Diapause Is Not Selected As a Bet-Hedging Strategy in Insects: a Meta-Analysis of Reaction Norm Shapes

Total Page:16

File Type:pdf, Size:1020Kb

Diapause Is Not Selected As a Bet-Hedging Strategy in Insects: a Meta-Analysis of Reaction Norm Shapes bioRxiv preprint doi: https://doi.org/10.1101/752881; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Diapause is not selected as a bet-hedging strategy in insects: a meta-analysis of reaction norm shapes. Jens Joschinski1*†, Dries Bonte1‡ 1 Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, Ghent, Belgium. * [email protected] † Twitter: @jensjoschi, ORCID: 0000-0001-7828-3336 ‡ Twitter: @bontedries, ORCID: 0000-0002-3320-7505 Keywords: Phenotypic plasticity, diversified bet-hedging, conservative bet-hedging, insects, phenotypic variance, critical day length, photoperiodism, phenology, climate change bioRxiv preprint doi: https://doi.org/10.1101/752881; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Abstract 2 Many organisms escape from lethal climatological conditions by entering a resistant resting 3 stage called diapause, and it is essential that this strategy remains optimally timed with seasonal 4 change. Climate change therefore exerts selection pressure on traits that regulate phenology, 5 which is expected to cause the evolution of mean diapause timing, but also phenotypic 6 plasticity and bet-hedging strategies. Especially the latter as a strategy to cope with 7 unpredictability is so far little considered in the context of climate change, and it is unknown 8 whether it can readily evolve. 9 Contemporary patterns of phenological strategies across a geographic range may provide 10 information about their future evolvability. We thus extracted 447 diapause reaction norms 11 from 57 studies. First, we correlated mean diapause timing with mean winter onset. Then we 12 partitioned the reaction norm variance into a temporal component (phenotypic plasticity) and 13 among-offspring variance (diversified bet-hedging) and correlated this variance composition 14 with predictability of winter onset. Contrary to our expectation, mean diapause timing 15 correlated only weakly with mean winter onset, as populations at high latitudes failed to track 16 early onsets. Variance among offspring was also limited and correlated only weakly with 17 environmental predictability, indicating little scope for bet-hedging. We conclude that 18 evolutionary constraints limit the evolvability of phenological traits in a rapidly changing 19 climate. 1 bioRxiv preprint doi: https://doi.org/10.1101/752881; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 20 Introduction 21 Anthropogenic greenhouse gas emissions change the environment at an unprecedented rate 22 (IPCC, 2014), and the majority of species faces extinction risks from climate change (Urban, 23 2015). One of the most commonly observed responses to climate change is a shift in phenology, 24 i.e. in the seasonal timing of an organism (Parmesan & Yohe, 2003). Changes in tree leaf-out 25 (Badeck et al., 2004) and bird egg-laying dates (Dunn & Winkler, 1999) in spring are among 26 the most famous examples of phenology shifts, but shifts in timing have been documented 27 across nearly the whole tree of life (e.g. cyanobacteria, Zhang et al., 2012; fungi, Kauserud et 28 al., 2008; cnidarians, Van Walraven et al., 2015; insects, Bell et al., 2015). Phenological shifts 29 that match an organism’s life cycle with novel conditions clearly provide fitness benefits 30 (Visser & Gienapp, 2019). Nevertheless, there is increasing doubt that they will remain 31 sufficient in a rapidly changing climate (Visser, 2008), so it is essential to infer the evolutionary 32 potential of phenological strategies. 