Rhizobial Populations, Diversity, Nodulation, and Its Relevance to Legume Cropping Euan K

Total Page:16

File Type:pdf, Size:1020Kb

Rhizobial Populations, Diversity, Nodulation, and Its Relevance to Legume Cropping Euan K Rhizobial populations, diversity, nodulation, and its relevance to legume cropping Euan K. James Marta Maluk Francesc Ferrando- Molina* Cathy Hawes Richard Quilliam* Pietro P.M. Iannetta diversity of rhizobia “rhizobia” can be a functional term to define bacteria able to fix nitrogen in symbiosis with legumes g a-rhizobia Rickettsia Nitrosovibrio b b-rhizobia a Bordetella Methylobacterium Burkholderia s.l. Bradyrhizobium Blastobacter Rhodopseudomonas Ralstonia solanacearum Paracoccus Ochrobactrum Alcaligenes Sinorhizobium Cupriavidus Rhizobium Agrobacterium Phyllobacterium Mesorhizobium Neisseria Azorhizobium Spirillum Devosia Azoarcus Xanthobacter Azospirillum outgroup d e 16S rRNA tree of proteobacteria (adapted from Moulin et al. 2001) Biological Nitrogen Fixation (BNF) + - 4+ N2 + 10H + 8e + 16ATP ® 2NH + H2 Root nodule on Sesbania rostrata cut open to reveal the Immunolocalisation of nitrogenase N2-fixing cells (*) Fe-protein in bacteroids (b) BNF “Green Manures” in action No fertiliser necessary, as you get your Nitrogen for free! Paddy field at IRRI, Manila Stem nodulated Sesbania rostrata Non-nodulated legumes are N- deficient Soybean ± inoculation Balruddery Farm, Angus, Scotland. July 2018. 1400 Comandor cleaned seed weights [kg per ha] 1200 1000 800 600 400 200 0 Control MF AMFonly RhizoLiq+A RhizLiqOnly Economical importance of BNF • Australia (soybean, peas, f. beans) • New Zealand (pasture legumes for dairy) • Brazil/Argentina (soybean, French bean) • USA (soybean, peas) • WortH billions of $ to tHe economies of tHese countries • Assisted by large research programmes into rHizobial inoculants and tHeir application (in partnership witH industry) Faba beans and peas • Faba beans (Vicia faba) and peas (Pisum sativum) are the UK’s main grain legumes, and are of great economic and agricultural importance as a source of protein for humans and animals (Prices: $300 & $350 per tonne, respectively). • Like many legumes they can have all their N- requirements supplied by forming symbioses with a common soil bacterium called Rhizobium. • Both are widely grown in temperate regions, such as East Scotland, often in rotation with non-legume crops, in which their capacity for BNF is utilised. • However, they are NOT inoculated with rhizobia and farmers simply rely on native rhizobial populations. How to reverse decline in pulse growing in UK • Domestically-grown f. beans suffer from massive competition from imported soybean. • F. beans suffer from “yield instability”, which makes them unreliable. • In part, this is linked to erratic BNF performance in the field and it can be corrected. BNF is adversely affected by: • Lack of suitable rhizobia in the soil leading to low nodulation and low BNF. • Inappropriate use of N-fertiliser (legumes will not fix N if fertiliser is present). • Inappropriate crop rotation/sequences. Experimental trials of Faba beans at JHI (Balruddery CSC) Centre for Sustainable Cropping (CSC) • At Balruddery Farm • Experimental research platform • Large scale and long-term • 6-course