Uva-DARE (Digital Academic Repository)

Total Page:16

File Type:pdf, Size:1020Kb

Uva-DARE (Digital Academic Repository) UvA-DARE (Digital Academic Repository) Molecular, biochemical end clinical aspects of peroxisomes biogenesis disorders Gootjes, J. Publication date 2004 Link to publication Citation for published version (APA): Gootjes, J. (2004). Molecular, biochemical end clinical aspects of peroxisomes biogenesis disorders. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:30 Sep 2021 Chapterr 8 Mutationall spectrum of peroxisome biogenesis disorders Jeannettee Gootjes, Josephine Vos, Geert T. Prins, Frank Schmohl, Janet Haasjes, Ronald J.A. Wanders,, Hans R. Waterham, parts of this chapter have been submitted for publication Chapterr 8 Mutationall spectrum of peroxisome biogenesis disorders Jeannettee Gootjes1, Josephine Vos1, Geert T. Prins1, Frank Schmohl1, Janet Haasjes1, Ronald J.A.. Wanders1-2, Hans R. Waterham2 Lab.Lab. Genetic Metabolic Diseases, Departments of Clinical Chemistry and "-Pediatrics (Emma Children'sChildren's Hospital), Academic Medical Centre - University of Amsterdam, Amsterdam, The Netherlands Netherlands Abstract t Peroxisomess are organelles that play an indispensable role in a large variety of metabolic processes,, including fatty acid a- and (3-oxidation and plasmalogen biosynthesis. The importancee of peroxisomes is underlined by the existence of several disorders caused by a dysfunctionn of peroxisomes. These disorders can be divided into single enzyme defects andd peroxisome biogenesis disorders (PBDs). The PBDs form a clinically and genetically heterogeneouss group of disorders due to defects in at least 13 distinct genes. The prototypee of this group of disorders is Zellweger syndrome with neonatal adrenoleukodystrophyy and infantile Refsum disease as milder variants. Common to PBDs aree liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness.. The PBDs are caused by mutations in the PEX genes, encoding proteins involved inn peroxisomal membrane biogenesis and peroxisomal matrix protein import. We here reportt the various mutations we identified so far in the different PEX genes. In addition, wee have listed all mutations reported in literature to date, to present a complete overview off the mutational spectrum of PBDs. Frequently occurring mutations are discussed as well ass the effects of the mutations on the encoded proteins and cellular and clinical phenotypes. Introduction n Peroxisomess are essential single-membrane bounded organelles found in virtually all eukaryoticc cells. They play an indispensable role in a large variety of metabolic pathways, includingg in man, among others, 1) fatty acid (3-oxidation of very-long chain fatty acids (VLCFAs),, notably C26:0, and of branched chain fatty acids, such as pristanic acid and the bilee acid intermediates di- and trihydroxycholestanoic acid, 2) etherphospholipid biosynthesis,, 3) phytanic acid a-oxidation and 4) L-pipecolic acid oxidation.1 The importancee of peroxisomes for human health and survival is underlined by the severe consequencess of defects in peroxisomal functions. These defects range from single enzyme deficienciess (e.g. X-linked adrenoleukodystrophy, Refsum disease) to defects resulting in a completee absence of functional peroxisomes, collectively known as the peroxisome biogenesiss disorders (PBDs). Thee PBDs include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD) andd infantile Refsum disease (IRD). These disorders represent a spectrum of disease severityy with ZS being the most, and IRD the least severe disorder. Common to all three PBDss are liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness.11 Patients with ZS are severely hypotonic from birth and die before one year of 92 2 Mutationall spectrum of PBDs age.. Patients with NALD experience neonatal onset of hypotonia and seizures and suffer fromm progressive white matter disease, and usually die in late infancy.2 Patients with IRD mayy survive beyond infancy and some may even reach adulthood.3 Clinical differentiation betweenn these disease states is not very well-defined and patients can have overlapping symptoms.44 Due to the absence of functional peroxisomes in patients with a PBD, most peroxisomall metabolic functions are disturbed, resulting in accumulations of VLCFAs, pristanicc acid, bile acid intermediates, phytanic and L-pipecolic acid, and a deficiency of plasmalogens. Alll PBDs are autosomal recessively inherited and can be caused by mutations in at leastt 12 different PEX genes. These PEX genes encode proteins called peroxins, which are requiredd for the biogenesis of peroxisomes and either function in the assembly of the peroxisomall membrane or in the import of proteins (enzymes) into the peroxisome.5 The peroxinss PEX3, PEX 16 and PEX19 are involved in the assembly of the peroxisomal membranee as is also clear from the complete absence of peroxisomal remnants in cells of patientss with two severe mutations in any of the encoding genes. Cells of patients with