33 Phenology is a complex compound of traits that is subject to multiple selection pressures, 34 predictions on the evolvability of phenological traits are therefore not straightforward. For 35 example, variation in the extent of phenology shifts among interacting species may create 36 phenological mismatches (Thackeray et al., 2016; Visser & Gienapp, 2019), thus selecting for 37 covarying phenologies. Moreover, novel correlations of temperature and day length may 38 impose physiological constraints, such as day length limitations for diurnal animals (Dunbar & 39 Shi, 2013; Joschinski, Kiess & Krauss, 2019) and plants (Saikkonen et al., 2012; but see Zohner 40 et al., 2016) – relying on developmental cues may then constitute an evolutionary trap (van 41 Dyck et al., 2015; Snell-Rood et al., 2018). The genetic architecture that underlies phenological 42 traits is elaborate (Robinet & Roques, 2010; Brachi et al., 2010), making such constraints by 43 pleiotropic effects likely. Therefore it is not clear whether a complex trait such as phenology 44 can evolve an optimal response to changing local conditions. A longitudinal analysis across 2 bioRxiv preprint doi: https://doi.org/10.1101/752881; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 45 species and habitats may, however, provide information about the evolvability of phenological 46 traits. 47 Rises in mean temperature are not the only potential cause of climate-change induced 48 biodiversity loss - increasing climate variability imposes further extinction risk (Bathiany et 49 al., 2018). Therefore, the concerted evolution of mean phenology and risk-reduction strategies 50 will be required. There are four general strategies by which organisms can cope with changing 51 environments (Seger & Brockmann, 1987; Starrfelt & Kokko, 2012; Tufto, 2015): Evolution 52 of the mean timing, phenotypic plasticity, and bet-hedging (avoidance of fitness variance). The 53 latter consists of strategies to avoid risk (conservative bet-hedging) and of strategies to spread 54 the risk among one’s offspring (diversified bet-hedging). These strategies are intricately related 55 (Lande, 2009; Starrfelt & Kokko, 2012; Simons, 2014; Snell-Rood et al., 2018), examining 56 their evolvability simultaneously is hence a daunting task. However, for binary traits with only 57 two outcomes, such as the decision to overwinter or to germinate, the strategies can be 58 conveniently separated by studying mean and variance composition of reaction norms (Fig. 59 1A), as the strategies then form the extremes of a three-dimensional continuum (Joschinski & 60 Bonte, 2019): the allocation of variance within vs among environments represents a continuum 61 of diversified bet-hedging and phenotypic plasticity (Fig. 1B, x-axis), their sum fixed vs. 62 flexible development (y-axis), and the mean the trade-off between arithmetic mean 63 optimization and conservative bet-hedging (Fig. 1C). The adaptive value of the strategies is 64 dictated by the environment, which may vary in its mean condition (e.g. mean timing of winter 65 onset), its predictability, and the amplitude of change (i.e. seasonality); thus, on can infer the 66 evolvability of evolutionary strategies by correlating the reaction norm properties with 67 environmental conditions. 68 3 bioRxiv preprint doi: https://doi.org/10.1101/752881; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 69 70 Fig. 1. Relationship of evolutionary strategies with reaction norm properties. Panel A shows a 71 dichotomous reaction norm. The decision to switch phenotypes can be expressed by a steep logistic 72 curve. Reaction norms can divert in various ways from this step function: By changes in the ratio (x- 2 2 73 axis) and sum (y-axis) of the variance components 휎푎푚표푛 and 휎푤푡ℎ푛(Panel B), and by changes in the 74 mean (Panel C). Axes describe the resulting evolutionary strategies. 2 2 ∑(푝퐸−푝̅̅̅퐸̅) 2 75 휎 = squared standard deviation along environments(Ei), ; 휎 = Variance 푎푚표푛 푛 푤푡ℎ푛 2 ∑ 푝퐸∗(1−푃퐸) 휎푎푚표푛 76 of Bernoulli draws, ; r = variance composition, 2 2 ; s = phenotypic variance, 푛 휎푎푚표푛+휎푤푡ℎ푛 2 2 77 휎푎푚표푛 + 휎푤푡ℎ푛. 4 bioRxiv preprint doi: https://doi.org/10.1101/752881; this version posted September 6, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 78 Insect diapause, a resting stage to overwinter, is a dichotomous trait that has historically 79 received much attention (e.g. Danilevskii, 1965; Bradshaw, 1976; Urbanski et al., 2012), and 80 there is ample high-quality data under laboratory conditions available. Moreover, insect 81 diapause is amongst the few well-studied traits that mediate autumn phenology, which is 82 generally understudied (Gallinat, Primack & Wagner, 2015). We collected 447 of these reaction 83 norms from laboratory experiments (57 studies; Supp. S1, Fig. 2), derived their mean, 84 phenotypic variance and the variance composition, and then correlated them with winter onset 85 and winter predictability as derived from climate data (Fig. 2). 86 Because studies are (understandably) biased to temperate climates, nearly no canalized 87 phenotypes were available. We therefore concentrated on the other two axes and predicted that: 88 1) Inflection points
