Some Lichens Recorded During the HFFS Outing, 21St April 2013 [email protected]
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Addition to the Moss Flora
ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 63: 111-122, 2014 DOI: 10.2478/cszma-2014-0012 Bryjarka hill in Szczawnica (Beskid Sądecki Mts, Western Carpathians, Poland) - a natural and cultural focus Grzegorz Vončina, Maciej Wawrzczak, Laura Betleja, Joanna Kozik, Robert Kościelniak, Piotr Chachuła Bryjarka hill in Szczawnica (Beskid Sądecki Mts, Western Carpathians, Poland) - a natural and cultural focus. – Acta Mus. Siles. Sci. Natur., 63: 111-122, 2014. Abstract: The aim of this article is to present the history and the current state of Bryjarka hill, situated in Szczawnica (the Beskid Sądecki range in southern Poland) in relation to its environmental and cultural values. Another aim of this article is to show that Bryjarka hill plays an important role in the biological, geological and cultural aspects of the region. It represents cultural significance where the traces of human activities date back to medieval times. Key words: nature values, cultural values, andesite, lichens, fungi, mosses, plants, succession, nature protection Introduction Bryjarka is a hill in Szczawnica, in the south-western part of the Beskid Sądecki Mts. (Fig. 1). It is known for its picturesque view and an iron cross placed there at the beginning of 20th century on the top of the hill (Węglarz 2011; Chrzanowska & Chrzanowski 2013). Residents, tourists and spa guests can take a 30-40 minutes walk from Dietl square up to the top of the hill following the yellow trail. In addition to sacred and tourism values of it, there are some very interesting places in respect of nature conservation (thermophilous and rare species of plants) and cultural values (andesite quarry). -
Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?
molecules Communication Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments? Beatriz Fernández-Marín 1, Unai Artetxe 1, José María Becerril 1, Javier Martínez-Abaigar 2, Encarnación Núñez-Olivera 2 and José Ignacio García-Plazaola 1,* ID 1 Department Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain; [email protected] (B.F.-M.); [email protected] (U.A.); [email protected] (J.M.B.) 2 Faculty of Science and Technology, University of La Rioja (UR), 26006 Logroño (La Rioja), Spain; [email protected] (J.M.-A.); [email protected] (E.N.-O.) * Correspondence: [email protected]; Tel.: +34-94-6015319 Received: 22 June 2018; Accepted: 16 July 2018; Published: 17 July 2018 Abstract: The main role of lichen anthraquinones is in protection against biotic and abiotic stresses, such as UV radiation. These compounds are frequently deposited as crystals outside the fungal hyphae and most of them emit visible fluorescence when excited by UV. We wondered whether the conversion of UV into visible fluorescence might be photosynthetically used by the photobiont, thereby converting UV into useful energy. To address this question, thalli of Xanthoria parietina were used as a model system. In this species the anthraquinone parietin accumulates in the outer upper cortex, conferring the species its characteristic yellow-orange colouration. In ethanol, parietin absorbed strongly in the blue and UV-B and emitted fluorescence in the range 480–540 nm, which partially matches with the absorption spectra of photosynthetic pigments. In intact thalli, it was determined by confocal microscopy that fluorescence emission spectra shifted 90 nm towards longer wavelengths. -
Viability of the Lichen Xanthoria Elegans and Its Symbionts After 18 Months of Space Exposure and Simulated Mars Conditions on the ISS
International Journal of Astrobiology 14 (3): 411–425 (2015) doi:10.1017/S1473550414000214 © Cambridge University Press 2014 Viability of the lichen Xanthoria elegans and its symbionts after 18 months of space exposure and simulated Mars conditions on the ISS Annette Brandt1, Jean-Pierre de Vera2, Silvano Onofri3 and Sieglinde Ott1 1Institute of Botany, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf, Germany 2Institute of Planetary Research, German Aerospace Center (DLR), Rutherfordstr. 