The Structural Coverage of the Human Proteome Before and After Alphafold
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Semantic Web
SEMANTIC WEB: REVOLUTIONIZING KNOWLEDGE DISCOVERY IN THE LIFE SCIENCES SEMANTIC WEB: REVOLUTIONIZING KNOWLEDGE DISCOVERY IN THE LIFE SCIENCES Edited by Christopher J. O. Baker1 and Kei-Hoi Cheung2 1Knowledge Discovery Department, Institute for Infocomm Research, Singapore, Singapore; 2Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA Kluwer Academic Publishers Boston/Dordrecht/London Contents PART I: Database and Literature Integration Semantic web approach to database integration in the life sciences KEI-HOI CHEUNG, ANDREW K. SMITH, KEVIN Y. L. YIP, CHRISTOPHER J. O. BAKER AND MARK B. GERSTEIN Querying Semantic Web Contents: A case study LOIC ROYER, BENEDIKT LINSE, THOMAS WÄCHTER, TIM FURCH, FRANCOIS BRY, AND MICHAEL SCHROEDER Knowledge Acquisition from the Biomedical Literature LYNETTE HIRSCHMAN, WILLIAM HAYES AND ALFONSO VALENCIA PART II: Ontologies in the Life Sciences Biological Ontologies PATRICK LAMBRIX, HE TAN, VAIDA JAKONIENE, AND LENA STRÖMBÄCK Clinical Ontologies YVES LUSSIER AND OLIVIER BODENREIDER Ontology Engineering For Biological Applications vi Revolutionizing knowledge discovery in the life sciences LARISA N. SOLDATOVA AND ROSS D. KING The Evaluation of Ontologies: Toward Improved Semantic Interoperability LEO OBRST, WERNER CEUSTERS, INDERJEET MANI, STEVE RAY AND BARRY SMITH OWL for the Novice JEFF PAN PART III: Ontology Visualization Techniques for Ontology Visualization XIAOSHU WANG AND JONAS ALMEIDA On Vizualization of OWL Ontologies SERGUEI KRIVOV, FERDINANDO VILLA, RICHARD WILLIAMS, AND XINDONG WU PART IV: Ontologies in Action Applying OWL Reasoning to Genomics: A Case Study KATY WOLSTENCROFT, ROBERT STEVENS AND VOLKER HAARSLEV Can Semantic Web Technologies enable Translational Medicine? VIPUL KASHYAP, TONYA HONGSERMEIER AND SAMUEL J. ARONSON Ontology Design for Biomedical Text Mining RENÉ WITTE, THOMAS KAPPLER, AND CHRISTOPHER J. -
Aggregation and Correlation Toolbox for Analyses of Genome Tracks Justin Jee Yale University
University of Massachusetts eM dical School eScholarship@UMMS Program in Bioinformatics and Integrative Biology Program in Bioinformatics and Integrative Biology Publications and Presentations 4-15-2011 ACT: aggregation and correlation toolbox for analyses of genome tracks Justin Jee Yale University Joel Rozowsky Yale University Kevin Y. Yip Yale University See next page for additional authors Follow this and additional works at: http://escholarship.umassmed.edu/bioinformatics_pubs Part of the Bioinformatics Commons, Computational Biology Commons, and the Systems Biology Commons Repository Citation Jee, Justin; Rozowsky, Joel; Yip, Kevin Y.; Lochovsky, Lucas; Bjornson, Robert; Zhong, Guoneng; Zhang, Zhengdong; Fu, Yutao; Wang, Jie; Weng, Zhiping; and Gerstein, Mark B., "ACT: aggregation and correlation toolbox for analyses of genome tracks" (2011). Program in Bioinformatics and Integrative Biology Publications and Presentations. Paper 26. http://escholarship.umassmed.edu/bioinformatics_pubs/26 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Program in Bioinformatics and Integrative Biology Publications and Presentations by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. ACT: aggregation and correlation toolbox for analyses of genome tracks Authors Justin Jee, Joel Rozowsky, Kevin Y. Yip, Lucas Lochovsky, Robert Bjornson, Guoneng Zhong, Zhengdong Zhang, Yutao Fu, Jie Wang, Zhiping Weng, and Mark B. Gerstein Comments © The Author(s) 2011. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non- commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Biocreative II.5 Workshop 2009 Special Session on Digital Annotations
