research Paper Foraging flight distances of wintering ducks and geese: a review William P. Johnson 1, Paige M. Schmidt 1 and Dustin P. Taylor 2 1U.S. Fish and Wildlife Service, National Wildlife Refuge System, Division of Biological Sciences, 2U.S. Fish and Wildlife Service, Sequoyah National Wildlife Refuge ABSTRACT. The distance covered by foraging animals, especially those that radiate from a central area when foraging, may affect ecosystem, community, and population dynamics, and has conservation and landscape planning implications for multiple taxa, including migratory waterfowl. Migrating and wintering waterfowl make regular foraging flights between roosting and feeding areas that can greatly impact energetic resources within the foraging zone near roost sites. We reviewed published studies and gray literature for one- way foraging flight distances (FFDs) of migrating and wintering dabbling ducks and geese. Thirty reviewed studies reported FFDs and several reported values for multiple species or locations. We obtained FFD values for migration (n = 7) and winter (n = 70). We evaluated the effects of body mass, guild, i.e., dabbling duck or goose, and location, i.e., Nearctic or Palearctic, on FFDs. We used the second-order Akaike’s Information Criterion for model selection. We found support for effects of location and guild on FFDs.
    [Show full text]
  • Temporal Changes in the Sex Ratio of the Common Pochard Aythya Ferina Compared to Four Other Duck Species at Martin Mere, Lancashire, UK
    140 Temporal changes in the sex ratio of the Common Pochard Aythya ferina compared to four other duck species at Martin Mere, Lancashire, UK RUSSELL T. FREW1,*, KANE BRIDES1, TOM CLARE2, LAURI MACLEAN1, DOMINIC RIGBY3, CHRISTOPHER G. TOMLINSON2 & KEVIN A. WOOD1 1Wildfowl & Wetlands Trust, Slimbridge, Gloucestershire GL2 7BT, UK. 2Wildfowl & Wetlands Trust, Martin Mere, Fish Lane, Burscough, Lancashire L40 0TA, UK. 3Conservation Contracts Northwest Ltd. Horwich, Bolton, Lancashire BL6 7AX, UK. *Correspondence author. E-mail: [email protected] Abstract Duck populations tend to have male-biased adult sex ratios (ASRs). Changes in ASR reflect species demographic rates; increasingly male-biased populations are at risk of decline when the bias results from falling female survival. European and North African Common Pochard Aythya ferina numbers have declined since the 1990s and show increasing male bias, based on samples from two discrete points in time. However, lack of sex ratio (SR) data for common duck species inhibits assessing the pattern of change in the intervening period. Here, we describe changes in annual SR during winters 1991/92–2005/06 for five duck species (Common Pochard, Gadwall Mareca strepera, Northern Pintail Anas acuta, Northern Shoveler Spatula clypeata and Tufted Duck Aythya fuligula) at Martin Mere, Lancashire, UK. Pochard, Pintail, Tufted Duck and Shoveler showed significantly male-biased SRs, with the male bias increasing in Pochard and Shoveler, exhibiting a weak decrease in Pintail, and with no significant trend recorded for Tufted Duck or Gadwall. The increasing male-biased Pochard SR at Martin Mere contrasts with the stable trend for Britain, suggesting that site trends may not reflect those at the national level.
    [Show full text]
  • Rapid Risk Assessment on Incursion of HPAI H5N8 Into Housed Or Not Housed Poultry Flocks and Captive Birds
    Rapid risk assessment on incursion of HPAI H5N8 into housed or not housed poultry flocks and captive birds 29 January 2021 Situation as at 26 January 2021 © Crown copyright 2021 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v.3. To view this licence visit www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ or email [email protected] This publication is available at www.gov.uk/government/publications Any enquiries regarding this publication should be sent to: [email protected] www.gov.uk/defra 2 Contents Summary ............................................................................................................................................. 4 Introduction ........................................................................................................................................ 6 Hazard Identification ......................................................................................................................... 10 Previous outbreaks of HPAI H5N8: ................................................................................................... 12 Current Situation ............................................................................................................................... 12 Risk Question .................................................................................................................................... 16 Risk Levels ....................................................................................................................................