twoo severe mutations in any of the other PEX genes still have peroxisomal remnants ("ghosts")) that contain some peroxisomal membrane proteins, but lack most of their matrixx proteins. These cell lines have a defect in the import of peroxisomal matrix enzymes,, implying that the encoding peroxins are involved in peroxisomal protein import. Afterr synthesis on free polyribosomes, peroxisomal matrix proteins carrying either a carboxy-terminall peroxisomal targeting sequence 1 (PTS1) or a cleavable amino-terminal PTS22 signal are recognized by the PTSl-receptor PEX5 and the PTS2-receptor PEX7 (see figuree 2, chapter 1). The resulting receptor-matrix protein complexes subsequently dock at thee peroxisomal membrane, a process in yeast facilitated by the peroxins PEX13, PEX14 andd PEX17. In humans, however, no PEX17 ortholog has been identified yet. The matrix proteinss are then translocated over the peroxisomal membrane, a process involving PEX2, PEX10,, and PEX12. The PTS-receptors likely are co-imported with their cargo and leave thee peroxisome after delivering their cargo.6 PEX1 and PEX6 have been proposed to be involvedd in the recycling of the receptors. The recently discovered PEX26 was shown to anchorr PEX6 and PEX1 to the peroxisomal membrane.7 Different isoforms of PEX11 have beenn postulated to play a regulatory role in peroxisome proliferation, after the finding that yeastt cells lacking PEX11 contain few giant peroxisomes and appear to be unable to segregatee the giant peroxisomes to daughter cells.8 Because of the different cellular phenotypee in yeast, as well as in the mouse PEX11 knock-out model9 a PEX11 deficiency is nott considered to be a PBD. Thee laboratory diagnosis of patients suspected to be affected with a PBD starts with the analysiss of various parameters in plasma (concentrations of VLCFAs, pristanic acid, phytanicc acid, bile acid intermediates, poly-unsaturated fatty acids and L-pipecolic acid) andd erythrocytes (plasmalogens).10 When the results point to a PBD, this is followed by the measurementt of various parameters in cultured skin fibroblasts (VLCFA concentration, C26:00 and pristanic acid (3-oxidation, phytanic acid a-oxidation, dihydroxyacetonephosphate-acyltransferasee activity and immunoblot analysis). The diagnosiss is completed by immunofluorescence microscopy with antibodies against the peroxisomall enzyme catalase, to confirm the absence of peroxisomes, and with antibodies againstt the peroxisomal membrane protein ALDP to reveal the presence or absence of peroxisomall ghosts in the fibroblasts. 93 3 Chapterr 8 Whenn the diagnosis of a PBD is established, cell fusion complementation analysis is performed,, to identify the defective PEX gene." In this technique, fibroblasts from a new patientt are fused with cells from a patient belonging to a known complementation group, therebyy combining the genetic information of both patients. When the cells do not complementt each other and there is no restoration of peroxisome formation, the defective geness in both patients are the same. If peroxisomes are formed, the defective gene in both patientss is different. Peroxisome formation is assayed by catalase immunofluorescence microscopy. Tablee 1 Results of complementation studies in 246 patients:: the Amsterdam experience Complementationn Group KKI* * Gifu" " Gene e Patients s %c c 1 1 E E PEX1 1 174 4 59 9 2 2 PEX5 5 5 5 2 2 3 3 PEX12 2 16 6 6 6 4 4 C C PEX6 6 31 1 12 2 7 7 B B PEXX 10 3 3 1 1 8 8 A A PEX26 6 4 4 2 2 9 9 D D PEX16 6 2 2 1 1 10 0 F F PEX2 2 7 7 3 3 11 1 R R PEX7 7 n.i. n.i. 12 2 G G PEX3 3 0 0 0 0 13 3 H H PEX13 3 2 2 1 1 14 4 J J PEX19 9 2 2 1 1 'Kennedyy Krieger institute, Baltimore, USA, bGifu univerisry,, Gifu, Japan,
Recommended publications
  • Ophthalmic Manifestations of Heimler Syndrome Due to PEX6 Mutations
    Thomas Jefferson University Jefferson Digital Commons Wills Eye Hospital Papers Wills Eye Hospital 5-4-2018 Ophthalmic manifestations of Heimler syndrome due to PEX6 mutations. Nutsuchar Wangtiraumnuay Wills Eye Hospital; Queen Sirikit National Institute of Child Health Waleed Abed Alnabi Wills Eye Hospital Mai Tsukikawa Thomas Jefferson University Avrey Thau Wills Eye Hosptial; Thomas Jefferson University Jenina Capasso Wills Eye Hospital Follow this and additional works at: https://jdc.jefferson.edu/willsfp Part of the Ophthalmology Commons LetSee next us page know for additional how authors access to this document benefits ouy Recommended Citation Wangtiraumnuay, Nutsuchar; Alnabi, Waleed Abed; Tsukikawa, Mai; Thau, Avrey; Capasso, Jenina; Sharony, Reuven; Inglehearn, Chris F.; and Levin, Alex V., "Ophthalmic manifestations of Heimler syndrome due to PEX6 mutations." (2018). Wills Eye Hospital Papers. Paper 83. https://jdc.jefferson.edu/willsfp/83 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Wills Eye Hospital Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Authors Nutsuchar Wangtiraumnuay, Waleed Abed Alnabi, Mai Tsukikawa, Avrey Thau, Jenina Capasso, Reuven Sharony, Chris F.