BioCreative II.5 Workshop 2009 Special Session on Digital Annotations The purified IRF-4 was also The main role of BRCA2 shown to be capable of binding appears to involve regulating the DNA in a PU.1-dependent manner function of RAD51 in the repair by by electrophoretic mobility shift homologous recombination . analysis. brca2 irf4 We found that cells ex- Moreover, expression of pressing Olig2, Nkx2.2, and NG2 Carma1 induces phosphorylation were enriched among virus- of Bcl10 and activation of the infected, GFP-positive (GFP+) transcription factor NF-kappaB. cells. carma1 BB I O olig2 The region of VHL medi- The Rab5 effector ating interaction with HIF-1 alpha Rabaptin-5 and its isoform C R E A T I V E overlapped with a putative Rabaptin-5delta differ in their macromolecular binding site within ability to interact with the rsmallab5 the crystal structure. GTPase Rab4. vhl Translocation RCC, bearing We show that ERBB2-dependenterbb2 atf1 TFE3 or TFEB gene fusions, are Both ATF-1 homodimers and tfe3 medulloblastoma cell invasion and ATF-1/CREB heterodimers bind to recently recognized entities for prometastatic gene expression can the CRE but not to the related which risk factors have not been be blocked using the ERBB tyrosine phorbol ester response element. identified. kinase inhibitor OSI-774. C r i t i c a l A s s e s s m e n t o f I n f o r m a t i o n E x t r a c t i o n i n B i o l o g y October 7th - 9th, 2009 www.BioCreative.org BioCreative II.5 Workshop 2009 special session | Digital Annotations Auditorium of the Spanish National -
AI for Health Examples from Industry, Government, and Academia Table of Contents
guidehouse.com AI for Health Examples from industry, government, and academia Table of Contents Abstract 3 Introduction to artificial intelligence 4 Introduction to health data 7 Molecules: AI for understanding biology and developing therapies 10 Fundamental research 10 Drug development 11 Patients: AI for predicting disease and improving care 13 Diagnostics and outcome risks 13 Personalized medicine 14 Groups: AI for optimizing clinical trials and safeguarding public health 15 Clinical trials 15 Public health 17 Conclusion and outlook 18 2 Guidehouse Abstract This paper is directed toward a health-informed reader who is curious about the developments and potential of artificial intelligence (AI) in the health space, but could equally be read by AI practitioners curious about how their knowledge and methods are being used to advance human health. We present a brief, equation-free introduction to AI and its major subfields in order to provide a framework for understanding the technical context of the examples that follow. We discuss the various data sources available for questions of health and life sciences, as well as the unique challenges inherent to these fields. We then consider recent (past five years) applications of AI that have already had tangible, measurable impact to the advancement of biomedical knowledge and the development of new and improved treatments. These examples are organized by scale, ranging from the molecule (fundamental research and drug development) to the patient (diagnostics, risk-scoring, and personalized medicine) to the group (clinical trials and public health). Finally, we conclude with a brief summary and our outlook for the future of AI for health. -
Pre-Training of Deep Bidirectional Protein Sequence Representations with Structural Information
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. Digital Object Identifier 10.1109/ACCESS.2017.DOI Pre-training of Deep Bidirectional Protein Sequence Representations with Structural Information SEONWOO MIN1,2, SEUNGHYUN PARK3, SIWON KIM1, HYUN-SOO CHOI4, BYUNGHAN LEE5 (Member, IEEE), and SUNGROH YOON1,6 (Senior Member, IEEE) 1Department of Electrical and Computer engineering, Seoul National University, Seoul 08826, South Korea 2LG AI Research, Seoul 07796, South Korea 3Clova AI Research, NAVER Corp., Seongnam 13561, South Korea 4Department of Computer Science and Engineering, Kangwon National University, Chuncheon 24341, South Korea 5Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology, Seoul 01811, South Korea 6Interdisciplinary Program in Artificial Intelligence, ASRI, INMC, and Institute of Engineering Research, Seoul National University, Seoul 08826, South Korea Corresponding author: Byunghan Lee ([email protected]) or Sungroh Yoon ([email protected]) This research was supported by the National Research Foundation (NRF) of Korea grants funded by the Ministry of Science and ICT (2018R1A2B3001628 (S.Y.), 2014M3C9A3063541 (S.Y.), 2019R1G1A1003253 (B.L.)), the Ministry of Agriculture, Food and Rural Affairs (918013-4 (S.Y.)), and the Brain Korea 21 Plus Project in 2021 (S.Y.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ABSTRACT Bridging the exponentially growing gap between the numbers of unlabeled and labeled protein sequences, several studies adopted semi-supervised learning for protein sequence modeling. In these studies, models were pre-trained with a substantial amount of unlabeled data, and the representations were transferred to various downstream tasks. -