2, 12489 Berlin, Germany 3Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università, 01100 Viterbo, Italy e-mail: [email protected] Abstract: The lichen Xanthoria elegans has been exposed to space conditions and simulated Mars-analogue conditions in the lichen and fungi experiment (LIFE) on the International Space Station (ISS). After several simulations and short space exposure experiments such as BIOPAN, this was the first long-term exposure of eukaryotic organisms to the hostile space conditions of the low Earth orbit (LEO). The biological samples were integrated in the EXPOSE-E facility and exposed for 1.5 years outside the ISS to the combined impact of insolation, ultraviolet (UV)-irradiation, cosmic radiation, temperatures and vacuum conditions of LEO space. Additionally, a subset of X. elegans samples was exposed to simulated Martian environmental conditions by applying Mars-analogue atmosphere and suitable solar radiation filters. After their return to Earth the viability of the lichen samples was ascertained by viability analysis of LIVE/DEAD staining and confocal laser-scanning microscopy, but also by analyses of chlorophyll a fluorescence. According to the LIVE/DEAD staining results, the lichen photobiont showed an average viability rate of 71%, whereas the even more resistant lichen mycobiont showed a rate of 84%. -
Esa Publications
number 172 | 4th quarter 2017 bulletin → united space in europe European Space Agency The European Space Agency was formed out of, and took over the rights and The ESA headquarters are in Paris. obligations of, the two earlier European space organisations – the European Space Research Organisation (ESRO) and the European Launcher Development The major establishments of ESA are: Organisation (ELDO). The Member States are Austria, Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, ESTEC, Noordwijk, Netherlands. Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Slovenia is an Associate Member. Canada ESOC, Darmstadt, Germany. takes part in some projects under a cooperation agreement. Bulgaria, Cyprus, Malta, Latvia, Lithuania and Slovakia have cooperation agreements with ESA. ESRIN, Frascati, Italy. ESAC, Madrid, Spain. In the words of its Convention: the purpose of the Agency shall be to provide for and to promote, for exclusively peaceful purposes, cooperation among European EAC, Cologne, Germany. States in space research and technology and their space applications, with a view to their being used for scientific purposes and for operational space applications ECSAT, Harwell, United Kingdom. systems: ESEC, Redu, Belgium. → by elaborating and implementing a long-term European space policy, by recommending space objectives to the Member States, and by concerting the policies of the Member States with respect to other national -
Molecular Phylogenetic Study at the Generic Boundary Between the Lichen-Forming Fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae)
Mycol. Res. 107 (11): 1266–1276 (November 2003). f The British Mycological Society 1266 DOI: 10.1017/S0953756203008529 Printed in the United Kingdom. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and Xanthoria (Ascomycota, Teloschistaceae) Ulrik SØCHTING1 and Franc¸ ois LUTZONI2 1 Department of Mycology, Botanical Institute, University of Copenhagen, O. Farimagsgade 2D, DK-1353 Copenhagen K, Denmark. 2 Department of Biology, Duke University, Durham, NC 27708-0338, USA. E-mail : [email protected] Received 5 December 2001; accepted 5 August 2003. A molecular phylogenetic analysis of rDNA was performed for seven Caloplaca, seven Xanthoria, one Fulgensia and five outgroup species. Phylogenetic hypotheses are constructed based on nuclear small and large subunit rDNA, separately and in combination. Three strongly supported major monophyletic groups were revealed within the Teloschistaceae. One group represents the Xanthoria fallax-group. The second group includes three subgroups: (1) X. parietina and X. elegans; (2) basal placodioid Caloplaca species followed by speciations leading to X. polycarpa and X. candelaria; and (3) a mixture of placodioid and endolithic Caloplaca species. The third main monophyletic group represents a heterogeneous assemblage of Caloplaca and Fulgensia species with a drastically different metabolite content. We report here that the two genera Caloplaca and Xanthoria, as well as the subgenus Gasparrinia, are all polyphyletic. The taxonomic significance of thallus morphology in Teloschistaceae and the current delimitation of the genus Xanthoria is discussed in light of these results. INTRODUCTION Taxonomy of Teloschistaceae and its genera The Teloschistaceae is a well-delimited family of Hawksworth & Eriksson (1986) assigned the Teloschis- lichenized fungi. -
18Th EANA Conference European Astrobiology Network Association
18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures. -
The Lichen Genus Physcia (Schreb.) Michx (Physciaceae: Ascomycota) in New Zealand
