Host-Dependent Symbiotic Efficiency of Rhizobium Leguminosarum Bv

Total Page:16

File Type:pdf, Size:1020Kb

Host-Dependent Symbiotic Efficiency of Rhizobium Leguminosarum Bv Antonie van Leeuwenhoek DOI 10.1007/s10482-017-0922-7 ORIGINAL PAPER Host-dependent symbiotic efficiency of Rhizobium leguminosarum bv. trifolii strains isolated from nodules of Trifolium rubens Monika Marek-Kozaczuk . Sylwia Wdowiak-Wro´bel . Michał Kalita . Mykhaylo Chernetskyy . Kamil Deryło . Marek Tcho´rzewski . Anna Skorupska Received: 22 May 2017 / Accepted: 29 July 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Trifolium rubens L., commonly known as pratense, T. repens and T. resupinatum. We deter- the red feather clover, is capable of symbiotic mined that Rlt strains formed mostly inefficient interactions with rhizobia. Up to now, no specific symbiosis with their native host plant T. rubens and symbionts of T. rubens and their symbiotic compat- weakly effective (sub-optimal) symbiosis with T. ibility with Trifolium spp. have been described. We repens and T. pratense. The same Rlt strains were characterized the genomic diversity of T. rubens fully compatible in the symbiosis with T. resupinatum. symbionts by analyses of plasmid profiles and BOX– T. rubens did not exhibit strict selectivity in regard to PCR. The phylogeny of T. rubens isolates was inferred the symbionts and rhizobia closely related to Rhizo- based on the nucleotide sequences of 16S rRNA and bium grahamii, Rhizobium galegae and Agrobac- two core genes (atpD, recA). The nodC phylogeny terium radiobacter, which did not nodulate Trifolium allowed classification of rhizobia nodulating T. rubens spp., were found amongst T. rubens nodule isolates. as Rhizobium leguminosarum symbiovar trifolii (Rlt). The symbiotic efficiency of the Rlt isolates was Keywords Trifolium rubens Á Rhizobia Á Symbiosis Á determined on four clover species: T. rubens, T. MLSA Electronic supplementary material The online version of this article (doi:10.1007/s10482-017-0922-7) contains supple- mentary material, which is available to authorized users. Introduction M. Marek-Kozaczuk (&) Á S. Wdowiak-Wro´bel Á In their symbiotic association with legume plants, M. Kalita Á A. Skorupska rhizobia have the potential to fix nitrogen in amounts Department of Genetics and Microbiology, Maria Curie- Skłodowska University, Akademicka 19, 20-033 Lublin, sufficient to reduce the dependence of plants on Poland nitrogen fertilizers (Herridge 2008). They are dis- e-mail: [email protected] tributed worldwide in many types of soil where they can be found as free-living organisms or symbionts of M. Chernetskyy The Botanic Garden of Maria Curie-Skłodowska leguminous plants. Rhizobium-legume symbiosis University, Sławinkowska 3, 20-810 Lublin, Poland plays a critical role in sustainable agriculture, because it reduces the need for nitrogen fertilizer while K. Deryło Á M. Tcho´rzewski ensuring efficient protein-rich production. Rhizobia Department of Molecular Biology, Maria Curie- Skłodowska University, Akademicka 19, 20-033 Lublin, attach to the root hairs of plants, invade plant tissues, Poland and colonize the cells, forming nodules where they 123 Antonie van Leeuwenhoek differentiate into nitrogen-fixing bacteroids. The Rhi- truncatula is mediated by a large family of legume zobium-legume symbiosis is specific and depends on nodule-specific cysteine-rich (NCR) peptides trans- the exchange of signal molecules, such as flavonoids, ported to symbiosomes, which have antimicrobial secreted by plants, which induce expression of bacte- activity in vitro and have a critical role in bacteroid rial nodulation (nod) genes via interaction with the development and persistence in vivo (Haag et al. 2011; NodD regulatory protein (Perret et al. 2000; Jones Van De Velde et al. 2010; Kondorosi et al. 2013). et al. 2007; Oldroyd and Downie 2008; Wang et al. The genome of Rhizobium leguminosarum is large 2012). The Nod proteins synthesize lipochitin and complex, consisting of a chromosome and a