Biological Structure and Function Emerge from Scaling Unsupervised Learning to 250 Million Protein Sequences
bioRxiv preprint doi: https://doi.org/10.1101/622803; this version posted May 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. BIOLOGICAL STRUCTURE AND FUNCTION EMERGE FROM SCALING UNSUPERVISED LEARNING TO 250 MILLION PROTEIN SEQUENCES Alexander Rives ∗y z Siddharth Goyal ∗x Joshua Meier ∗x Demi Guo ∗x Myle Ott x C. Lawrence Zitnick x Jerry Ma y x Rob Fergus y z x ABSTRACT In the field of artificial intelligence, a combination of scale in data and model capacity enabled by unsupervised learning has led to major advances in representation learning and statistical generation. In biology, the anticipated growth of sequencing promises unprecedented data on natural sequence diversity. Learning the natural distribution of evolutionary protein sequence variation is a logical step toward predictive and generative modeling for biology. To this end we use unsupervised learning to train a deep contextual language model on 86 billion amino acids across 250 million sequences spanning evolutionary diversity. The resulting model maps raw sequences to representations of biological properties without labels or prior domain knowledge. The learned representation space organizes sequences at multiple levels of biological granularity from the biochemical to proteomic levels. Unsupervised learning recovers information about protein structure: secondary structure and residue-residue contacts can be identified by linear projections from the learned representations. Training language models on full sequence diversity rather than individual protein families increases recoverable information about secondary structure. -
Tporthmm : Predicting the Substrate Class Of
TPORTHMM : PREDICTING THE SUBSTRATE CLASS OF TRANSMEMBRANE TRANSPORT PROTEINS USING PROFILE HIDDEN MARKOV MODELS Shiva Shamloo A thesis in The Department of Computer Science Presented in Partial Fulfillment of the Requirements For the Degree of Master of Computer Science Concordia University Montréal, Québec, Canada December 2020 © Shiva Shamloo, 2020 Concordia University School of Graduate Studies This is to certify that the thesis prepared By: Shiva Shamloo Entitled: TportHMM : Predicting the substrate class of transmembrane transport proteins using profile Hidden Markov Models and submitted in partial fulfillment of the requirements for the degree of Master of Computer Science complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the final examining commitee: Examiner Dr. Sabine Bergler Examiner Dr. Andrew Delong Supervisor Dr. Gregory Butler Approved Dr. Lata Narayanan, Chair Department of Computer Science and Software Engineering 20 Dean Dr. Mourad Debbabi Faculty of Engineering and Computer Science Abstract TportHMM : Predicting the substrate class of transmembrane transport proteins using profile Hidden Markov Models Shiva Shamloo Transporters make up a large proportion of proteins in a cell, and play important roles in metabolism, regulation, and signal transduction by mediating movement of compounds across membranes but they are among the least characterized proteins due to their hydropho- bic surfaces and lack of conformational stability. There is a need for tools that predict the substrates which are transported at the level of substrate class and the level of specific substrate. This work develops a predictor, TportHMM, using profile Hidden Markov Model (HMM) and Multiple Sequence Alignment (MSA). -
MPGM: Scalable and Accurate Multiple Network Alignment