    [Show full text]
  • The Peroxisomal PTS1-Import Defect of PEX1- Deficient Cells Is Independent of Pexophagy in Saccharomyces Cerevisiae
    International Journal of Molecular Sciences Communication The Peroxisomal PTS1-Import Defect of PEX1- Deficient Cells Is Independent of Pexophagy in Saccharomyces cerevisiae Thomas Mastalski, Rebecca Brinkmeier and Harald W. Platta * Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; [email protected] (T.M.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +49-234-3224-968 Received: 10 January 2020; Accepted: 27 January 2020; Published: 29 January 2020 Abstract: The important physiologic role of peroxisomes is shown by the occurrence of peroxisomal biogenesis disorders (PBDs) in humans. This spectrum of autosomal recessive metabolic disorders is characterized by defective peroxisome assembly and impaired peroxisomal functions. PBDs are caused by mutations in the peroxisomal biogenesis factors, which are required for the correct compartmentalization of peroxisomal matrix enzymes. Recent work from patient cells that contain the Pex1(G843D) point mutant suggested that the inhibition of the lysosome, and therefore the block of pexophagy, was beneficial for peroxisomal function. The resulting working model proposed that Pex1 may not be essential for matrix protein import at all, but rather for the prevention of pexophagy. Thus, the observed matrix protein import defect would not be caused by a lack of Pex1 activity, but rather by enhanced removal of peroxisomal membranes via pexophagy. In the present study, we can show that the specific block of PEX1 deletion-induced pexophagy does not restore peroxisomal matrix protein import or the peroxisomal function in beta-oxidation in yeast. Therefore, we conclude that Pex1 is directly and essentially involved in peroxisomal matrix protein import, and that the PEX1 deletion-induced pexophagy is not responsible for the defect in peroxisomal function.
    [Show full text]
  • Spectrum of PEX1 and PEX6 Variants in Heimler Syndrome
    European Journal of Human Genetics (2016) 24, 1565–1571 Official Journal of The European Society of Human Genetics www.nature.com/ejhg ARTICLE Spectrum of PEX1 and PEX6 variants in Heimler syndrome Claire EL Smith1, James A Poulter1, Alex V Levin2,3,4, Jenina E Capasso4, Susan Price5, Tamar Ben-Yosef6, Reuven Sharony7, William G Newman8,9, Roger C Shore10, Steven J Brookes10, Alan J Mighell1,11,12 and Chris F Inglehearn*,1,12 Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6,both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G4A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families.
    [Show full text]
  • Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity
    International Journal of Molecular Sciences Review Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity Yannick Das, Daniëlle Swinkels and Myriam Baes * Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; [email protected] (Y.D.); [email protected] (D.S.) * Correspondence: [email protected] Abstract: Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or β-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors. Citation: Das, Y.; Swinkels, D.; Baes, Keywords: peroxisome; Zellweger; metabolism; fatty acid; retina M. Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity.