oligosaccharides (Nod factors) recognized by host variable number of large plasmids (Young et al. 2006; plant receptors and, in response, tubular structures Mazur et al. 2011; Kumar et al. 2015). Symbiotic called infection threads are formed where bacteria functions are encoded by genes located in symbiotic proliferate and are released into plant nodule cells plasmids (pSym) (Perret et al. 2000; Young et al. forming symbiosomes. In these structures, bacteria 2006; Mazur et al. 2011, 2013). The plasmids differentiate into nitrogen-fixing bacteroids and turn constitute a pool of accessory genetic information N2 into ammonia, which is assimilated by the legume and contribute to the plasticity and dynamic state of host (Heidstra and Bisseling 1996; Gage and Margolin the genome commonly observed among members of 2000). In the indeterminate nodules formed by gale- the Rhizobiaceae family (Palacios and Newton 2005). goid plants, five developmental zones are distin- The host range of R. leguminosarum (Rl) species guished: the apical meristem functioning during varies; R. leguminosarum bv. viciae (Rlv) is able to nodule development (I), the invasion zone (II) into induce efficient symbiosis with legumes belonging to which infection threads release rhizobia, the interzone the genera Pisum, Vicia, Lathyrus, and Lens forming (II–III), the nitrogen-fixing zone (III), the senescence several species and biovars (symbiovars) (Laguerre zone (IV), and the saprophytic zone (V) in older et al. 2003; Alvarez-Martinez et al. 2009; Ramirez- nodules (Vasse et al. 1990; Timmers et al. 2000). In Bahena et al. 2009; Rogel et al. 2011; Rashid et al. the saprophytic zone, bacteroids degenerate and non- 2015). The development of effective symbiotic asso- nitrogen fixing, undifferentiated rhizobia are released ciations of Rlv with the large group of legume plants from infection threads, which increase the rhizobial indicates that both partners contain compatible deter- population in the rhizosphere after nodule senescence minants for successful nodulation and N2 fixation. In (Timmers et al. 2000; Wielbo et al. 2010a, b). Thus, contrast to Rlv, R. leguminosarum bv. trifolii (Rlt) the nitrogen-fixing nodule is an organ where recipro- symbiotic host range is confined to the clover genus cal benefits for both partners occur in different regions (Trifolium spp.) (Ramirez-Bahena et al. 2008; Reeve of the nodules. Although the legume-Rhizobium et al. 2010a, b; Kumar et al. 2015). symbiosis is beneficial to the host, the nitrogen- The clover genus Trifolium L. is a member of a large fixation efficiency significantly varies between differ- clade of legumes lacking one copy of the chloroplast— ent plant-Rhizobium interactions and the molecular inverted repeat (IRLC) and is one of the largest genera in mechanisms of strain-specific nitrogen fixation are the family consisting of approximately 255 herbaceous largely unknown (Schumpp and Deakin 2010; Wang species (Watson and Sayed-Ahmed 2000; Ellison et al. et al. 2012). Plants play a significant role in the control 2006). These are commonly cultivated forage and green of later stages of symbiosis, such as bacteroid manure crops, which grow in a great range of soils with differentiation inside nodules of some galegoid the highest species diversity in the temperate climate (IRLC) plants (Medicago, Trifolium, Vicia, Pisum, (Ellison et al. 2006). Rlt - Trifolium sp. symbiotic Astragalus) and endoreduplication of bacterial gen- associations are mostly effective; however, host-depen- omes forming bacteroids (Mergaert et al. 2006; Haag dent ineffective nodulation is evident amongst Rlt et al. 2013). At this stage, bacteroids exhibit decreased strains that nodulate clover species. Some Rlt strains cytoplasmic membrane integrity and undergo terminal form effective nodules on Trifolium repens, Trifolium differentiation in relation to their free-living form pratense,andTrifolium subterraneum, whereas other while maintaining the metabolic activity required for strains are ineffective on Trifolium