Hydraulic Brake System. Power-Assisted Brakes Are Checked

Total Page:16

File Type:pdf, Size:1020Kb

Hydraulic Brake System. Power-Assisted Brakes Are Checked § 570.53 49 CFR Ch. V (10–1–12 Edition) injuries attributable to failure or inad- pound force applied to the brake pedal equate performance of the motor vehi- and by no illumination of the brake cle systems covered by this part. system failure indicator lamp. The brake system shall withstand the ap- § 570.53 Applicability. plication of force to the pedal without This part does not in itself impose re- failure of any tube, hose or other part. quirements on any person. It is in- (1) Inspection procedure. With the en- tended to be implemented by States gine running in vehicles equipped with through the highway safety program power brake systems and the ignition standards issued under the Highway turned to ‘‘on’’ in other vehicles, apply Safety Act (23 U.S.C. 402) with respect a force of 125 pounds to the brake pedal to inspection of motor vehicles with and hold for 10 seconds. Note any addi- gross vehicle weight rating greater tional decrease in pedal height after than 10,000 pounds, except mobile the initial decrease, and whether the structure trailers. brake system failure indicator lamp il- luminates. [39 FR 28980, Aug. 13, 1974] (c) Brake pedal reserve. When the brake pedal is depressed with a force of § 570.54 Definitions. 50 pounds, the distance that the pedal Unless otherwise indicated, all terms has traveled from its free position shall used in this part that are defined in be not greater than 80 percent of the part 571 of this chapter, Motor Vehicle total distance from its free position to Safety Standards, are used as defined the floorboard or other object that re- in that part. stricts pedal travel. The brake pedal Air-over-hydraulic brake subsystem reserve test is not required for vehicles means a subsystem of the air brake with brake systems designed by the that uses compressed air to transmit a original vehicle, manufacturer to oper- force from the driver control to a hy- ate with greater than 80 percent pedal draulic brake system to actuate the travel. service brakes. (1) Inspection procedure. Measure the Electric brake system means a system distance (i) from the free pedal position that uses electric current to actuate to the floor board or other object that the service brake. restricts brake pedal travel. Depress Vacuum brake system means a system the brake pedal, and with the force ap- that uses a vacuum and atmospheric plied measure the distance (ii) from the pressure for transmitting a force from depressed pedal position to the floor the driver control to the service brake, board or other object that restricts but does not include a system that uses pedal travel. Determine the pedal trav- vacuum only to assist the driver in ap- el percentage as plying muscular force to hydraulic or [(A ¥ B) / A] × 100 mechanical components. The engine must be operating when § 570.55 Hydraulic brake system. power-assisted brakes are checked. The following requirements apply to (d) Brake hoses, master cylinder, tubes vehicles with hydraulic brake systems. and tube assemblies. Hydraulic brake (a) Brake system failure indicator. The hoses shall not be mounted so as to hydraulic brake system failure indi- contact the vehicle body or chassis. cator lamp, if part of a vehicle’s origi- Hoses shall not be cracked, chafed, or nal equipment, shall be operable. flattened. Brake tubes shall not be flat- (1) Inspection procedure. Apply the tened or restricted. Brake hoses and parking brake and turn the ignition to tubes shall be attached or supported to start to verify that the brake system prevent damage by vibration or abra- failure indicator lamp is operable, or sion. Master cylinder shall not show verify by other means recommended by signs of leakage. Hose or tube protec- the vehicle manufacturer. tive rings or devices shall not be con- (b) Brake system integrity. The hydrau- sidered part of the hose or tubing. lic brake system shall demonstrate in- (1) Inspection procedure. Examine vis- tegrity as indicated by no perceptible ually brake master cylinder, hoses and decrease in pedal height under a 125- tubes, including front brake hoses, 266 VerDate Mar<15>2010 15:08 Dec 18, 2012 Jkt 226222 PO 00000 Frm 00276 Fmt 8010 Sfmt 