    [Show full text]
  • Unique Double-Ring Structure of the Peroxisomal Pex1/Pex6 Atpase
    Unique double-ring structure of the peroxisomal PNAS PLUS Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy Neil B. Bloka,b,1, Dongyan Tana,b,1, Ray Yu-Ruei Wangc,d,1, Pawel A. Penczeke, David Bakerc,f, Frank DiMaioc, Tom A. Rapoporta,b,2, and Thomas Walza,b,2 aHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115; bDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115; cDepartment of Biochemistry, University of Washington, Seattle, WA 98195; dGraduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195; eDepartment of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77054; and fHoward Hughes Medical Institute, University of Washington, Seattle, WA 98195 Edited by Wah Chiu, Baylor College of Medicine, Houston, TX, and approved June 15, 2015 (received for review January 6, 2015) Members of the AAA family of ATPases assemble into hexameric short succession (3, 8–10). For double-ring ATPases, the co- double rings and perform vital functions, yet their molecular ordination between ATPase subunits is even more complex, as mechanisms remain poorly understood. Here, we report structures there may be communication both within a given ring and be- of the Pex1/Pex6 complex; mutations in these proteins frequently tween the two rings. It seems that generally most of the ATP cause peroxisomal diseases. The structures were determined in the hydrolysis occurs in only one ring. For example, the N-terminal presence of different nucleotides by cryo-electron microscopy. Models ATPase domains of NSF, which form the D1 ring, hydrolyze were generated using a computational approach that combines ATP much more rapidly than the subunits in the D2 ring (11).
    [Show full text]
  • A Novel PEX1 Mutation in a Moroccan Family with Zellweger Spectrum Disorders
    OPEN Citation: Human Genome Variation (2017) 4, 17009; doi:10.1038/hgv.2017.9 Official journal of the Japan Society of Human Genetics www.nature.com/hgv DATA REPORT A novel PEX1 mutation in a Moroccan family with Zellweger spectrum disorders Amale Bousfiha1, Amina Bakhchane1, Hicham Charoute1, Zied Riahi2,3, Khalid Snoussi1, Hassan Rouba1, Crystel Bonnet2,3, Christine Petit2,3,4,5 and Abdelhamid Barakat1 Mutations in the PEX1 gene are usually associated with recessive inherited diseases including Zellweger spectrum disorders. In this work, we identified a new pathogenic missense homozygous PEX1 mutation (p.Leu1026Pro, c.3077T4C) in two Moroccan syndromic deaf siblings from consanguineous parents. This variation is located in the P-loop containing nucleoside triphosphate hydrolase of protein domain and probably causes an alteration in the hydrolysis of ATP. Human Genome Variation (2017) 4, 17009; doi:10.1038/hgv.2017.9; published online 13 April 2017 Peroxisomal biogenesis factor 1 (PEX1) gene, located on 7q21.2,1 is deficiency, craniofacial dysmorphism, hearing impairment, the most involved gene associated with Zellweger spectrum vision abnormalities, liver and renal dysfunction, and sometimes disorders (ZSDs) accounting for nearly 70% of Zellweger syndrome epileptic seizures.11,12 (ZS) patients, showing the importance of the ATPase (Pex1p) In this work, a novel homozygous PEX1 mutation, the encoded by this gene in peroxisome function.2 Moreover, this p.Leu1026Pro (c.3077T4C), was identified in two deaf siblings hydrophilic protein plays an
    [Show full text]
  • Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
    Zellweger Spectrum Disorder Panel Test Code D4611 Test Summary This panel analyzes 15 genes that have been associated with Zellweger Spectrum Disorders. Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing This panel may be appropriate for individuals with signs and symptoms of a peroxisomal biogenesis disfuction and/or Zellweger syndrome spectrum disorder and/or a family history of these conditions. Test Description This panel analyzes 15 genes that have been associated with Zellweger Spectrum Disorders. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Zellweger syndrome spectrum disorders include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), an intermediate form and infantile Refsum disease (IRD). Symptoms may include hypotonia, feeding problems, hearing and vision loss, seizures, distinctive facial characteristics and skeletal abnormalities. Zellweger spectrum disorder is estimated to occur in 1/50,000 individuals. Genes ACOX1, AMACR, HSD17B4, PEX1, PEX10, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6 Test Methods and Limitations Sequencing is performed on genomic DNA using an Agilent targeted sequence capture method to enrich for the genes on this panel.