rotation • Split field design • Conventional (“C”) • Sustainable (“S” = compost only) • Crop yield and quality • Economics • Nutrient budgets • Soil structure • GHG emissions 12 • Above and below ground diversity Measuring BNF by Faba beans • BNF measured at early pod fill using tHe (delta) δ15N natural abundance technique. • Total N removed in tHe grains at final Harvest, and tHe N remaining in tHe field (shoots & roots) also estimated. • DNA extracted from soil and tested for presence of rHizobia • RHizobia isolated from nodules and genotyped. • Strains tested on peas, faba beans & lentils in greenHouse and field trials Fixed N at mid podfill (2012 - 2015) Estimated using 15N BNF kg ha-1 450 400 350 300 250 200 150 100 50 0 C S C S C S C S 2012 2013 2014 2015 N in crop residues after harvest (shoots + roots) N in residues kg ha-1 120 100 80 60 40 20 0 C S C S C S C S 2012 2013 2014 2015 Faba bean BNF in UK • Faba beans can fix >300 and peas >100 kg N ha-1 • After f. bean grain Harvest up to 90 kg N Ha-1 can be left in tHe soil for tHe use of tHe following (non-legume) crop. • WitH fertiliser at a price of $300 t-1 tHis BNF amounts to a considerable cost saving. • Dependent on tHe presence of good rHizobia in tHe soil. • THese are a source of potential elite inoculants for commercial exploitation. Rhizobial populations (qPCR) 16S rRNA & (qPCR)16SrRNA populations Rhizobial Rhizobium Rlv Rleg population g-1 soil dry weight Rlv population g-1 soil dry weight Farm management: Farm Conventional Year Year Year Integrated nodD nodD 97 I 99 81 III 150 isolates: 2 main genotypes of “Rlv” IV 93 99 II Rhizobium leguminosarum bv.viciae J-1 (GQ323717.1) Rhizobium leguminosarum bv.viciae Nvf1 (GQ323718.1) 82 54 76 JHI838 Phaseolus vulgaris Salamanca Spain 53 99 Rhizobium bangladeshense BLR175 T (JN649025.1) Lens culinaris Bangladesh Rhizobium lentis BLR9 (JN649014.1) Lens culinaris Bangladesh 66 Rhizobium leguminosarum bv. viciae CCBAU11080 (GQ323701.1) Liaoning Spring RLV-IV 96 JHI1249 Pisum sativum Orkney 69 JHI1084 Lathyrush sativus Washington USA Rhizobium leguminosarum bv. trifolii WSM2304 (DQ873524.1) 89 Rhizobium leguminosarum bv. trifolii (AJ306480) 99 Rhizobium leguminosarum bv. trifolii WSM1325 (DQ873523.1) Rhizobium sullae Hc 04N (KR732671.1) 99 Rhizobium phaseoli Ch24-10 (AHJU02000025.1) 94 Rhizobium etli CFN 42T (U80928.5) 97 Rhizobium gallicum R602T (CP006879.1) 63 Rhizobium tropici CIAT 899T (NC 020061.1) Azorhizobium caulinodans ORS571T (NC 009937) 0.1 Screening rhizobia Field Greenhouse Greenhouse screen of elite rhizobia (pea cv. Corus biomass increase) Dry biomass (g) 0-60d) 5x 12x Rhizobia isolate (code) Existing commercial strain 0. 0 1. 0 2. 0 3. 0 4. 0 Control “ Top 15”Top rhizobial strains on pea 3841 13 VF2 Dry weight above ground biomass (g) pea cv. Kareni (g)pea cv. ground biomass above Dry weight 362 24 387 E2-1B Lat.Lini2B -1 LegTech 42 LA -2A VF5 370 388 Rlv strains have different symbiotic preferences that may not be linked with their original hosts Stem dry weight (g) June 2019 Pea cv. Corus Faba beans cv. Vertigo 2.2 Lentils cv. Rosana 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 NC 3841 JHI24 JHI13 JHI42 JHI370 JHI362 JHI783 JHI387 JHI782 JHI974 JHI979 JHI388 JHI1266 JHI1253 JHI1093 JHI1236 