8010 Q:\49\49V6.TXT ofr150 PsN: PC150 Nat’l Highway Traffic Safety Admin., DOT § 570.57 through all wheel positions from full with brake chamber rods, observe the left turn to full right turn for condi- chamber rod movement. Run the en- tions indicated. gine to re-establish maximum vacuum, [39 FR 26027, July 16, 1974, as amended at 40 then shut off the engine and apply the FR 5160, Feb. 4, 1975] brakes with a 50-pound force on the brake pedal. Note the brake applica- § 570.56 Vacuum brake assist unit and tion and check for low-vacuum indi- vacuum brake system. cator activation. The following requirements apply to (ii) For a combination vehicle vehicles with vacuum brake assist equipped with breakaway protection units and vacuum brake systems. and no reservoir on the towing vehicle (a) Vacuum brake assist unit integrity. supply line, close the supply line shut- The vacuum brake assist unit shall off valve and disconnect the supply demonstrate integrity as indicated by line. Apply a 50-pound force to the a decrease in pedal height when the en- brake pedal on the towing vehicle and gine is started and a constant 50-pound release. Trailer brakes should remain force is maintained on the pedal. in the applied position. (1) Inspection procedure. Stop the en- (d) Vacuum system hoses, tubes and gine and apply service brake several connections. Vacuum hoses, tubes and times to destroy vacuum in system. connections shall be in place and prop- Depress the brake pedal with 50 pounds erly supported. Vacuum hoses shall not of force and while maintaining that be collapsed, cracked or abraded. force, start the engine. If the brake (1) Inspection procedure. With the en- pedal does not move slightly under gine running, examine hoses and tubes force when the engine starts, there is a for the conditions indicated and note malfunction in the power assist unit. broken or missing clamps. (b) Low-vacuum indicator. If the vehi- cle has a low-vacuum indicator, the in- § 570.57 Air brake system and air-over- dicator activation level shall not be hydraulic brake subsystem. less than 8 inches of mercury. The following requirements apply to (1) Inspection procedure. Run the en- vehicles with air brake and air-over- gine to evacuate the system fully. Shut hydraulic brake systems. Trailer(s) off the engine and slowly reduce the must be coupled to a truck or truck- vacuum in the system by moderate tractor for the purpose of this inspec- brake applications until the vehicle tion, except as noted. vacuum gauge reads 8 inches of mer- (a) Air brake system integrity. The air cury. Observe the functioning of the brake system shall demonstrate integ- low-vacuum indicator. rity by meeting the following require- (c) Vacuum brake system integrity. (1) ments: The vacuum brake system shall dem- (1) With the vehicle in a stationary onstrate integrity by meeting the fol- position, compressed air reserve shall lowing requirements: be sufficient to permit one full service (i) The vacuum brake system shall brake application, after the engine is provide vacuum reserve to permit one stopped and with the system fully service brake application with a brake charged, without lowering reservoir pedal force of 50 pounds after the en- pressure more than 20 percent below gine is turned off without actuating the initial reading. the low vacuum indicator. (2) The air brake system compressor (ii) Trailer vacuum brakes shall oper- shall increase the air pressure in the ate in conjunction with the truck or reservoir(s) from the level developed truck tractor brake pedal. after the test prescribed in § 570.57(a)(1) (2) Inspection procedure. (i) Check the to the initial pressure noted before the trailer vacuum system by coupling full brake application, with the engine trailer(s) to truck or truck tractor and running at the manufacturer’s max- opening trailer shutoff valves. Start imum recommended number of revolu- the engine and after allowing approxi- tions per minute with the compressor mately 1 minute to build up the vacu- governor in the cut-off position, in not um, apply and release the brake pedal. more than 30 seconds for vehicles man- In the case of trailer brakes equipped ufactured prior to March 1, 1975. For 267 VerDate Mar<15>2010 15:08 Dec 18, 2012 Jkt 226222 PO 00000 Frm 00277 Fmt 8010 Sfmt 8010 Q:\49\49V6.TXT ofr150 PsN: PC150.