    [Show full text]
  • Genetic and Clinical Aspects of Zellweger Spectrum Patients with PEX1 Mutations H Rosewich, a Ohlenbusch, J Ga¨Rtner
    1of6 J Med Genet: first published as 10.1136/jmg.2005.033324 on 1 September 2005. Downloaded from ONLINE MUTATION REPORT Genetic and clinical aspects of Zellweger spectrum patients with PEX1 mutations H Rosewich, A Ohlenbusch, J Ga¨rtner ............................................................................................................................... J Med Genet 2005;42:e58 (http://www.jmedgenet.com/cgi/content/full/42/9/e58). doi: 10.1136/jmg.2005.033324 and can survive up to several decades. RCDP is clinically Objective: To analyse the PEX1 gene, the most common and genetically distinctive from the Zellweger syndrome cause for peroxisome biogenesis disorders (PBD), in a spectrum and includes classical RCDP as the prototype and consecutive series of patients with Zellweger spectrum. also milder variants. Patients with classical RCDP have Methods: Mutations were detected by different methods unique clinical symptoms including proximal shortening of including SSCP analyses as a screening technique on the the limbs (rhizomelia), cataracts, and profound psychomotor basis of genomic or cDNA, followed by direct sequencing of retardation. PCR fragments with an abnormal electrophoresis pattern. PBDs can be caused by defects in any of several processes Results: 33 patients were studied. Two common mutations, in organelle formation, including the synthesis of peroxisome c.2528GRA, G843D and c.2098_2098insT, I700YfsX42, membranes, the recognition of newly synthesised peroxiso- accounted for over 80% of all abnormal PEX1 alleles, mal matrix proteins, or any of the downstream steps in emphasising their diagnostic relevance. Most PEX1 mutations peroxisomal protein import. Progress over the last two were distributed over the two AAA cassettes with the two decades has led to the identification of 13 different human functional protein domains, D1 and D2, and the highly PEX genes involved in peroxisome biogenesis, explaining the conserved Walker motifs.
    [Show full text]
  • Disorders of Peroxisome Biogenesis Due to Mutations in PEX1: Phenotypes and PEX1 Protein Levels Claudia Walter,1 Jeannette Gootjes,4 Petra A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Am. J. Hum. Genet. 69:35–48, 2001 Disorders of Peroxisome Biogenesis Due to Mutations in PEX1: Phenotypes and PEX1 Protein Levels Claudia Walter,1 Jeannette Gootjes,4 Petra A. Mooijer,4 Herma Portsteffen,1 Christina Klein,2 Hans R. Waterham,4 Peter G. Barth,5,6 Jo¨rg T. Epplen,3 Wolf-H. Kunau,1,2 Ronald J. A. Wanders,4,6 and Gabriele Dodt2 Institut fu¨r Physiologische Chemie, Abteilungen fu¨r 1Zellbiochemie und 2Systembiochemie, and 3Institut fu¨r Molekulare Humangenetik, Ruhr- Universita¨t Bochum, Bochum, Germany; Departments of 4Clinical Chemistry, 5Neurology, and 6Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) are clinically overlapping syndromes, collectively called “peroxisome biogenesis disorders” (PBDs), with clinical features being most severe in ZS and least pronounced in IRD. Inheritance of these disorders is autosomal recessive. The peroxisome biogenesis disorders are genetically heterogeneous, having at least 12 different complementation groups (CGs). The gene affected in CG1 is PEX1. Approximately 65% of the patients with PBD harbor mutations in PEX1.Inthe present study, we used SSCP analysis to evaluate a series of patients belonging to CG1 for mutations in PEX1 and studied phenotype-genotype correlations. A complete lack of PEX1 protein was found to be associated with severe ZS; however, residual amounts of PEX1 protein were found in patients with the milder phenotypes, NALD and IRD. The majority of these latter patients carried at least one copy of the common G843D allele.
    [Show full text]
  • Developing Drug and Gene Therapies for Peroxisome Biogenesis Disorders of the Zellweger Spectrum
    Developing drug and gene therapies for peroxisome biogenesis disorders of the Zellweger Spectrum Catherine Argyriou Department of Human Genetics McGill University, Montréal, Canada June 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Catherine Argyriou 2018 ABSTRACT Zellweger spectrum disorder (ZSD) usually results from biallelic mutations in PEX genes required for peroxisome biogenesis. PEX1-G843D is a common hypomorphic allele associated with milder disease. We previously showed that fibroblasts from patients with a PEX1-G843D allele recovered peroxisome functions when cultured with the nonspecific chaperone betaine and flavonoid acacetin diacetate. To identify more effective flavonoids for preclinical trials, we compared 54 flavonoids using our cell-based peroxisomal assays. Diosmetin showed the most promising combination of potency and efficacy; co-treatments of diosmetin and betaine showed the most robust additive effects. This was confirmed by 5 independent assays in primary PEX1-G843D patient cells. Neither agent was active in PEX1 null cells. I propose that diosmetin acts as a pharmacological chaperone to improve stability, conformation, and function of PEX1/PEX6 exportomer complexes. All individuals with a PEX1-G843D allele develop a retinopathy that progresses to blindness. To investigate pathophysiology and identify endpoints for experimental trials, I used the knock-in mouse model for the equivalent human mutation, PEX1-G844D. I characterized the progression of retinopathy and found reduced cone cell function and number early in life with more gradual deterioration of rod cell function. Electron microscopy at later stage retinopathy showed disorganization of photoreceptor inner segments and enlarged mitochondria. As retino-cortical function was relatively well-preserved, I propose that the vision defect in the Pex1-G844D mouse is primarily at the retinal level.