subterraneum nitrogen fixation and nutrient exchange with the host (Tesfaye and Holl 1999). There are Rlt strains effective plant. Bacteroid differentiation studied in Medicago on T. subterraneum, but ineffective or partially effective 123 Antonie van Leeuwenhoek on T. repens and T. pretense (Elliot et al. 1998). In The bacteria were isolated from surface-sterilized root another case, Rlt strains are able to form effective nodules as follows: nodules were intensively washed nodules on Trifolium ambiguum (Caucasian clover) but in water and sterile distilled water and then nodules ineffective ones on T. repens, T. pratense and vice versa were sterilized by 3 min in 3% sodium chlorite and (Beauregard et al. 2004;Milleretal.2007). Melino et al. washed repeatedly in sterile distilled water. After (2012) reported sub-optimal or ineffective symbiotic surface sterilization, the nodules were crushed and association between an Rlt strain and T. subterraneum, their contents were plated on solid 79CA medium T. purpureum,andTrifolium polymorphum. These (Vincent 1970). The bacteria isolated from nodules reports show that rhizobial strains commonly found in were purified by repeatedly streaking of single agricultural soils are frequently poorly compatible with colonies and pure cultures were used in further commercially grown clover species but little is known experiments. of the cause of their ineffectivity. One of the clover species is Trifolium rubens L., DNA analyses commonly known as the red feather. This is a perennial, ornamental, xerothermic species of clover Plasmid content analyses of the nodule isolates were growing in normal
Recommended publications
  • Pfc5813.Pdf (9.887Mb)
    UNIVERSIDAD POLITÉCNICA DE CARTAGENA ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AGRONÓMICA DEPARTAMENTO DE PRODUCCIÓN VEGETAL INGENIERO AGRÓNOMO PROYECTO FIN DE CARRERA: “AISLAMIENTO E IDENTIFICACIÓN DE LOS RIZOBIOS ASOCIADOS A LOS NÓDULOS DE ASTRAGALUS NITIDIFLORUS”. Realizado por: Noelia Real Giménez Dirigido por: María José Vicente Colomer Francisco José Segura Carreras Cartagena, Julio de 2014. ÍNDICE GENERAL 1. Introducción…………………………………………………….…………………………………………………1 1.1. Astragalus nitidiflorus………………………………..…………………………………………………2 1.1.1. Encuadre taxonómico……………………………….…..………………………………………………2 1.1.2. El origen de Astragalus nitidiflorus………………………………………………………………..4 1.1.3. Descripción de la especie………..…………………………………………………………………….5 1.1.4. Biología…………………………………………………………………………………………………………7 1.1.4.1. Ciclo vegetativo………………….……………………………………………………………………7 1.1.4.2. Fenología de la floración……………………………………………………………………….9 1.1.4.3. Sistema de reproducción……………………………………………………………………….10 1.1.4.4. Dispersión de los frutos…………………………………….…………………………………..11 1.1.4.5. Nodulación con Rhizobium…………………………………………………………………….12 1.1.4.6. Diversidad genética……………………………………………………………………………....13 1.1.5. Ecología………………………………………………………………………………………………..…….14 1.1.6. Corología y tamaño poblacional……………………………………………………..…………..15 1.1.7. Protección…………………………………………………………………………………………………..18 1.1.8. Amenazas……………………………………………………………………………………………………19 1.1.8.1. Factores bióticos…………………………………………………………………………………..19 1.1.8.2. Factores abióticos………………………………………………………………………………….20 1.1.8.3. Factores antrópicos………………..…………………………………………………………….21
    [Show full text]
  • Actes Congrès MICROBIOD 1
    Actes du congrès international "Biotechnologie microbienne au service du développement" (MICROBIOD) Marrakech, MAROC 02-05 Novembre 2009 "Ce travail est publié avec le soutien du Ministère de l'Education Nationale, de l'Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique et du CNRST". MICROBIONA Edition www.ucam.ac.ma/microbiona 1 1 Mot du Comité d'organisation Cher (e) membre de MICROBIONA Cher(e) Participant(e), Sous le Haut Patronage de sa Majesté le Roi Mohammed VI, l'Association MICROBIONA et la Faculté des Sciences Semlalia, Université Cadi Ayyad, organisent du 02 au 05 Novembre 2009, en collaboration avec la Société Française de Microbiologie, le Pôle de