Recommended publications
  • The Role of Vaccum Braking System
    INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTING SCIENCE ISSN NO: 0972-1347 The Role of Vaccum Braking System 1 2 3 Author :- Ankit Yadav , Aniket Mahajan , Gagandeep singh 1,2,3 Depa rtm e n t of Mec ha nic a l Engineering Chan dig a rh University, Moha li Abstract The vacuum brake was made for a long time, utilized instead of the pneumatic brake system. Pneumatic brake mechanisms take compressed air as the power used to drive disc or drum on to wheels. The vacuum braking mechanism is controlled through a brake pipe. In which a brake valve in the driver's side with braking mechanism in each wheel of vehicle. A vacuum is made in the pipe by and enjector. The enjector gives air weight from the brake pipe to make the vacuum utilizing steam on a steam train, or an exhauster utilizing electric power. With no vacuum the brake is completely connected. The vacuum in the brake pipe is made and kept up by an engine driven exhauster. The exhauster has two velocities, rapid and low speed. The fast is changed in to make a vacuum and along these lines discharge the brakes. Ease back speed is utilized to keep the vacuum at the expected level to keep up brake discharge. Vacuum against little holes in the brake pipe is kept up by it. Key Words :- Vacuum brake, pneumatic brake, exhauster, atmospheric pressure, steam locomotive INTRODUCTION The vacuum brake was, for a long time, utilized instead of the air powered brake as the standard, safeguard, prepare brake utilized by railroads.
    [Show full text]
  • Braking Systems in Railway Vehicles
    International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 4 Issue01,January-2015 Braking Systems in Railway Vehicles Rakesh Chandmal Sharma1 , Manish Dhingra2, Rajeev Kumar Pathak3 1Department of Mechanical Engineering, M. M. University, Mullana (Ambala) INDIA, 2Department of Mechanical Engineering, T. M. University, Moradabad INDIA 3Department of Mechanical Engg, Rakshpal Bahahur College of Engg. and Tech., Bareilly INDIA Abstract— Brake is an essential feature in order to retard and Researchers in the past have investigated different stop the railway vehicle within minimum possible time. This aspects of braking of railway vehicle. Bureika & Mikaliunas paper presents a discussion about the different braking [1] provided the calculations for Vehicle Braking Force systems used in railway vehicles. This paper also considers Fitted with UIC Air Brake for Passenger Trains, Wagon electrodynamic and electromagnetic braking of trains, which is Braking Force Fitted with a UIC Air Brake for Freight of particular importance in high-speed trains. The calculation Trains Wagon, Braking Distance. Liudvinavicius & Lingaitis for stopping distance for railway vehicle is provided in this [2] studied different features and related mathematics of study. electrodynamic braking in high‐speed trains. Vernersson [3] developed a dimensional finite element model of block and Keywords— Air brake; Straight air brake system; Automatic air brake system; Braking distance; Brake cylinder; Brake pipe; Vacuum brake; wheel, which was coupled through a contact interface for the Brake delay time purpose of control of heat generation and also the heat partitioning at block-wheel surface through thermal contact I. INTRODUCTION resistances. Influence of temperature in wheels and brake The brakes are used on the coaches of railway trains to block at rail tread braking was analyzed under brake rig enable deceleration, control acceleration (downhill) or to conditions in the later part of study by Vernersson [4].