MPGM: Scalable and Accurate Multiple Network Alignment Ehsan Kazemi1 and Matthias Grossglauser2 1Yale Institute for Network Science, Yale University 2School of Computer and Communication Sciences, EPFL Abstract Protein-protein interaction (PPI) network alignment is a canonical operation to transfer biological knowledge among species. The alignment of PPI-networks has many applica- tions, such as the prediction of protein function, detection of conserved network motifs, and the reconstruction of species’ phylogenetic relationships. A good multiple-network align- ment (MNA), by considering the data related to several species, provides a deep understand- ing of biological networks and system-level cellular processes. With the massive amounts of available PPI data and the increasing number of known PPI networks, the problem of MNA is gaining more attention in the systems-biology studies. In this paper, we introduce a new scalable and accurate algorithm, called MPGM, for aligning multiple networks. The MPGM algorithm has two main steps: (i) SEEDGENERA- TION and (ii) MULTIPLEPERCOLATION. In the first step, to generate an initial set of seed tuples, the SEEDGENERATION algorithm uses only protein sequence similarities. In the second step, to align remaining unmatched nodes, the MULTIPLEPERCOLATION algorithm uses network structures and the seed tuples generated from the first step. We show that, with respect to different evaluation criteria, MPGM outperforms the other state-of-the-art algo- rithms. In addition, we guarantee the performance of MPGM under certain classes of net- work models. We introduce a sampling-based stochastic model for generating k correlated networks. We prove that for this model if a sufficient number of seed tuples are available, the MULTIPLEPERCOLATION algorithm correctly aligns almost all the nodes. -
You Are Cordially Invited to a Talk in the Edmond J. Safra Center for Bioinformatics Distinguished Speaker Series
You are cordially invited to a talk in the Edmond J. Safra Center for Bioinformatics Distinguished Speaker Series. The speaker is Prof. Alfonso Valencia, Spanish National Cancer Research Centre, CNIO. Title: "A mESC epigenetics network that combines chromatin localization data and evolutionary information" Time: Wednesday, November 11 2015, at 11:00 (refreshments from 10:50) Place: Green building seminar room, ground floor, Biotechnology Department. Host: Prof. Ron Shamir, [email protected], School of Computer Science Abstract: The description of biological systems in terms of networks is by now a well- accepted paradigm. Networks offer the possibility of combining complex information and the system to analyse the properties of individual components in relation to the ones of their interaction partners. In this context, we have analysed the relations between the known components of mouse Embryonic Stem Cells (mESC) epigenome at two orthogonal levels of information, i.e., co-localization in the genome and concerted evolution (co-evolution). Public repositories contain results of ChIP-Seq experiments for more than 60 Chromatin Related Proteins (CRPs), 14 for Histone modifications, and three different types of DNA methylation, including 5-Hydroxymethylcytosine (5hmc). All this information can be summarized in a network in which the nodes are the CRPs, histone marks and DNA modifications and the arcs connect components that significantly co-localize in the genome. In this network co-localization preferences are specific of chromatin states, such as promoters and enhancers. A second network was build by connecting proteins that are part of the mESC epigenetic regulatory system and show signals of co-evolution (concerted evolution of the CRPs protein families). -
ISCB's Initial Reaction to the New England Journal of Medicine
MESSAGE FROM ISCB ISCB’s Initial Reaction to The New England Journal of Medicine Editorial on Data Sharing Bonnie Berger, Terry Gaasterland, Thomas Lengauer, Christine Orengo, Bruno Gaeta, Scott Markel, Alfonso Valencia* International Society for Computational Biology, Inc. (ISCB) * [email protected] The recent editorial by Drs. Longo and Drazen in The New England Journal of Medicine (NEJM) [1] has stirred up quite a bit of controversy. As Executive Officers of the International Society of Computational Biology, Inc. (ISCB), we express our deep concern about the restric- tive and potentially damaging opinions voiced in this editorial, and while ISCB works to write a detailed response, we