Recommended publications
  • Thysanoptera: Phlaeothripidae): Redefinition and Key to Species
    The southern Palaearctic genus Neoheegeria (Thysanoptera: Phlaeothripidae): redefinition and key to species Kambiz Minaei, Parvaneh Azemayeshfard & Laurence A. Mound Problems in character state definition and interpretation in the Haplothrips-group are discussed, together with their implications for species identification and systematics. As a result, Neoheegeria Schmutz, 1909 is redefined to include only those species in this group that have three sensoria on the third antennal segment. The subgenus Haplothrips (Gigaplothrips) Priesner, 1949 is synonymised with Neoheegeria, and four species are recognized as valid; N. dalmatica Schmutz, 1909, N. gigantea (Priesner, 1934) comb.n., N. persica Priesner, 1954, and N. sinaitica Priesner, 1934. Three new synonyms are recognized under N. dalmatica; N. ballotae Priesner, 1951, N. hamanni Priesner, 1961 and N. nevskyi Moulton, 1946, and this species is widely distributed in the southern Palearctic. In contrast, N. persica and N. sinaitica are known only from Iran and Egypt respectively, and N. gigantea from Egypt to Morocco. The following six new combinations involve species with less than three sensoria on the third antennal segment: Haplothrips biroi (Priesner, 1928), H. faurei (Zur Strassen, 1966), H. hrasvamukha (Ramakrishna, 1928), H. johni (Priesner, 1925), H. lederi (Priesner, 1924), and H. verbasci (Osborn, 1897). One new combination involves an unrelated species from India, Xylaplothrips montanus (Ananthakrishnan & Jagadish, 1970). The available biological data suggest that species of Neoheegeria are associated particularly with the flowers of Lamiaceae. K. Minaei * & P. Azemayeshfard, ����������������Plant Protection D����������epartment, F���������aculty of Horticultural Science and Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Iran, [email protected] L.A.
    [Show full text]
  • Haplothrips Leucanthemi Distinguishing Features Both Sexes Fully Winged
    Haplothrips leucanthemi Distinguishing features Both sexes fully winged. Body brown to dark brown, fore tarsi and base of antennal segment III yellow; fore wing pale with base extensively shaded. Head slightly longer than wide; maxillary stylets one third of head width apart, retracted to postocular setae, maxillary bridge complete; postocular setae short and acute, usually not reaching posterior margin of compound eyes. Antennae 8-segmented, segment III with 2 sense cones, IV with 4 sense cones; VIII short and broad at base. Pronotal setae small and acute, anteromarginal and midlateral setae no longer than discal setae; prosternal basantra and ferna present, mesopresternum eroded to paired lateral triangles. Fore tarsal tooth minute in female. Fore wing constricted medially, with 7–12 duplicated cilia, sub-basal setae acute or blunt. Tergite Antenna IX setae S1 bluntly pointed, much shorter than tube, S2 acute. Male with large fore tarsal tooth; tergite IX setae S2 short and stout; pseudovirga of aedeagus slender. Related species The genus Haplothrips comprises 240 described species worldwide, of which only four are recorded from New Zealand, and none of these seems to be endemic. H. leucanthemi is a European species that is particularly associated with the flowers of Chrysanthemum leucanthemum. A form of this species is associated with red clover flowers and has been known as H. niger, but this is considered to be a parthenogenetic strain of H. leucanthemi. This thrips is remarkable among Haplothrips species in Head & pronotum having unusually short setae on the head and pronotum. Biological data Breeding and pupating within flowers, particularly Chrysanthemum leucanthemum (Asteraceae), but also Trifolium sp.