JHI1238 Genomes • >50 Rlv strains sequenced by MicrobesNG (Univ. Birmingham) - ranging from high- to low-performing strains • Phylogenies constructed of: • Housekeeping genes (rrs, recA, atpD) • Nif genes (nifDH) • Nod genes (nodAD) nodAD nifDH rrs-recA-atpD JHI1418 Wiltshire UK 2017 JHI1418 Wiltshire UK 2017 JHI1592 Skye UK 2017 VF5 Yorkshire UK Rhizobium leguminosarum bv. viciae GB30 Poland Rhizobium leguminosarum bv. viciae GB30 Poland Rhizobium leguminosarum bv. viciae GB30 Poland JHI1592 Skye UK 2017 JHI1422 Wiltshire UK 2017 JHI1253 Orkney UK 2017 JHI1422 Wiltshire UK 2017 JHI1442 Orkney UK 2017 JHI985 Angus UK 2016 JHI1442 Orkney UK 2017 JHI1266 Orkney UK 2017 JHI788 Roxburghshire UK 2015 JHI1253 Orkney UK 2017 JHI1259 Orkney UK 2017 JHI787 Ethiopia 2015 JHI1259 Orkney UK 2017 VF5 Yorkshire UK 6 JHI388 CSC (C) 2013 rcr1045 1 rcr1045 7 JHI370 CSC (C) 2013 WSM1455 Greece 2002 8 JHI788 Roxburghshire UK 2015 0 JHI367 CSC (C) 2013 1 Group I JHI388 CSC (C) 2013 Group I WSM1455 Greece 2002 JHI362 CSC (I) 2013 JHI387 CSC (C) 2013 I JHI388 CSC (C) 2013 I JHI24 Angus UK 2011 JHI370 CSC (C) 2013 JHI387 CSC (C) 2013 JHI387 CSC (C) 2013 gsC JHI362 CSC (I) 2013 6 JHI370 CSC (C) 2013 JHI782 2015 gsC JHI42 Angus UK 2011 3 6 JHI367 CSC (C) 2013 8 rcr1045 6 JHI367 CSC (C) 2013 JHI362 CSC (I) 2013 6 JHI979 Angus UK 2016 JHI24 Angus UK 2011 9 JHI1418 Wiltshire UK 2017 JHI787 Ethiopia 2015 9 JHI979 Angus UK 2016 9 6 JHI42 Angus UK 2011 9 Rhizobium pisi DSM 30132 T 9 JHI1592 Skye UK 2017 5 JHI1259 Orkney UK 2017 7 JHI1093 Angus UK 2017 JHI985 Angus UK 2016 6 JHI1442 Orkney UK 2017 8 JHI1096 Angus UK 2017 JHI364 CSC (I) 2013 5 8 JHI364 CSC (I)2013 72 JHI985 Angus UK 2016 6 JHI953 CSC (I) 2016 9 9 2 JHI953 CSC (I)2016 Rhizobium leguminosarum bv. viciae UPM791 USA 9 8 VF2 Yorkshire UK 8 VF2 Yorkshire UK 8 JHI1253Rhizobium Orkney fabae UK 2017 CCBAU 33202 T Rlv-I China 7 JHI54 Angus UK 2011 JHI1266 Orkney UK 2017 8 JHI10 Angus UK 2011 1 JHI1093 Angus UK 2017 9 JHI1422 Wiltshire UK 2017 JHI13 Angus UK 2011 Group III 0 JHI1096 Angus UK 2017 8 8 JHI925 CSC (C)2016 6 1 JHI1438 Angus UK 2017 III 0 JHI1084 Washington State USA 2017 5 JHI1093 Angus UK 2017 10 9 0 Rhizobium leguminosarum bv. viciae USDA 2370 T Tunisia JHI24 Angus UK 2011 JHI1096 Angus UK 2017 9 0 0 9 Group III Rhizobium leguminosarum bv. trifolii SRDI943 Australia VF2 Yorkshire UK 59 Rhizobium pisi DSM 30132 T III 8 5 0 JHI787 Ethiopia 2015 8 Rhizobium leguminosarum bv. trifolii WSM1325 gsA JHI1266 Orkney UK 2017 1 6 gsA JHI42 Angus UK 2011 8 Rhizobium leguminosarum bv.trifolii CC275eAustralia 8 JHI953 CSC (I) 2016 0 6 7 JHI10 Angus UK 2011 9 JHI979 Angus UK 2016 0 4 JHI10 Angus UK 2011 3 99 JHI54 Angus UK 2011 JHI13 Angus UK 2011 9 JHI366 CSC (C) 2013 5 6 9 Rhizobium leguminosarum bv. trifolii CC278f USA JHI364 CSC (I) 2013 9 JHI1438 Angus UK 2017 gsD gsD 2 Rhizobium leguminosarum bv. viciae USDA 2370 T Tunisia 9 Rhizobium leguminosarum Norway 8 JHI1587 Cambridge UK 2017 9 9 Rhizobium laguerreae FB206 T Tunisia gsF 8 8 JHI54 Angus UK 2011 Group IV 2 JHI1415 Wiltshire UK 2017 1 Rhizobium leguminosarum bv. viciae CCBAU 11080 Rlv-IV China 5 Rhizobium bangladeshense BLR175 T Bangladesh IV JHI1600 Wiltshire UK 2017 Group II 9 Rhizobium binae BLR195 T Bangladesh Rhizobium leguminosarum bv.