    [Show full text]
  • Heavy Equipment Technician Hydraulic Brake Booster System Fundamentals and Service
    Heavy Equipment Technician Hydraulic Brake Booster System Fundamentals and Service Hydraulic Brake Systems First Period Module 190103d Objectives 1. Identify common power assist braking systems. 2. Explain the principles of operation for vacuum brake booster systems. 3. Describe the diagnosis and repair procedures for vacuum brake booster systems. 4. Explain the principles of operation of air-over-hydraulic brake booster systems. Objectives 5. Describe the diagnosis and repair procedures for air-over-hydraulics brake booster systems. 6. Explain the principles of operation for hydraulic over hydraulic brake booster systems 7. Describe the diagnosis and repair procedures for hydraulic over hydraulic brake booster systems Objective One Identify common power assist braking systems. Hydraulic over Hydraulic (hydroboost) System Uses power steering pressure to assist in braking. Used with both gas and diesel engines. Vacuum / Atmospheric System Uses vacuum and atmospheric pressure for assist. Vacuum / Atmospheric System Vacuum Power Booster (Hydrovac) May have a remotely mounted unit (hydro-vac). Air-Over-Hydraulic Systems Air-Pak Booster System Uses pressurized air from a compressor. Usually remotely mounted. Air-Over-Hydraulic Systems Piston Head Air Assembly Chamber Hydraulic Cylinder Assembly Self-Locking Nuts The power cluster can be coupled directly to a master cylinder or to a hydraulic slave cylinder. Objective Two Explain the principles of operation for vacuum brake booster systems. Integral Power Brake Booster Vacuum Suspended Round shaped housing mounted to fire wall.. Master cylinder mounted on booster. Integral Power Brake Booster Vacuum Suspended Uses vacuum created in the engine and atmospheric pressure to move diaphragm Integral Power Brake Booster Vacuum Suspended Vacuum is low pressure and atmospheric pressure is high.
    [Show full text]
  • Nat'l Highway Traffic Safety Admin., DOT § 570.56
    Nat’l Highway Traffic Safety Admin., DOT § 570.56 § 570.54 Definitions. 50 pounds, the distance that the pedal Unless otherwise indicated, all terms has traveled from its free position shall used in this part that are defined in be not greater than 80 percent of the part 571 of this chapter, Motor Vehicle total distance from its free position to Safety Standards, are used as defined the floorboard or other object that re- in that part. stricts pedal travel. The brake pedal Air-over-hydraulic brake subsystem reserve test is not required for vehicles means a subsystem of the air brake with brake systems designed by the that uses compressed air to transmit a original vehicle, manufacturer to oper- force from the driver control to a hy- ate with greater than 80 percent pedal draulic brake system to actuate the travel. service brakes. (1) Inspection procedure. Measure the Electric brake system means a system distance (i) from the free pedal position that uses electric current to actuate to the floor board or other object that the service brake. restricts brake pedal travel. Depress Vacuum brake system means a system the brake pedal, and with the force ap- that uses a vacuum and atmospheric plied measure the distance (ii) from the pressure for transmitting a force from depressed pedal position to the floor the driver control to the service brake, board or other object that restricts but does not include a system that uses pedal travel. Determine the pedal trav- vacuum only to assist the driver in ap- el percentage as plying muscular force to hydraulic or [(A ¥ B) / A] × 100 mechanical components.
    [Show full text]
  • Review of Vacuum Braking System
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 10 | Oct 2018 www.irjet.net p-ISSN: 2395-0072 Review of Vacuum Braking system Sachin ugale1, Babasaheb Rohmare2, Sachin Sadafal3, Rameshwar dhat4 1,2,3,4Student, Mechanical Department, SND COLLAGE OF ENGINEERING & RESEARCH CENTER YEOLA, NASHIK- 423401, Maharashtra, India ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - The vacuum brake is a braking system employed on trains and introduced in the mid-1860s. A variant, the automatic vacuum brake system, became almost universal in British train equipment and in countries influenced by British practice. Vacuum brakes also enjoyed a brief period of adoption in the United States, primarily on narrow-gauge railroads. Its limitations caused it to be progressively superseded by compressed air systems starting in the United Kingdom from the 1970s onward. The vacuum brake system is now obsolete; it is not in large-scale usage anywhere in the world, other than in South Africa, largely supplanted by air brakes. The early 1870s, the same time as the air brake. Similar to the air brake, the vacuum brake system is controlled or operated through a brake pipe. But the brake pipe connecting a brake valve in the driver's cab with braking equipment on every vehicle. The operation of the brake equipment on each vehicle depends on the condition of a vacuum created in the pipe by an ejector or exhauster. The ejector, using steam on a steam locomotive, or an exhauster, using electric power on other types of train, removes atmospheric pressure from the brake pipe to create the vacuum.