    [Show full text]
  • Cold Hardiness of Winter-Acclimated Drosophila Suzukii (Diptera: Drosophilidae) Adults
    PHYSIOLOGICAL ECOLOGY Cold Hardiness of Winter-Acclimated Drosophila suzukii (Diptera: Drosophilidae) Adults 1 2 1 3,4 A. R. STEPHENS, M. K. ASPLEN, W. D. HUTCHISON, AND R. C. VENETTE Environ. Entomol. 44(6): 1619–1626 (2015); DOI: 10.1093/ee/nvv134 ABSTRACT Drosophila suzukii Matsumura, often called spotted wing drosophila, is an exotic vinegar fly that is native to Southeast Asia and was first detected in the continental United States in 2008. Pre- vious modeling studies have suggested that D. suzukii might not survive in portions of the northern United States or southern Canada due to the effects of cold. As a result, we measured two aspects of in- sect cold tolerance, the supercooling point and lower lethal temperature, for D. suzukii summer-morph pupae and adults and winter-morph adults. Supercooling points were compared to adults of Drosophila melanogaster Meigen. The lower lethal temperature of D. suzukii winter-morph adults was significantly colder than that for D. suzukii summer-morph adults, while supercooling points of D. suzukii winter- morph adults were actually warmer than that for D. suzukii summer-morph adults and pupae. D. suzukii summer-morph adult supercooling points were not significantly different than those for D. melanogaster adults. These measures indicate that D. suzukii is a chill intolerant insect, and winter-morph adults are the most cold-tolerant life stage. These results can be used to improve predictions of where D. suzukii might be able to establish overwintering populations and cause extensive damage to spring fruit crops. KEY WORDS spotted wing drosophila, Drosophila melanogaster, cold acclimation, cold tolerance Nonnative insects have the potential to cause wide- Most species of Drosophila overwinter as adults in spread damage to both natural and cultivated systems some sort of diapause state (e.g., reproductive or aesti- (e.g., Manchester and Bullock 2000, Pimentel et al.
    [Show full text]
  • Numbers and Types of Arthropods Overwintering on Common Mullein, Verbascum Thapsus L
    J. ENTOMOL. SOC. BRIT. COLUMBIA 100, DECEMBER 2003 79 Numbers and types of arthropods overwintering on common mullein, Verbascum thapsus L. (Scrophulariaceae), in a central Washington fruit-growing region DAVID R. HORTON and TAMERA M. LEWIS USDA-ARS, 5230 KONNOWAC PASS Rd., WAPATO, WA, UNITED STATES 98951 ABSTRACT Densities and types of arthropods overwintering on common mullein, Verbascum thapsus L., in a fruit-growing region of Central Washington were determined. Over 45,000 arthropods were collected from 55 plants (5 plants from each of 11 sites), dominated numerically by Acari and Thysanoptera. Insects representing 8 orders and 29 families were identified, distributed both in the basal leaf rosettes and in the stalk material of the plants. One specialist insect herbivore of mullein, the mullein thrips, Haplothrips verbasci (Osborn), was abundant at all sites. Several pest and predatory taxa that commonly occur in orchards were also collected, suggesting that mullein may be a source of overwintered pests or predators moving into orchards in early spring. Pest taxa included primarily western flower thrips (Frankliniella occidentalis (Pergande)), Lygus spp., and tetranychid spider mites. Common predators included phytoseiid mites and minute pirate bugs (Orius tristicolor (White)). Sites that were geographically close to one another were not more similar (in taxonomic composition of overwintering arthropods) than more distantly separated sites. Key words: common mullein, overwintering, orchard pests, predatory arthropods, mullein thrips, western flower thrips, Orius tristicolor, mites INTRODUCTION Common mullein, Verbascum thapsus L. (Scrophulariaceae), is a biennial herb native to Eurasia (Munz 1959) but now common throughout North America. The species occurs in open waste areas, along fence lines, in overgrazed pastures, and along river bottoms, often found growing in large single-species stands.