Compétences Eau et Environnement et l'Incubateur Universitaire de Marrakech, le congrès international "Biotechnologie microbienne au service du développement" (MICROBIOD). Cette manifestation scientifique spécialisée permettra la rencontre de chercheurs de renommée internationale dans le domaine de la biotechnologie microbienne. Le congrès MICROBIOD est une opportunité pour les participants de mettre en relief l’importance socio-économique et environnementale de la valorisation et l’application de nouvelles techniques de biotechnologie microbienne dans divers domaines appliquées au développement et la gestion durable des ressources, à savoir l’agriculture, l'alimentation, l'environnement, la santé, l’industrie agro-alimentaire et le traitement et recyclage des eaux et des déchets par voie microbienne. Ce congrès sera également l’occasion pour les enseignants-chercheurs et les étudiants-chercheurs marocains d’actualiser leurs connaissances dans le domaine des biotechnologies microbiennes, qui serviront à l’amélioration de leurs recherches et enseignements. Le congrès MICROBIOD sera également l’occasion pour certains de nos collaborateurs étrangers de contribuer de près à la formation de nos étudiants en biotechnologie microbienne et ceci par la discussion des protocoles de travail, des méthodes d’analyse et des résultats obtenus.
    [Show full text]
  • Bradyrhizobium Ivorense Sp. Nov. As a Potential Local Bioinoculant for Cajanus Cajan Cultures in Côte D’Ivoire
    TAXONOMIC DESCRIPTION Fossou et al., Int. J. Syst. Evol. Microbiol. 2020;70:1421–1430 DOI 10.1099/ijsem.0.003931 Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire Romain K. Fossou1,2, Joël F. Pothier3, Adolphe Zézé2 and Xavier Perret1,* Abstract For many smallholder farmers of Sub- Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1B T, CI- 14A, CI- 19D and CI- 41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI- 1BT sharing the highest sequence similarity (95.2 %) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86 % ANIb and 89 % ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI- 1BT, CI- 14A, CI- 19D and CI- 41S shared similar phenotypic and metabolic properties, growth of CI- 41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI- 1BT and CI- 41S scoring on the C. cajan ‘Light- Brown’ landrace as the most and least proficient bacteria, respectively. Also proficient on Vigna radiata (mung bean), Vigna unguiculata (cowpea, niébé) and additional C.
    [Show full text]
  • BEATRIZ JORRIN RUBIO.Pdf
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Ph.D Thesis Beatriz Jorrín Rubio Licenciada en Biología 2016 Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Departamento de Biotecnología Ph.D Thesis: Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Author: Beatriz Jorrín Rubio Licenciada en Biología Director: Juan Imperial Ródenas Licenciado en Biología Doctor en Biología Madrid, 2016 A mis padres A Sofía A mis hermanos “There’s the story, then there’s the real story, then there’s the story of how the story came to be told. Then there’s what you leave out of the story. Which is part of the story too.” Maddaddam Margaret Atwood RECONOCIMIENTOS Esta Tesis se ha desarrollado en el laboratorio de Genómica y Biotecnología de Bacterias Diazotróficas Asociadas con Plantas del Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Para el desarrollo de esta Tesis he contado con una beca UPM homologada financiada por el proyecto MICROGEN: Genómica Comparada Microbiana (Programa Consolider), que ha sido también el proyecto financiador del trabajo experimental. Quisiera reconocer la labor de aquellas personas que han contribuido al desarrollo y consecución de esta Tesis. Dr. Juan Imperial, por la dirección y supervisión de esta Tesis. Por ser un gran mentor y por enseñarme todo lo que sé. Dr. Manuel González Guerrero, por enseñarme los entresijos de la Ciencia y del trabajo en el laboratorio. Dra. Gisèle Laguerre, por su participación en el inicio de este proyecto y por facilitarnos el suelo P1 de Dijon.