Recommended publications
  • Pfc5813.Pdf (9.887Mb)
    UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA DEPARTAMENTO DE PRODUCCIÓN VEGETAL INGENIERO AGRÓNOMO PROYECTO FIN DE CARRERA: “AISLAMIENTO E IDENTIFICACIÓN DE LOS RIZOBIOS ASOCIADOS A LOS NÓDULOS DE ASTRAGALUS NITIDIFLORUS”. Realizado por: Noelia Real Giménez Dirigido por: María José Vicente Colomer Francisco José Segura Carreras Cartagena, Julio de 2014. ÍNDICE GENERAL 1. Introducción…………………………………………………….…………………………………………………1 1.1. Astragalus nitidiflorus………………………………..…………………………………………………2 1.1.1. Encuadre taxonómico……………………………….…..………………………………………………2 1.1.2. El origen de Astragalus nitidiflorus………………………………………………………………..4 1.1.3. Descripción de la especie………..…………………………………………………………………….5 1.1.4. Biología…………………………………………………………………………………………………………7 1.1.4.1. Ciclo vegetativo………………….……………………………………………………………………7 1.1.4.2. Fenología de la floración……………………………………………………………………….9 1.1.4.3. Sistema de reproducción……………………………………………………………………….10 1.1.4.4. Dispersión de los frutos…………………………………….…………………………………..11 1.1.4.5. Nodulación con Rhizobium…………………………………………………………………….12 1.1.4.6. Diversidad genética……………………………………………………………………………....13 1.1.5. Ecología………………………………………………………………………………………………..…….14 1.1.6. Corología y tamaño poblacional……………………………………………………..…………..15 1.1.7. Protección…………………………………………………………………………………………………..18 1.1.8. Amenazas……………………………………………………………………………………………………19 1.1.8.1. Factores bióticos…………………………………………………………………………………..19 1.1.8.2. Factores abióticos………………………………………………………………………………….20 1.1.8.3. Factores antrópicos………………..…………………………………………………………….21
    [Show full text]
  • Actes Congrès MICROBIOD 1
    Actes du congrès international "Biotechnologie microbienne au service du développement" (MICROBIOD) Marrakech, MAROC 02-05 Novembre 2009 "Ce travail est publié avec le soutien du Ministère de l'Education Nationale, de l'Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique et du CNRST". MICROBIONA Edition www.ucam.ac.ma/microbiona 1 1 Mot du Comité d'organisation Cher (e) membre de MICROBIONA Cher(e) Participant(e), Sous le Haut Patronage de sa Majesté le Roi Mohammed VI, l'Association MICROBIONA et la Faculté des Sciences Semlalia, Université Cadi Ayyad, organisent du 02 au 05 Novembre 2009, en collaboration avec la Société Française de Microbiologie, le Pôle de Compétences Eau et Environnement et l'Incubateur Universitaire de Marrakech, le congrès international "Biotechnologie microbienne au service du développement" (MICROBIOD). Cette manifestation scientifique spécialisée permettra la rencontre de chercheurs de renommée internationale dans le domaine de la biotechnologie microbienne. Le congrès MICROBIOD est une opportunité pour les participants de mettre en relief l’importance socio-économique et environnementale de la valorisation et l’application de nouvelles techniques de biotechnologie microbienne dans divers domaines appliquées au développement et la gestion durable des ressources, à savoir l’agriculture, l'alimentation, l'environnement, la santé, l’industrie agro-alimentaire et le traitement et recyclage des eaux et des déchets par voie microbienne. Ce congrès sera également l’occasion pour les enseignants-chercheurs et les étudiants-chercheurs marocains d’actualiser leurs connaissances dans le domaine des biotechnologies microbiennes, qui serviront à l’amélioration de leurs recherches et enseignements. Le congrès MICROBIOD sera également l’occasion pour certains de nos collaborateurs étrangers de contribuer de près à la formation de nos étudiants en biotechnologie microbienne et ceci par la discussion des protocoles de travail, des méthodes d’analyse et des résultats obtenus.