    [Show full text]
  • Haplothrips Aliakbarii Sp. Nov. (Thysanoptera: Phlaeothripidae): a New Thrips on Oak Trees from Ilam Province (Western Iran)
    Turkish Journal of Zoology Turk J Zool (2018) 42: 608-613 http://journals.tubitak.gov.tr/zoology/ © TÜBİTAK Short Communication doi:10.3906/zoo-1805-27 Haplothrips aliakbarii sp. nov. (Thysanoptera: Phlaeothripidae): a new thrips on oak trees from Ilam Province (western Iran) Majid MIRAB-BALOU*, Behzad MIRI Department of Plant Protection, College of Agriculture, Ilam University, Ilam, Iran Received: 18.05.2018 Accepted/Published Online: 12.08.2018 Final Version: 17.09.2018 Abstract: Haplothrips aliakbarii sp. nov. (Phlaeothripidae: Phlaeothripinae) is described and illustrated from Ilam Province, western Iran. This new species was collected on the leaves of oak trees (Quercus brantii). An identification key for Iranian species of Haplothrips is presented. Key words: Haplothrips, new species, oak, key, Iran Species of the large genus Haplothrips Amyot & Serville Bagnall, H. kurdjumovi Karny, H. longipes Bagnall, H. (Phlaeothripinae: Haplothripini) are found worldwide, maroccanus Priesner, H. minutes Uzel, H. phyllophilus with 242 extant species (Mound and Matsunaga, 2017). Priesner, H. rabinovitchi Priesner, and H. subtilissimus This genus is divided into two subgenera, Haplothrips and (Haliday). Trybomiella, which are distinguished by the presence or In this paper, we describe a new species of Haplothrips absence of fore wings with duplicated cilia (Minaei and that was collected on the leaves of oak trees in Ilam Mound, 2008). Species of this genus are usually brown and Province, western Iran. An identification key is also are readily recognized from the head gradually narrowed provided for 21 species of Haplothrips from Iran (Minaei towards base, postocular setae pointed, blunt or expanded; and Mound, 2008), and an updated key is provided for antennae 8-segmented, segment III with one or two sense Iranian species of this genus.
    [Show full text]
  • Thysanoptera)
    A peer-reviewed open-access journal ZooKeys 786: 59–68 (2018)One generic synonym and one new species of Phlaeothripidae... 59 doi: 10.3897/zookeys.786.28332 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research One generic synonym and one new species of Phlaeothripidae from India (Thysanoptera) Kaomud Tyagi1, Devkant Singha1,2, Goutam Kumar Saha2, Vikas Kumar1 1 Centre for DNA Taxonomy (CDT), Molecular Systematics Division, Zoological Survey of India, Kolkata, West Bengal, India 2 Department of Zoology, University of Calcutta, West Bengal, India Corresponding author: Kaomud Tyagi ([email protected]) Academic editor: Laurence Mound | Received 12 July 2018 | Accepted 3 August 2018 | Published 25 September 2018 http://zoobank.org/BFDE9229-D4F5-4FCF-B9FD-59AF8C1FA826 Citation: Tyagi K, Singha D, Saha GK, Kumar V (2018) One generic synonym and one new species of Phlaeothripidae from India (Thysanoptera). ZooKeys 786: 59–68.https://doi.org/10.3897/zookeys.786.28332 Abstract Haplothrips shivendraii Tyagi & Kumar, sp. n. is described from Rajasthan state of India. The monobasic Austro-oriental genus Dyothrips Kudô is formally synonymised with Haplothrips. Keywords Dyothrips, Haplothrips, India, new species, synonym. Introduction The generaHaplothrips , Dyothrips, and Plicothrips belong to tribe Haplothripini in the subfamily Phlaeothripinae, family Phlaeothripidae (Mound and Minaei 2007, Minaei and Mound 2008). Haplothrips was erected by Amyot and Serville (1843) for the single species, Phloeothrips albipennis Burmeister, 1836. It is the second largest genus in the family Phlaeothripidae and comprises the two subgenera Haplothrips and Trybomiella. These are distinguished by the presence or absence of fore wing duplicated cilia, pre- sent in Haplothrips and absent in Trybomiella.