Tuhinga 16: 59–91 Copyright © Te Papa Museum of New Zealand (2005) The lichen genus Physcia (Schreb.) Michx (Physciaceae: Ascomycota) in New Zealand D. J. Galloway1 and R. Moberg 2 1 Landcare Research, New Zealand Ltd, Private Bag 1930, Dunedin, New Zealand ([email protected]) 2 Botany Section (Fytoteket), Museum of Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvägen 16, SE-752 36 Uppsala, Sweden ABSTRACT: Fourteen species of the lichen genus Physcia (Schreb.) Michx are recognised in the New Zealand mycobiota, viz: P. adscendens, P. albata, P. atrostriata, P. caesia, P. crispa, P. dubia, P. erumpens, P. integrata, P. jackii, P. nubila, P. poncinsii, P. tribacia, P. trib- acoides, and P. undulata. Descriptions of each taxon are given, together with a key and details of biogeography, chemistry, distribution, and ecology. Physcia tenuisecta Zahlbr., is synonymised with Hyperphyscia adglutinata, and Physcia stellaris auct. is deleted from the New Zealand mycobiota. Physcia atrostriata, P. dubia, P. integrata, and P. nubila are recorded from New Zealand for the first time. A list of excluded taxa is appended. KEYWORDS: lichens, New Zealand lichens, Physcia, atmospheric pollution, biogeography. Introduction genera with c. 860 species presently known (Kirk et al. 2001), and was recently emended to include taxa having: Species of Physcia (Schreb.) Michx, are foliose, lobate, Lecanora-type asci; a hyaline hypothecium; and ascospores loosely to closely appressed lichens, with a whitish, pale with distinct wall thickenings or of Rinodella-type (Helms greenish, green-grey to dark-grey upper surface (not dark- et al. 2003). Physcia is a widespread, cosmopolitan genus ening, or colour only little changed, when moistened). -
Australasian Lichenology Australasian Lichenology Number 45, July 1999 Number 45, July 1999
Australasian Lichenology Australasian Lichenology Number 45, July 1999 Number 45, July 1999 Byssoloma sublmdulatllm lmm Byssoloma subdiscordans lmm ANNOUNCEMENTS Dampier 300, Biodiversity in Australia, Perth, 1999 .................................. ....... 2 14th meeting of Australasian lichenologists, Melbourne, 1999 ......................... 2 4th IAL Symposium, Barcelona, 2000 ..... .. .......................................................... 2 The Southern Connection, Christchurch, 2000 .. ............................ ..................... 3 ADDITIONAL LICHEN RECORDS FROM AUSTRALIA Archer, AW (40}-Pertusaria knightiana MUll. Arg........................................... 4 Elix, JA; Streimann, H (41}-Parmeliaceae. .................................... .. ................ 5 ADDITIONAL LICHEN RECORDS FROM NEW ZEALAND Galloway, DJ; Knight, A; Johnson, PN; Hayward, BW (30)-Polycoccum galli genum .. ............................................................................................................... 8 ARTICLES Lumbsch, HT-Notes on some genera erroneously reported for Australia ........ 10 Elix, JA; McCaffery, LF-Three new tridepsides in the lichenPseudocyphellaria billardierei ................................................................................ .. ................ ..... 12 Trinkaus, U; Mayrhofer, H; Matzer, M-Rinodinagennarii (Physciaceae), a wide spread species in the temperate regions of the Southern Hemisphere ........ 15 Malcolm, WM; Vezda, A; McCarthy, PM; Kantvilas, G-Porina subapplanata, a new species from -
British Lichen Society Bulletin No
1 BRITISH LICHEN SOCIETY OFFICERS AND CONTACTS 2010 PRESIDENT S.D. Ward, 14 Green Road, Ballyvaghan, Co. Clare, Ireland, email [email protected]. VICE-PRESIDENT B.P. Hilton, Beauregard, 5 Alscott Gardens, Alverdiscott, Barnstaple, Devon EX31 3QJ; e-mail [email protected] SECRETARY C. Ellis, Royal Botanic Garden, 20A Inverleith Row, Edinburgh EH3 5LR; email [email protected] TREASURER J.F. Skinner, 28 Parkanaur Avenue, Southend-on-Sea, Essex SS1 3HY, email [email protected] ASSISTANT TREASURER AND MEMBERSHIP SECRETARY H. Döring, Mycology Section, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] REGIONAL TREASURER (Americas) J.W. Hinds, 254 Forest Avenue, Orono, Maine 04473-3202, USA; email [email protected]. CHAIR OF THE DATA COMMITTEE D.J. Hill, Yew Tree Cottage, Yew Tree Lane, Compton Martin, Bristol BS40 6JS, email [email protected] MAPPING RECORDER AND ARCHIVIST M.R.D. Seaward, Department of Archaeological, Geographical & Environmental Sciences, University of Bradford, West Yorkshire BD7 1DP, email [email protected] DATA MANAGER J. Simkin, 41 North Road, Ponteland, Newcastle upon Tyne NE20 9UN, email [email protected] SENIOR EDITOR (LICHENOLOGIST) P.D. Crittenden, School of Life Science, The University, Nottingham NG7 2RD, email [email protected] BULLETIN EDITOR P.F. Cannon, CABI and Royal Botanic Gardens Kew; postal address Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, email [email protected] CHAIR OF CONSERVATION COMMITTEE & CONSERVATION OFFICER B.W. Edwards, DERC, Library Headquarters, Colliton Park, Dorchester, Dorset DT1 1XJ, email [email protected] CHAIR OF THE EDUCATION AND PROMOTION COMMITTEE: position currently vacant. -