    [Show full text]
  • Geneseq PLUS
    GeneSeq® PLUS Specimen ID: 00000000050 Container ID: H0655 Control ID: Acct #: LCA-BN Phone: SAMPLE REPORT, F-630068 Patient Details Specimen Details Physician Details DOB: 05/05/1995 Date Collected: 08/05/2019 12:00 (Local) Ordering: Age (yyy/mm/dd): 024/07/04 Date Received: 08/06/2019 Referring: Gender: Female Date Entered: 08/06/2019 ID: Patient ID: 00000000050 Date Reported: 08/16/2019 13:21 (Local) NPI: Ethnicity: Unknown Specimen Type: Blood Lab ID: MNEGA Indication: MAN2B1 carrier testing Genetic Counselor: SUMMARY: POSITIVE POSITIVE RESULTS DISORDER (GENE) RESULTS INTERPRETATION Alpha-mannosidosis POSITIVE Predicted to be a carrier. Genetic counseling is (MAN2B1) Heterozygous for c.2248C>T recommended. NMID: NM_000528 (p.Arg750Trp), pathogenic Chr19:12760746 (GRCh37) Risk: AT INCREASED RISK FOR AFFECTED PREGNANCY. See Additional Clinical Information. Genetic counseling is recommended to discuss the potential clinical and/or reproductive implications of positive results, as well as recommendations for testing family members and, when applicable, this individual's partner. Genetic counseling services are available. To access Integrated Genetics Genetic Counselors please visit www.integratedgenetics.com/genetic-counseling or call (855) GC-CALLS (855-422-2557). ADDITIONAL CLINICAL INFORMATION Alpha-mannosidosis: Alpha-mannosidosis is an autosomal recessive lysosomal storage disorder with variable severity and age at onset. Signs and symptoms may include progressive neurological deterioration, intellectual disability, skeletal and facial abnormalities, immunodeficiency, and hearing impairment. Bone marrow transplant may be an option for some individuals. Treatment is otherwise supportive. (Malm, PMID:18651971). If this individual's reproductive partner is also a carrier of a pathogenic variant in the same gene the risk for an affected fetus is 25%.
    [Show full text]
  • Generalised and Conditional Inactivation of Pex Genes in Mice ⁎ Myriam Baes A, , Paul P
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1763 (2006) 1785–1793 www.elsevier.com/locate/bbamcr Review Generalised and conditional inactivation of Pex genes in mice ⁎ Myriam Baes a, , Paul P. Van Veldhoven b a Laboratory for Cell Metabolism, Campus Gasthuisberg Onderwijs en Navorsing II, bus 823 Herestraat 49 B-3000, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium b Department of Molecular Cell Biology, Division Pharmacology, Katholieke Universiteit Leuven, Leuven, Belgium Received 4 May 2006; received in revised form 17 August 2006; accepted 18 August 2006 Available online 25 August 2006 Abstract During the past 10 years, several Pex genes have been knocked out in the mouse with the purpose to generate models to study the pathogenesis of peroxisome biogenesis disorders and/or to investigate the physiological importance of the Pex proteins. More recently, mice with selective inactivation of a Pex gene in particular cell types were created. The metabolic abnormalities in peroxisome deficient mice paralleled to a large extent those of Zellweger patients. Several but not all of the clinical and histological features reported in patients also occurred in peroxisome deficient mice as for example hypotonia, cortical and cerebellar malformations, endochondral ossification defects, hepatomegaly, liver fibrosis and ultrastructural abnormalities of mitochondria in hepatocytes. Although the molecular origins of the observed pathologies have not yet been resolved, several new insights on the importance of peroxisomes in different tissues have emerged. © 2006 Elsevier B.V. All rights reserved. Keywords: Pex gene; Peroxisome; Knockout; Mouse model; Zellweger syndrome; Conditional gene inactivation 1.
    [Show full text]