    [Show full text]
  • Early Transcriptional Events Linked to Induction of Diapause Revealed By
    Poupardin et al. BMC Genomics (2015) 16:720 DOI 10.1186/s12864-015-1907-4 RESEARCH ARTICLE Open Access Early transcriptional events linked to induction of diapause revealed by RNAseq in larvae of drosophilid fly, Chymomyza costata Rodolphe Poupardin1, Konrad Schöttner1, Jaroslava Korbelová1, Jan Provazník1,2, David Doležel1, Dinko Pavlinic3, Vladimír Beneš3 and Vladimír Koštál1* Abstract Background: Diapause is a developmental alternative to directontogenyinmanyinvertebrates.Itsprimary adaptive meaning is to secure survival over unfavourable seasons in a state of developmental arrest usually accompanied by metabolic suppression and enhanced tolerance to environmental stressors. During photoperiodically triggered diapause of insects, the ontogeny is centrally turned off under hormonal control, the molecular details of this transition being poorly understood. Using RNAseq technology, we characterized transcription profiles associated with photoperiodic diapause induction in the larvae of the drosophilid fly Chymomyza costata with the goal of identifying candidate genes and processes linked to upstream regulatory events that eventually lead to a complex phenotypic change. Results: Short day photoperiod triggering diapause was associated to inhibition of 20-hydroxy ecdysone (20-HE) signalling during the photoperiod-sensitive stage of C. costata larval development. The mRNA levels of several key genes involved in 20-HE biosynthesis, perception, and signalling were significantly downregulated under short days. Hormonal change was translated into downregulation of a series of other transcripts with broad influence on gene expression, protein translation, alternative histone marking by methylation and alternative splicing. These changes probably resulted in blockade of direct development and deep restructuring of metabolic pathways indicated by differential expression of genes involved in cell cycle regulation, metabolism, detoxification, redox balance, protection against oxidative stress, cuticle formation and synthesis of larval storage proteins.
    [Show full text]
  • ON Frankliniella Occidentalis (Pergande) and Frankliniella Bispinosa (Morgan) in SWEET PEPPER
    DIFFERENTIAL PREDATION BY Orius insidiosus (Say) ON Frankliniella occidentalis (Pergande) AND Frankliniella bispinosa (Morgan) IN SWEET PEPPER By SCOT MICHAEL WARING A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 ACKNOWLEDGMENTS I thank my Mom for getting me interested in what nature has to offer: birds, rats, snakes, bugs and fishing; she influenced me far more than anyone else to get me where I am today. I thank my Dad for his relentless support and concern. I thank my son, Sequoya, for his constant inspiration and patience uncommon for a boy his age. I thank my wife, Anna, for her endless supply of energy and love. I thank my grandmother, Mimi, for all of her love, support and encouragement. I thank Joe Funderburk and Stuart Reitz for continuing to support and encourage me in my most difficult times. I thank Debbie Hall for guiding me and watching over me during my effort to bring this thesis to life. I thank Heather McAuslane for her generous lab support, use of her greenhouse and superior editing abilities. I thank Shane Hill for sharing his love of entomology and for being such a good friend. I thank Tim Forrest for introducing me to entomology. I thank Jim Nation and Grover Smart for their help navigating graduate school and the academics therein. I thank Byron Adams for generous use of his greenhouse and camera. I also thank (in no particular order) Aaron Weed, Jim Dunford, Katie Barbara, Erin Britton, Erin Gentry, Aissa Doumboya, Alison Neeley, Matthew Brightman, Scotty Long, Wade Davidson, Kelly Sims (Latsha), Jodi Avila, Matt Aubuchon, Emily Heffernan, Heather Smith, David Serrano, Susana Carrasco, Alejandro Arevalo and all of the other graduate students that kept me going and inspired about the work we have been doing.