    [Show full text]
  • Article (Published Version)
    Article Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d'Ivoire FOSSOU, Romain, et al. Abstract For many smallholder farmers of Sub-Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1BT, CI-14A, CI-19D and CI-41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI-1BT sharing the highest sequence similarity (95.2%) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86% ANIb and 89% ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI-1BT, CI-14A, CI-19D and CI-41S shared similar phenotypic and metabolic properties, growth of CI-41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI-1BT and CI-41S scoring on the [...] Reference FOSSOU, Romain, et al. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire. International Journal of Systematic and Evolutionary Microbiology, 2020, vol. 70, no. 2, p. 1421-1430 DOI : 10.1099/ijsem.0.003931 Available at: http://archive-ouverte.unige.ch/unige:138593 Disclaimer: layout of this document may differ from the published version.
    [Show full text]
  • Identification of Small Non-Coding Rnas from Rhizobium Etli By
    Rajendran et al. ExRNA (2020) 2:14 https://doi.org/10.1186/s41544-020-00054-1 ExRNA RESEARCH Open Access Identification of small non-coding RNAs from Rhizobium etli by integrated genome- wide and transcriptome-based methods Kasthuri Rajendran1, Vikram Kumar2, Ilamathi Raja1, Manoharan Kumariah1 and Jebasingh Tennyson2* Abstract Background: Small non-coding RNAs (sRNAs) are regulatory molecules, present in all forms of life, known to regulate various biological processes in response to the different environmental signals. In recent years, deep sequencing and various other computational prediction methods have been employed to identify and analyze sRNAs. Results: In the present study, we have applied an improved sRNA scanner method to predict sRNAs from the genome of Rhizobium etli, based on PWM matrix of conditional sigma factor 32. sRNAs predicted from the genome are integrated with the available stress specific transcriptome data to predict putative conditional specific sRNAs. A total of 271 sRNAs from the genome and 173 sRNAs from the transcriptome are computationally predicted. Of these, 25 sRNAs are found in both genome and transcriptome data. Putative targets for these sRNAs are predicted using TargetRNA2 and these targets are involved in a wide array of cellular functions such as cell division, transport and metabolism of amino acids, carbohydrates, energy production and conversion, translation, cell wall/membrane biogenesis, post- translation modification, protein turnover and chaperones. Predicted targets are functionally classified based on COG analysis and GO annotations. Conclusion: sRNAs predicted from the genome, using PWM matrices for conditional sigma factor 32 could be a better method to identify the conditional specific sRNAs which expand the list of putative sRNAs from the intergenic regions (IgRs) of R.
    [Show full text]
  • 2010.-Hungria-MLI.Pdf
    Mohammad Saghir Khan l Almas Zaidi Javed Musarrat Editors Microbes for Legume Improvement SpringerWienNewYork Editors Dr. Mohammad Saghir Khan Dr. Almas Zaidi Aligarh Muslim University Aligarh Muslim University Fac. Agricultural Sciences Fac. Agricultural Sciences Dept. Agricultural Microbiology Dept. Agricultural Microbiology 202002 Aligarh 202002 Aligarh India India [email protected] [email protected] Prof. Dr. Javed Musarrat Aligarh Muslim University Fac. Agricultural Sciences Dept. Agricultural Microbiology 202002 Aligarh India [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2010 Springer-Verlag/Wien Printed in Germany SpringerWienNewYork is a part of Springer Science+Business Media springer.at Typesetting: SPI, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12711161 With 23 (partly coloured) Figures Library of Congress Control Number: 2010931546 ISBN 978-3-211-99752-9 e-ISBN 978-3-211-99753-6 DOI 10.1007/978-3-211-99753-6 SpringerWienNewYork Preface The farmer folks around the world are facing acute problems in providing plants with required nutrients due to inadequate supply of raw materials, poor storage quality, indiscriminate uses and unaffordable hike in the costs of synthetic chemical fertilizers.