    [Show full text]
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • Defining the Rhizobium Leguminosarum Species Complex
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2020 doi:10.20944/preprints202012.0297.v1 Article Defining the Rhizobium leguminosarum species complex J. Peter W. Young 1,*, Sara Moeskjær 2, Alexey Afonin 3, Praveen Rahi 4, Marta Maluk 5, Euan K. James 5, Maria Izabel A. Cavassim 6, M. Harun-or Rashid 7, Aregu Amsalu Aserse 8, Benjamin J. Perry 9, En Tao Wang 10, Encarna Velázquez 11, Evgeny E. Andronov 12, Anastasia Tampakaki 13, José David Flores Félix 14, Raúl Rivas González 11, Sameh H. Youseif 15, Marc Lepetit 16, Stéphane Boivin 16, Beatriz Jorrin 17, Gregory J. Kenicer 18, Álvaro Peix 19, Michael F. Hynes 20, Martha Helena Ramírez-Bahena 21, Arvind Gulati 22 and Chang-Fu Tian 23 1 Department of Biology, University of York, York YO10 5DD, UK 2 Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; [email protected] 3 Laboratory for genetics of plant-microbe interactions, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia; [email protected] 4 National Centre for Microbial Resource, National Centre for Cell Science, Pune, India; [email protected] 5 Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] (M.M.); [email protected] (E.K.J.) 6 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; [email protected] 7 Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh; [email protected] 8 Ecosystems and Environment Research programme , Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Finland; [email protected] 9 Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; [email protected] 10 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Cd.
    [Show full text]
  • Bradyrhizobium Ivorense Sp. Nov. As a Potential Local Bioinoculant for Cajanus Cajan Cultures in Côte D’Ivoire
    TAXONOMIC DESCRIPTION Fossou et al., Int. J. Syst. Evol. Microbiol. 2020;70:1421–1430 DOI 10.1099/ijsem.0.003931 Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire Romain K. Fossou1,2, Joël F. Pothier3, Adolphe Zézé2 and Xavier Perret1,* Abstract For many smallholder farmers of Sub- Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1B T, CI- 14A, CI- 19D and CI- 41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI- 1BT sharing the highest sequence similarity (95.2 %) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86 % ANIb and 89 % ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI- 1BT, CI- 14A, CI- 19D and CI- 41S shared similar phenotypic and metabolic properties, growth of CI- 41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI- 1BT and CI- 41S scoring on the C. cajan ‘Light- Brown’ landrace as the most and least proficient bacteria, respectively. Also proficient on Vigna radiata (mung bean), Vigna unguiculata (cowpea, niébé) and additional C.