Abstracts from the Fifth European Workshop on Astrobiology EANA
International Journal of Astrobiology 5 (1): 67–88 (2006) Printed in the United Kingdom 67 doi:10.1017/S1473550406002849 f 2006 Cambridge University Press Abstracts from the Fifth European Workshop on Astrobiology EANA – European Astrobiology Network Association 10–12 October 2005 Budapest, Hungary Early Stars and Stellar Environments Oral Presentations The UV radiation environment in the Solar System Setting a scene: before another Earth will be found A. Hanslmeier(1), M. Vazquez(2), H. Lammer(3), M. Khodachenko(3) E. Szuszkiewicz(1,2), J. C. B. Papaloizou(3,4) (1) Institut fu¨r Physik, Geophysik Astrophysik Meteorologie, Univ.- (1) Institute of Physics, University of Szczecin, Poland; (2) Centre for Platz 5, A-8010 Graz, Austria; (2) Instituto de Astrofisica de Canarias, Advanced Studies in Astrobiology and Related Topics, Szczecin, C/Vı´aLa´ctea s/n, E-38200, La Laguna, Tenerife, Spain; (3) Austrian Poland; (3) Astronomy Unit, Queen Mary, University of London, Academy of Science Space Research Institute Schmiedlstraße 6, A-8042 England; (4) Department of Applied Mathematics and Theoretical Graz, Austria Physics, Centre for Mathematical Sciences, Cambridge, England The UV radiation environment in the Solar System is dominated of The increasing number of extrasolar multi-planet systems, their diver- course by the Sun. Since the early Sun radiated more intensely in the sity, and dynamical complexities provide a strong motivation to study short wavelength range, the influence of this radiation to the early the evolution and stability of such systems. One of the most important planets and to the formation of early planetary atmospheres as well as features connected with planetary system evolution is the occurrence of to the evolution of life on Earth and possibly other planets has to be mean motion resonances, which may relate to conditions at the time of considered in detail. -
Alberta Wild Species General Status Listing 2010
Fish & Wildlife Division Sustainable Resource Development Alberta Wild Species General Status Listing - 2010 Species at Risk ELCODE Group ID Scientific Name Common Name Status 2010 Status 2005 Status 2000 Background Lichens Cladonia cenotea Powdered Funnel Lichen Secure Cladonia cervicornis Lichens Ladder Lichen Secure verticillata Lichens Cladonia chlorophaea Mealy Pixie-cup Lichen Secure Lichens Cladonia coccifera Eastern Boreal Pixie-cup Lichen Undetermined Lichens Cladonia coniocraea Common Pixie Powderhorn Secure Lichens Cladonia cornuta Bighorn Pixie Lichen Secure Lichens Cladonia cornuta cornuta Bighorn Pixie Lichen Secure Lichens Cladonia crispata Organpipe Lichen Secure Lichens Cladonia cristatella British Soldiers Lichen Secure Cladonia Lichens Mealy Pixie-cup Lichen Undetermined cryptochlorophaea Lichens Cladonia cyanipes Blue-footed Pixie Lichen Sensitive Lichens Cladonia deformis Lesser Sulphur-cup Lichen Secure Lichens Cladonia digitata Fingered Pixie-cup Lichen May Be At Risk Lichens Cladonia ecmocyna Orange-footed Pixie Lichen Secure Lichens Cladonia fimbriata Trumpeting Lichen Secure Lichens Cladonia furcata Forking Lichen Sensitive Lichens Cladonia glauca Glaucous Pixie Lichen May Be At Risk Lichens Cladonia gracilis gracilis Gracile Lichen May Be At Risk Lichens Cladonia gracilis turbinata Bronzed Lichen Secure Lichens Cladonia grayi Gray's Pixie-cup Lichen May Be At Risk Lichens Cladonia humilis Humble Pixie-cup Lichen Undetermined Lichens Cladonia macilenta Lipstick Powderhorn Lichen Secure Cladonia macilenta Lichens -
Metabolic Processes Sustaining the Reviviscence of Lichen Xanthoria Elegans (Link) in High Mountain Environments
Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Serge Aubert, Christine Juge, Anne-Marie Boisson, Elisabeth Gout, Richard Bligny To cite this version: Serge Aubert, Christine Juge, Anne-Marie Boisson, Elisabeth Gout, Richard Bligny. Metabolic pro- cesses sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments.. Planta, Springer Verlag, 2007, 226 (5), pp.1287-97. 10.1007/s00425-007-0563-6. hal-00188424 HAL Id: hal-00188424 https://hal.archives-ouvertes.fr/hal-00188424 Submitted on 16 Nov 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 32 Planta 1 2 3 Serge Aubert 1* . Christine Juge 1 . Anne-Marie Boisson2 . Elisabeth Gout2 . Richard Bligny 1,2 4 5 6 7 Metabolic processes sustaining the reviviscence of the lichen Xanthoria elegans (Link) in 8 9 high mountain environment 10 11 12 1 Station Alpine Joseph Fourier , UMS 2925 UJF CNRS, Université Joseph Fourier, BP 53, 38041 13 14 Grenoble cedex 9, France 15 16 17 18 For Peer Review 19