felt it necessary to promptly address the editorial with this reaction. While some of the concerns voiced by the authors of the editorial are worth considering, large parts of the statement purport an obsolete view of hegemony over data that is neither in line with today’s spirit of open access nor furthering an atmosphere in which the potential of data can be fully realized. ISCB acknowledges that the additional comment on the editorial [2] eases some of the polemics, but unfortunately it does so without addressing some of the core issues. We still feel, however, that we need to contrast the opinion voiced in the editorial with what we consider the axioms of our scientific society, statements that lead into a fruitful future of data-driven science: • Data produced with public money should be public in benefit of the science and society • Restrictions to the use of public data hamper science and slow progress OPEN ACCESS • Open data is the best way to combat fraud and misinterpretations Citation: Berger B, Gaasterland T, Lengauer T, Orengo C, Gaeta B, Markel S, et al. -
Keynote Speaker
4th BSC Severo Ochoa Doctoral Symposium KEYNOTE SPEAKER Alfonso Valencia Head of Life Sciences Department, BSC Personalised Medicine as a Computational Challenge Personalized Medicine represents the adoption of Genomics and other –omics technologies to the diagnosis and treatment of diseases. PerMed is one of the more interesting and promising developments resulting from the genomic revolution. The treatment and analysis of genomic information is tremendously challenging for a number of reasons that include the diversity and heterogeneity of the data, strong dependence of the associated metadata (i.e, experimental details), very fast evolution of the methods, and the size and confidentiality of the data sets. Furthermore, the lack of a sufficiently developed conceptual framework in Molecular Biology makes the interpretation of the data extremely difficult. In parallel, the work in human diseases will require the combination of the –omics information with the description of diseases, symptoms, drugs and treatments: The use of this information, recorded in Electronic Medical Records and other associated documents, requires the development and application of Text Mining and Natural Language processing technologies. These problems have to be seen as opportunities, particularly for students and Post Docs in Bioinformatics, Engineering and Computer Sciences. During this talk, I will introduce some of the areas in which the Life Sciences Department works, from Simulation to Genome Analysis, including text mining, pointing to what I see as the most promising future areas of development. Alfonso Valencia is the founder and President of the International Society for Computational Biology and Co-Executive Director of the main journal in the field (Bioinformatics of Oxford University Press). -
Obstacles to Studying Alternative Splicing Using Scrna-Seq
bioRxiv preprint doi: https://doi.org/10.1101/797951; this version posted October 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Obstacles to Studying Alternative Splicing Using scRNA-seq Jennifer Westoby∗1, Pavel Artemovy2, Martin Hembergz3, and Anne Ferguson-Smithx4 1Department of Genetics, University of Cambridge , Downing Street, CB2 3EH 2Department of Genetics, University of Cambridge , Downing Street, CB2 3EH 3Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA 4Department of Genetics, University of Cambridge, Downing Street, CB2 3EH October 8, 2019 ∗Electronic address: [email protected]; Corresponding author yElectronic address: [email protected]; zElectronic address: [email protected]; xElectronic address: [email protected]; 1 bioRxiv preprint doi: https://doi.org/10.1101/797951; this version posted October 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Background Early single-cell RNA-seq (scRNA-seq) studies suggested that it was unusual to see more than one isoform being produced from a gene in a single cell, even when multiple isoforms were detected in matched bulk RNA-seq samples. How- ever, these studies generally did not consider the impact of dropouts or isoform quantification errors, potentially confounding the results of these analyses.