    [Show full text]
  • BEATRIZ JORRIN RUBIO.Pdf
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Ph.D Thesis Beatriz Jorrín Rubio Licenciada en Biología 2016 Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Departamento de Biotecnología Ph.D Thesis: Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Author: Beatriz Jorrín Rubio Licenciada en Biología Director: Juan Imperial Ródenas Licenciado en Biología Doctor en Biología Madrid, 2016 A mis padres A Sofía A mis hermanos “There’s the story, then there’s the real story, then there’s the story of how the story came to be told. Then there’s what you leave out of the story. Which is part of the story too.” Maddaddam Margaret Atwood RECONOCIMIENTOS Esta Tesis se ha desarrollado en el laboratorio de Genómica y Biotecnología de Bacterias Diazotróficas Asociadas con Plantas del Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Para el desarrollo de esta Tesis he contado con una beca UPM homologada financiada por el proyecto MICROGEN: Genómica Comparada Microbiana (Programa Consolider), que ha sido también el proyecto financiador del trabajo experimental. Quisiera reconocer la labor de aquellas personas que han contribuido al desarrollo y consecución de esta Tesis. Dr. Juan Imperial, por la dirección y supervisión de esta Tesis. Por ser un gran mentor y por enseñarme todo lo que sé. Dr. Manuel González Guerrero, por enseñarme los entresijos de la Ciencia y del trabajo en el laboratorio. Dra. Gisèle Laguerre, por su participación en el inicio de este proyecto y por facilitarnos el suelo P1 de Dijon.
    [Show full text]
  • Article (Published Version)
    Article Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d'Ivoire FOSSOU, Romain, et al. Abstract For many smallholder farmers of Sub-Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1BT, CI-14A, CI-19D and CI-41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI-1BT sharing the highest sequence similarity (95.2%) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86% ANIb and 89% ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI-1BT, CI-14A, CI-19D and CI-41S shared similar phenotypic and metabolic properties, growth of CI-41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI-1BT and CI-41S scoring on the [...] Reference FOSSOU, Romain, et al. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire. International Journal of Systematic and Evolutionary Microbiology, 2020, vol. 70, no. 2, p. 1421-1430 DOI : 10.1099/ijsem.0.003931 Available at: http://archive-ouverte.unige.ch/unige:138593 Disclaimer: layout of this document may differ from the published version.
    [Show full text]
  • Identification of Small Non-Coding Rnas from Rhizobium Etli By
    Rajendran et al. ExRNA (2020) 2:14 https://doi.org/10.1186/s41544-020-00054-1 ExRNA RESEARCH Open Access Identification of small non-coding RNAs from Rhizobium etli by integrated genome- wide and transcriptome-based methods Kasthuri Rajendran1, Vikram Kumar2, Ilamathi Raja1, Manoharan Kumariah1 and Jebasingh Tennyson2* Abstract Background: Small non-coding RNAs (sRNAs) are regulatory molecules, present in all forms of life, known to regulate various biological processes in response to the different environmental signals. In recent years, deep sequencing and various other computational prediction methods have been employed to identify and analyze sRNAs. Results: In the present study, we have applied an improved sRNA scanner method to predict sRNAs from the genome of Rhizobium etli, based on PWM matrix of conditional sigma factor 32. sRNAs predicted from the genome are integrated with the available stress specific transcriptome data to predict putative conditional specific sRNAs. A total of 271 sRNAs from the genome and 173 sRNAs from the transcriptome are computationally predicted. Of these, 25 sRNAs are found in both genome and transcriptome data. Putative targets for these sRNAs are predicted using TargetRNA2 and these targets are involved in a wide array of cellular functions such as cell division, transport and metabolism of amino acids, carbohydrates, energy production and conversion, translation, cell wall/membrane biogenesis, post- translation modification, protein turnover and chaperones. Predicted targets are functionally classified based on COG analysis and GO annotations. Conclusion: sRNAs predicted from the genome, using PWM matrices for conditional sigma factor 32 could be a better method to identify the conditional specific sRNAs which expand the list of putative sRNAs from the intergenic regions (IgRs) of R.