    [Show full text]
  • Haplothrips Halophilus Distinguishing Features Both Sexes Fully Winged
    Haplothrips halophilus Distinguishing features Both sexes fully winged. Body brown to dark brown; fore tarsi and inner apex of fore tibiae, also pedicel of antennal segment III yellowish; fore wing pale with extreme base shaded. Antennae 8- segmented, segment III short with one sense cone, IV with 4 sense cones; segment VIII short and broad at base. Head longer Female Antenna Head than wide; maxillary stylets one third of head width apart, retracted to postocular setae, maxillary bridge complete; postocular setae bluntly pointed, about half as long as eyes. Pronotum with three pairs of weakly capitate major setae, anteromarginal and midlateral setae no longer than discal setae; epimeral sutures complete; prosternal basantra and ferna large, Pronotum mesopresternum eroded to paired lateral triangles. Fore tarsal tooth prominent and recurved at inner apex of tarsus. Fore wing Prosternum with about 10 duplicated cilia, sub-basal setae S1 and S2 blunt to weakly capitate, S3 acute. Tergite IX setae S1 bluntly pointed, shorter than tube, S2 acute. Male with broadly based fore tarsal tooth; pronotal midlateral setae well-developed; sternite VIII without pore plate; tergite IX setae S2 short and stout; pseudovirga of aedeagus slender. Pelta & tergite II Related species Mesonotum & metanotum In California, the only species similar to H. halophilus is H. ruber (Moulton), but that is known only from a single female that has capitate rather than pointed postocular setae (Cott, 1956). The genus Haplothrips, one of the three most species rich genera of Thysanoptera, and currently includes about 245 species Pelta & tergite II worldwide (Mound & Minaei, 2007). These species are found mainly from Europe across the Old World, and only a few come Female segments IX–X (tube) from South America (Mound & Zapater, 2003).
    [Show full text]
  • Haplothrips Leucanthemi Distinguishing Features Both Sexes Fully Winged
    Haplothrips leucanthemi Distinguishing features Both sexes fully winged. Body brown to dark brown, fore tarsi and base of antennal segment III yellow; fore wing pale with base extensively shaded. Antennae 8-segmented, segment III with 2 sense cones, IV with 4 sense cones; VIII short and broad at base. Head slightly longer than wide; maxillary stylets one third of Female AntennaHead & pronotum (large male) head width apart, retracted to postocular setae, maxillary bridge complete; postocular setae acute, usually not reaching posterior margin of compound eyes. Pronotal setae small and acute, anteromarginal and midlateral setae no longer than discal setae; epimeral sutures complete; prosternal basantra and ferna present, mesopresternum eroded to paired lateral triangles. Fore tarsal tooth minute in female, large in large male. Fore wing constricted medially, with 7–12 duplicated cilia, sub-basal setae Head & pronotum (female) Pelta & tergites II-III acute or blunt. Tergite IX setae S1 bluntly pointed, much shorter than tube, S2 acute. Male with no pore plate on sternite VIII; tergite IX setae S2 short and stout; pseudovirga of aedeagus slender. Fore wing Related species The identity of H. leucanthemi is a problem that merits further Female tergites VIII-XMale aedeagus study. This species is particularly associated with large daisy flowers, such as those of Chrysanthemum leucanthemum. However, there is a form in red clover flowers, Trifolium pratense, that is commonly known as H. niger and is considered to be a parthenogenetic strain of H. leucanthemi. Within the genus this thrips is remarkable because of the unusually short setae on the head and pronotum (Mound & Minaei, 2007).