    [Show full text]
  • Red-Breasted Goose
    Urgent preliminary assessment of ornithological data relevant to spread of Avian Influenza in Europe Ward Hagemeijer Wetlands International Commissioned by DG Environment to Wetlands International and Euring Data needs for risk assessment: ornithology (virology) Quantified risk assessment: Research and Monitoring programme A. Birds as a vector 1.Quantified bird migration information: satellite telemetry, ringing data analysis, count data analysis 2.Quantified frequency of occurrence of virus in wild birds: surveillance 3.Ecology of virus in wild birds: virological research on wild birds B. Impact on wild bird populations Different components of the project Activities to be undertaken: • identification of Higher Risk Species (HRS) • analysis of their migration routes (ringing and count data) • identification of concentration and mixing sites • rapid assessment planning for wetland sites Analysis of higher risk species Identification of HRS on basis of: • occurence of LPAI viruses • ecology and behaviour • contact risk with poultry • numbers within EU In collaboration with David Stroud and Rowena Langston Occurrence of LPAI in wild birds species Results 1999 – 2004 Erasmus University Netherlands Species N Tested N PCR+ (%) N Egg + Mallard 6822 489 (7.2) 267 Eurasian Wigeon 1470 22 (1.5) 4 Common Teal 670 18 (2.7) 4 Northern Pintail 135 4 (3.0) 1 Northern Shoveler 90 1 (1.1) 1 Shelduck, Eider, Gadwall, Tufted, Garganey 238 0 (0.0) 0 Greater White-fronted Goose 1696 19 (1.1) 5 Greylag Goose 303 8 (2.6) 4 Brent, Barnacle, Bean, Egyptian, Canada, Pink-f 1202 0 (0.0) 0 Black-headed Gull 993 10 (1.0) 6 Common, Herring, Black-backed, Kittiwake 1976 0 (0.0) 0 Guillemot 698 3 (0.4) 1 Other birds 10909 0 0 + + + 27204 574 (2.1) 295 Selection of taxonomic groups • Anseriformes and Charadriiformes, • Migratory • Occurring in Europe.
    [Show full text]
  • Effect of Weather Conditions on the Spring Migration of Eurasian Woodcock and Consequences for Breeding
    Ibis (2018) doi: 10.1111/ibi.12657 Effect of weather conditions on the spring migration of Eurasian Woodcock and consequences for breeding KEVIN LE REST,1* ANDREW HOODLESS,2 CHRISTOPHER HEWARD,2 JEAN-LOUIS CAZENAVE3 & YVES FERRAND1 1Office National de la Chasse et de la Faune Sauvage, 8 boulevard Albert Einstein, Nantes, 44300, France 2Game & Wildlife Conservation Trust, Burgate Manor, Fordingbridge, Hampshire SP6 1EF, UK 3Club National des Becassiers, 105 rue Louis Pergaud, Villeneuve, Champniers, 16430, France Migration is a critical period of time with fitness consequences for birds. The develop- ment of tracking technologies now allows researchers to examine how different aspects of bird migration affect population dynamics. Weather conditions experienced during migration are expected to influence movements and, subsequently, the timing of arrival and the energetic costs involved. We analysed satellite-tracking data from 68 Eurasian Woodcock Scolopax rusticola fitted with Argos satellite tags in the British Isles and France (2012–17). First, we evaluated the effect of weather conditions (temperature, humidity, wind speed and direction, atmospheric stability and visibility) on migration movements of individuals. Then we investigated the consequences for breeding success (age ratio) and brood precocity (early-brood ratio) population-level indices while accounting for cli- matic variables on the breeding grounds. Air temperature, wind and relative humidity were the main variables related to migration movements, with high temperatures and northward winds greatly increasing the probability of onward flights, whereas a trend towards greater humidity over 4 days decreased the probability of movement. Breeding success was mostly affected by climatic variables on the breeding grounds. The propor- tion of juveniles in autumn was negatively correlated with temperature in May, but posi- tively correlated with precipitation in June and July.
    [Show full text]