    [Show full text]
  • Train Brakes
    Issue 1 March 2012 Slide 1 of 324 Train Brakes These are the notes of a presentation made by Dominic Wells specially for the locomotive crews of the Ffestiniog and Welsh Highland Railways in 2011. For best viewing, set the size to show one whole page only, and use the “Page Down” button to move through the slides. If in doubt about any of the information contained within this presentation, please contact the author via Boston Lodge Works. Slide 2 of 324 Contents 1. Brief history 2. Vacuum brakes – System, Components, Operation, Refinements 3. Air brakes – Triple valve system, Distributor system, Twin pipe system, Alternatives 4. Air versus Vacuum 5. Electro-pneumatic brakes Slide 3 of 324 Brief history • 1829 – Rocket had no brake – first railway fatality – handbrakes introduced • 1869 – Westinghouse straight air brake • 1889 – Armagh disaster – Continuous braking compulsory for passenger trains – Automatic air brake & Automatic vacuum brake • 1956 – Introduction of distributor valve • 1970s – Proliferation of electro-pneumatic brakes Slide 4 of 324 Vacuum brakes Introduction and principles Slide 5 of 324 Vacuum brakes Here are the familiar diagrams of the vacuum brake. The purple areas represent a vacuum. Brake released – piston falls under its Brake applied – piston forced upwards own weight and moves the brake blocks when vacuum is destroyed in brake pipe. away from the wheels. Brake blocks pulled onto the wheels. Slide 6 of 324 Vacuum brakes Or consider it another way. A “vacuum” is effectively nothing. Therefore, the vacuum brake system is actually a direct air brake using air at atmospheric pressure. Air pressure This will be explained further..
    [Show full text]
  • ''Design and Modification of Vacuum Braking System”
    Anbalagan . R, Jancirani .J, Venkateshwaran. N / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 3, Issue 3, May-Jun 2013, pp.907-916 ‘‘Design and Modification of vacuum braking system” Anbalagan . R (*), Jancirani .J(**), Venkateshwaran. N(***) * Department of Automobile Engineering, Rajalakshmi Engineering College, Chennai – 602105. India. ** Madras Institute of Technology, Chennai-600044.India. ***Department of Mechanical Engineering, Rajalakshmi Engineering College, Chennai - 602105. India. Abstract Goto et al [2] developed the optimal braking effect Vacuum brakes are first used in place of and feel for the brake master cylinder for the heavy the air brake in railway locomotives. This vehicles. In this, braking effect was enhanced during braking system uses a vacuum pump for creating a vacuum failure condition by operating the smaller vacuum in the brake pipe. The integral bore. Thus, the vacuum failure detection and the construction of the brake cylinder uses this increase output pressure are performed vacuum reservoir for the application of brakes. mechanically. By this development, it has Nowadays most of the light vehicles are fitted contributed to the design of the optimal brake with vacuum-assisted hydraulic braking system system. where vacuum is created from the engine which Shaffer and Alexander [3] determine reduces the driver effort on foot pedal. whether the performance-based brake testing The vacuum braking system was technologies can improve the safety of the highways modified from above said reasons and the same and roadways through more effective or efficient was tested for implementation in both light and inspections of brakes of the road commercial heavy vehicles.