    [Show full text]
  • Biserrula Pelecinus-Nodulating Mesorhizobium Sp
    Symbiotic Effectiveness, Phylogeny and Genetic Stability of Biserrula pelecinus-nodulating Mesorhizobium sp. isolated from Eritrea and Ethiopia Amanuel Asrat Bekuma A thesis submitted for the degree of Doctor of Philosophy Murdoch University, Perth Western Australia June 2017 ii Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Amanuel Asrat Bekuma iii This thesis is dedicated to my family iv Abstract Biserrula pelecinus is a productive pasture legume with potential for replenishing soil fertility and providing quality livestock feed in Southern Australia. The experience with growing B. pelecinus in Australia suggests an opportunity to evaluate this legume in Ethiopia, due to its relevance to low-input farming systems such as those practiced in Ethiopia. However, the success of B. pelecinus is dependent upon using effective, competitive, and genetically stable inoculum strains of root nodule bacteria (mesorhizobia). Mesorhizobium strains isolated from the Mediterranean region were previously reported to be effective on B. pelecinus in Australian soils. Subsequently, it was discovered that these strains transferred genes required for symbiosis with B. pelecinus (contained on a “symbiosis island’ in the chromosome) to non-symbiotic soil bacteria. This transfer converted the recipient soil bacteria into symbionts that were less effective in N2-fixation than the original inoculant. This study investigated selection of effective, stable inoculum strains for use with B. pelecinus in Ethiopian soils. Genetically diverse and effective mesorhizobial strains of B. pelecinus were shown to be present in Ethiopian and Eritrean soils.
    [Show full text]
  • An Investigation of the Ecology of Rhizobia That Nodulate White and Subterranean Clovers in Response to Soil Ph
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. An investigation of the ecology of rhizobia that nodulate white and subterranean clovers in response to soil pH A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Anish Sharadkumar Shah Lincoln University 2019 1 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy An investigation of the ecology of rhizobia that nodulate white and subterranean clovers in response to soil pH Anish Shah White (WC) and subterranean (SC) clovers are widely used and economically important in New Zealand pasture systems. They are used as the base legume in grass-based pastures where they form an effective symbiosis with nitrogen-fixing rhizobia. Biological nitrogen fixation (BNF) by rhizobia is an important process for New Zealand agriculture, particularly in hill and high country areas where the use of nitrogen fertiliser is limited. In these environments, pH is often not optimal for plant and microbial growth.
    [Show full text]
  • Analysis of Rhizobial Strains Nodulating Phaseolus Vulgaris From
    Systematic and Applied Microbiology 37 (2014) 149–156 Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe a b,c d César-Antonio Díaz-Alcántara , Martha-Helena Ramírez-Bahena , Daniel Mulas , e b b,c e,∗ Paula García-Fraile , Alicia Gómez-Moriano , Alvaro Peix , Encarna Velázquez , d Fernando González-Andrés a Facultad de Ciencias Agronómicas y Veterinarias, Universidad Autónoma de Santo Domingo, Dominican Republic b Instituto de Recursos Naturales y Agrobiología, IRNASA (CSIC), Salamanca, Spain c Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA (CSIC), Spain d Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Spain e Departamento de Microbiología y Genética, Universidad de Salamanca, Spain a r t i c l e i n f o a b s t r a c t Article history: Hispaniola Island was the first stopover in the travels of Columbus between America and Spain, and Received 13 July 2013 played a crucial role in the exchange of Phaseolus vulgaris seeds and their endosymbionts. The analysis of Received in revised form recA and atpD genes from strains nodulating this legume in coastal and inner regions of Hispaniola Island 15 September 2013 showed that they were almost identical to those of the American strains CIAT 652, Ch24-10 and CNPAF512, Accepted 18 September 2013 which were initially named as Rhizobium etli and have been recently reclassified into Rhizobium phaseoli after the analysis of their genomes.