    [Show full text]
  • ABSTRACT BAYLESS, KEITH MOHR. Phylogenomic Studies of Evolutionary Radiations of Diptera
    ABSTRACT BAYLESS, KEITH MOHR. Phylogenomic Studies of Evolutionary Radiations of Diptera. (Under the direction of Dr. Brian M. Wiegmann.) Efforts to understand the evolutionary history of flies have been obstructed by the lack of resolution in major radiations. Diptera is a highly diverse branch on the tree of life, but this diversity accrued at an uneven pace. Some of radiations that contributed disproportionately to species diversity occurred contemporaneously, and understanding the relationships of these taxa can illuminate broad scale patterns. Relationships between some subordinate groups of taxa are notoriously difficult to untangle, and genomic data will address these problems at a new scale. This project will focus on two major radiations in Diptera: Tabanus horse flies and relatives, and acalyptrate Schizophora. Tabanus includes over one thousand species. Synthesis focused research on the group is stymied by its species richness, worldwide distribution, inconsistent diagnosis, and scale of undescribed diversity. Furthermore, the genus may be non-monophyletic with respect to more than 10 other lineages of horse flies. A groundwork phylogenetic study of worldwide Tabanus is needed to understand the evolution of this lineage and to make comprehensive taxonomic projects manageable. Data to address this question was collected from two different sources. A dataset including five genes was sequenced from ninety-four species in the Tabanus group, including nearly all genera of Tabanini and at least one species from every biogeographic region. Then a new data source from a next generation sequencing approach, Anchored Hybrid Enrichment exome capture, was used to accumulate a dataset including hundreds of genes for a subset of the taxa.
    [Show full text]
  • The Drosophilidae (Diptera) of Latvia 68
    The Drosophilidae (Diptera) of Latvia 68 The Drosophilidae (Diptera) of Latvia 1 1 2 1 STEFAN ANDERSSON ESCHER , JOHAN EKENSTEDT , AINA KARPA AND ANSSI SAURA 1 - Department of Genetics, Umeå University, SE-901 87, Umeå, Sweden; e-mail: [email protected] 2 - Institute of Biology, 3 Miera Str., LV-2169, Salaspils, Latvia; e-mail: [email protected] ESCHER S.A., EKENSTEDT J., KARPA A., SAURA A. 2002. THE DROSOPHILIDAE (DIPTERA) OF LATVIA. – Latv. Entomol., 39: 68-76. Abstract: The Baltic countries represent a veritable terra incognita on the Drosophila map of Europe. To remedy the situation we made two collecting trips through the three Baltic countries in the summer of 2000. The first trip was made in early summer to get spring species such as those belonging to genus Chymomyza and the second in late August to get the mushroom feeding species. In general the drosophilid fauna of the Baltic resembles the well known fauna of the Nordic countries. The single most interesting result is that Chymomyza amoena was found in Estonia and Lithuania. This American species is a recent invader of Central Europe. Other interesting finding was the relative rarity of D. subobscura and the complete absence of D. virilis group species. The latter have become uncommon in Sweden and Finland in recent years as well. Key words: Drosophilidae, Chymomyza, Drosophila, Gitona, Leucophenga, Scaptomyza, Latvia, new records. Introduction D. melanogaster is taxonomically far away from the nominate species of the genus Drosophila melanogaster is now by far D. funebris; in fact so far that several the best known insect.
    [Show full text]