    [Show full text]
  • Informer 0027 En.Pdf
    Rail Vehicle Systems Edition 27 | August 2010 The customer magazine of Knorr-Bremse Rail Vehicle Systems Cover-Story Knorr-Bremse at InnoTrans Sites 5-day factory opens in Hungary Aftermarket Knorr-Bremse original spare parts kits Innovations Driving simulators Quelle: Messe Berlin No. 27 | August 2010 CONTENTS E d i t o r i a l Dr. Wolfgang Schlosser, Member of the Board of Management of Knorr-Bremse Systeme für Schienenfahrzeuge GmbH 3 Sites 5-day factory opens in Hungary Faster, more flexible, more efficient 4 Cover-Story Knorr-Bremse at InnoTrans 6 Distributor valves – Hightech behind the facade 10 Bogie equipment – The linear eddy current brake 14 Q u a l i t y Active quality management – Zero defects 16 N e w s Knorr-Bremse wins Elogistics award 17 Projects HVAC systems – Solutions you can trust 18 Gautrain – Showcase project in South Africa 20 Diesel locomotives – Major order from South Africa 21 Aftermarket Knorr-Bremse original parts kits – It’s all in there! 22 Innovations Driving simulators – joining forces 19 E-NEWS-0027-EN Imprint: Information for Knorr-Bremse’ s worldwide customers and business partners This publication may be subject to alteration without prior notice. A printed copy of this Publisher: Central Editorial Office: Conception, text and design by: document may not be the latest revision. Please Knorr-Bremse Systeme für Knorr-Bremse Systeme für Knorr-Bremse Systeme für contact your local Knorr-Bremse representative or check our website www.knorr-bremse.com Schienenfahrzeuge GmbH Schienenfahrzeuge GmbH Schienenfahrzeuge GmbH for the latest update. The figurative mark “K” and August 2010 Marketing the trademarks KNORR and KNORR-BREMSE Tanja Mohme Text: Torsten Rienth are registered in the name of Knorr-Bremse AG.
    [Show full text]
  • Parking Brake and Power Brake
    Name ___________________ Homework #6 Parking Brake and Power Brake Chapter 9 1) Explain the difference between Parking Brake and the Service Brake 2) What does a Parking Brake Equalizer do? 3) Describe how an Auxiliary Drum Parking Brake works. 4) Explain how an Integral Disc Brake Parking Brake works. (You can explain either the Screw & Nut style or the Ball and Ramp) 5) If you have drum brakes, why should you adjust the service brake BEFORE the parking brake? 6) Explain a typical under-car adjustment for drum brake parking brakes. Page 1 of 3 7) A special tool is required to complete a Disc-Brake Caliper Self-Adjustment Reset. What does this tool do? (How does it get the piston to move back into the caliper?) 8) After replacing a caliper, how can you set the initial clearance for the self adjusting rear disc brake caliper? 9) What are the two main Types of Power Brakes? 10) Vacuum is created in a running engine however it goes down under heavy engine loads and goes away entirely when the engine is shut off. How in the booster able to provide reserve braking when vacuum is low or the engine dies? 11) How do Vacuum Brake Boosters provide a “Pedal Feel” to let the driver know how much pressure is being applied to the service brakes? 12) Where are Power Boosters mounted? 13) How do you test the operation of the vacuum booster? 14) How can you check for a leaking vacuum booster? Page 2 of 3 15) What will happen if the Booster Pushrod Clearance Adjustment is too high? 16) How can you check the Booster Pushrod Clearance Adjustment? 17) The Hydro-boost brake is a Mechanical Hydraulic Power Brake.