    [Show full text]
  • Proteins in the Periplasmic Space and Outer Membrane Vesicles of Rhizobium Etli CE3
    bioRxiv preprint doi: https://doi.org/10.1101/305797; this version posted April 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 2 Proteins in the periplasmic space and outer membrane vesicles of Rhizobium etli CE3 3 grown in minimal medium are largely distinct and change with growth phase 4 5 Hermenegildo Taboada1,&, Niurka Meneses1,2,3,&, Michael F. Dunn1&, Carmen Vargas- 6 Lagunas1, Natasha Buchs2, Jaime A. Castro-Mondragon4, Manfred Heller2 and Sergio 7 Encarnación1*. 8 9 &These authors contributed equally to this work. 10 11 1Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, 12 Universidad Nacional Autónoma de México, Cuernavaca, Morelos C. P. 62210, 13 México. 14 2Mass Spectrometry and Proteomics Laboratory, Department of Clinical Research, 15 University of Bern, 3010 Bern, Switzerland. 16 3Faculty of Science, Department of Chemistry and Biochemistry, University of Bern, 17 3010 Bern, Switzerland. 18 4Aix Marseille University, INSERM, TAGC, Theory and Approaches of Genomic Complexity, 19 UMR_S 1090, Marseille, France. 20 21 22 Corresponding author: [email protected], +52 (777) 3291899 23 24 KEY WORDS 25 Protein secretion, outer membrane vesicles, periplasm, exoproteome, Rhizobium-legume 26 interactions 27 28 1 bioRxiv preprint doi: https://doi.org/10.1101/305797; this version posted April 21, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Transfer of the Symbiotic Plasmid of Rhizobium Etli CFN42 to Endophytic Bacteria Inside Nodules
    fmicb-11-01752 July 27, 2020 Time: 18:28 # 1 ORIGINAL RESEARCH published: 29 July 2020 doi: 10.3389/fmicb.2020.01752 Transfer of the Symbiotic Plasmid of Rhizobium etli CFN42 to Endophytic Bacteria Inside Nodules Luis Alfredo Bañuelos-Vazquez1, Daniel Cazares1, Susana Rodríguez2, Laura Cervantes-De la Luz1, Rosana Sánchez-López3, Lucas G. Castellani4, Gonzalo Torres Tejerizo4 and Susana Brom1* 1 Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, 2 Programa de Biología de Sistemas y Biología Sintética, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, 3 Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico, 4 Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Instituto de Biotecnología y Biología Molecular (IBBM) – CCT-CONICET-La Plata, Universidad Nacional de La Plata, La Plata, Argentina Conjugative transfer is one of the mechanisms allowing diversification and evolution of bacteria. Rhizobium etli CFN42 is a bacterial strain whose habitat is the rhizosphere and Edited by: is able to form nodules as a result of the nitrogen-fixing symbiotic relationship it may Clay Fuqua, Indiana University Bloomington, establish with the roots of Phaseolus vulgaris. R. etli CFN42 contains one chromosome United States and six large plasmids (pRet42a – pRet42f). Most of the genetic information involved Reviewed by: in the establishment of the symbiosis is localized on plasmid pRet42d, named as Joel S. Griffitts, the symbiotic plasmid (pSym). This plasmid is able to perform conjugation, using Brigham Young University, United States pSym encoded transfer genes controlled by the RctA/RctB system.
    [Show full text]