    [Show full text]
  • 2010.-Hungria-MLI.Pdf
    Mohammad Saghir Khan l Almas Zaidi Javed Musarrat Editors Microbes for Legume Improvement SpringerWienNewYork Editors Dr. Mohammad Saghir Khan Dr. Almas Zaidi Aligarh Muslim University Aligarh Muslim University Fac. Agricultural Sciences Fac. Agricultural Sciences Dept. Agricultural Microbiology Dept. Agricultural Microbiology 202002 Aligarh 202002 Aligarh India India [email protected] [email protected] Prof. Dr. Javed Musarrat Aligarh Muslim University Fac. Agricultural Sciences Dept. Agricultural Microbiology 202002 Aligarh India [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2010 Springer-Verlag/Wien Printed in Germany SpringerWienNewYork is a part of Springer Science+Business Media springer.at Typesetting: SPI, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12711161 With 23 (partly coloured) Figures Library of Congress Control Number: 2010931546 ISBN 978-3-211-99752-9 e-ISBN 978-3-211-99753-6 DOI 10.1007/978-3-211-99753-6 SpringerWienNewYork Preface The farmer folks around the world are facing acute problems in providing plants with required nutrients due to inadequate supply of raw materials, poor storage quality, indiscriminate uses and unaffordable hike in the costs of synthetic chemical fertilizers.
    [Show full text]
  • Biserrula Pelecinus-Nodulating Mesorhizobium Sp
    Symbiotic Effectiveness, Phylogeny and Genetic Stability of Biserrula pelecinus-nodulating Mesorhizobium sp. isolated from Eritrea and Ethiopia Amanuel Asrat Bekuma A thesis submitted for the degree of Doctor of Philosophy Murdoch University, Perth Western Australia June 2017 ii Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Amanuel Asrat Bekuma iii This thesis is dedicated to my family iv Abstract Biserrula pelecinus is a productive pasture legume with potential for replenishing soil fertility and providing quality livestock feed in Southern Australia. The experience with growing B. pelecinus in Australia suggests an opportunity to evaluate this legume in Ethiopia, due to its relevance to low-input farming systems such as those practiced in Ethiopia. However, the success of B. pelecinus is dependent upon using effective, competitive, and genetically stable inoculum strains of root nodule bacteria (mesorhizobia). Mesorhizobium strains isolated from the Mediterranean region were previously reported to be effective on B. pelecinus in Australian soils. Subsequently, it was discovered that these strains transferred genes required for symbiosis with B. pelecinus (contained on a “symbiosis island’ in the chromosome) to non-symbiotic soil bacteria. This transfer converted the recipient soil bacteria into symbionts that were less effective in N2-fixation than the original inoculant. This study investigated selection of effective, stable inoculum strains for use with B. pelecinus in Ethiopian soils. Genetically diverse and effective mesorhizobial strains of B. pelecinus were shown to be present in Ethiopian and Eritrean soils.
    [Show full text]
  • An Investigation of the Ecology of Rhizobia That Nodulate White and Subterranean Clovers in Response to Soil Ph
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. An investigation of the ecology of rhizobia that nodulate white and subterranean clovers in response to soil pH A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Anish Sharadkumar Shah Lincoln University 2019 1 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy An investigation of the ecology of rhizobia that nodulate white and subterranean clovers in response to soil pH Anish Shah White (WC) and subterranean (SC) clovers are widely used and economically important in New Zealand pasture systems. They are used as the base legume in grass-based pastures where they form an effective symbiosis with nitrogen-fixing rhizobia. Biological nitrogen fixation (BNF) by rhizobia is an important process for New Zealand agriculture, particularly in hill and high country areas where the use of nitrogen fertiliser is limited. In these environments, pH is often not optimal for plant and microbial growth.
    [Show full text]
  • Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes
    plants Review Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production Karivaradharajan Swarnalakshmi 1,* , Vandana Yadav 1, Deepti Tyagi 1, Dolly Wattal Dhar 1, Annapurna Kannepalli 1 and Shiv Kumar 2,* 1 Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India; [email protected] (V.Y.); [email protected] (D.T.); [email protected] (D.W.D.); [email protected] (A.K.) 2 International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco * Correspondence: [email protected] (K.S.); [email protected] (S.K.) Received: 23 September 2020; Accepted: 28 October 2020; Published: 17 November 2020 Abstract: Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR—plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.
    [Show full text]