    [Show full text]
  • Vacuum Braking System
    VACUUM BRAKING SYSTEM Presented By :- Atul Tewari Mechanical 3rd year MCSCET PRESENTATION OF VACUUM BRAKE TABLE OF CONTENTS 1. Overview Of Vacuum Brake 2. Parts of the Vacuum Brake System 3. How the automatic vacuum brake works 4. Two Pipe Systems 5. Additional Features of the Vacuum Brake System 6. Limitations 7. Advantages 8. Present-day use of vacuum brakes OVERVIEW OF VACUUM BRAKE History- The vacuum brake is a braking system employed on trains and introduced in the mid-1860s. A variant, the automatic vacuum brake system, became almost universal in British train equipment and in those countries influenced by British practice. OVERVIEW OF VACUUM BRAKE It was an alternative to the air brake, known as the vacuum brake. Like the air brake, the vacuum brake system is controlled through a brake pipe connecting a brake valve in the driver's cab with braking equipment on every vehicle. PARTS OF THE VACUUM BRAKE SYSTEM This diagram shows the principal parts of the vacuum brake system PARTS OF THE VACUUM BRAKE SYSTEM Driver's Brake Valve- The means by which the driver controls the brake. Exhauster- A two-speed rotary machine fitted to a train to evacuate the atmospheric pressure Brake Pipe- The vacuum-carrying pipe running the length of the train Dummy Coupling- At the ends of each vehicle Coupled Hoses- The brake pipe is carried between adjacent vehicles through flexible hoses PARTS OF THE VACUUM BRAKE SYSTEM Brake Cylinder - The movement of the piston contained inside the cylinder operates the brakes through links called "rigging´ Vacuum Reservoir -difference in pressure between one side of the brake cylinder piston and the other.
    [Show full text]
  • Vacuum Brakes
    Buying Guide to Vacuum Brakes The guidance for passenger-carrying miniature railways is: Trains should have a braking system which is adequate for: • Loaded train weight • Normal speed of running • Gradients • Operating methods The system is to be capable of bringing the train to a stop in a safe distance in normal and emergency conditions. Based on these guidelines it is a must to fit an automatic (fail-safe) braking system on all your trains. Running without adequate braking could have serious consequences. As per full size railways the two main choices for braking are vacuum and compressed air. The most popular choice for many miniature railways and model engineers is vacuum. PNP Railways is the market leader in the model engineering world for vacuum brakes. We can supply the components and advice for fitting a fail-safe vacuum braking system. Our braking system is suitable for both standard and narrow gauge 5”, 7¼ & 10¼" railways. This guide will provide you with an overview of how vacuum brakes work and an overview of the components in the PNP Railways range. Included is an example of what you would require if you wished to fit vacuum brakes to a locomotive and two carriages. How do Vacuum Brakes Work? The ejector or vacuum pump draws the air from the train pipe, the brake cylinder and reservoir (via the non-return valve). The brakes will then be off, and the system will be in equilibrium. The brakes will stay off by being weight biased or lightly sprung. (See diagram). Letting air back into the train pipe via the drivers brake valve or by a pipe disconnection, will apply the brakes.
    [Show full text]
  • Diesel Locomotive-Introduction 1 2 2
    ,u ,l ifV;ky उ配‍तर ‍श्椿म ‍र लवेल, अज लर funs'kd] ,lVhlh] vtesj North Western Railway Ajmer Rly. (O). 44550, BSNL (O). Tel/FAX: 0145-2429498 N.S Patiyal Director, STC Ajmer E-mail: [email protected] Mob: 9001196582 FOREWORD Mechanical Department is most responsible towards Safety of Railways. In this regard, Railway Board framed Training Module for Direct Recruited trainee Supervisors, who are required systematic and gravitational knowledge of their field as they are the backbone of Mechanical Department. STC/Ajmer plays a vital role in imparting qualitative & effective theoretical & practical training to develop their professional aptitude. The main thrust of this book is application oriented with the appropriate theoretical inputs and trainee can develop self-reliance in training and taking problems in their work related field. I am pleased that STC Ajmer is constantly publishing course books as per module prescribed by Railway Board. We take an opportunity with the inspiration of our CWE, Shri Sudhir Gupta to present a course book for trainee MSE/MJR (Diesel) of IIIrd Session separately. The object of this book is to present the subject matter prescribed by Railway Board module in a most concise, compact and in lucid manner. I would like to thank our Hon’ble PCME, Shri Virendra Kumar for their benevolent guidance in this regard. I acknowledge and appreciate sincere efforts done by our experienced faculty Shri Prakash Kewalramani in bringing out this book. I would like to express thanks to Shri Amar C. Gaharwal Sr. Instructor, Shri Surendra Tak, Chief Typist and Smt. Manisha Khandey, PS as chief coordinator of this edition.
    [Show full text]