Unique Double-Ring Structure of the Peroxisomal Pex1/Pex6 Atpase

Total Page:16

File Type:pdf, Size:1020Kb

Unique Double-Ring Structure of the Peroxisomal Pex1/Pex6 Atpase Unique double-ring structure of the peroxisomal PNAS PLUS Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy Neil B. Bloka,b,1, Dongyan Tana,b,1, Ray Yu-Ruei Wangc,d,1, Pawel A. Penczeke, David Bakerc,f, Frank DiMaioc, Tom A. Rapoporta,b,2, and Thomas Walza,b,2 aHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115; bDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115; cDepartment of Biochemistry, University of Washington, Seattle, WA 98195; dGraduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195; eDepartment of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77054; and fHoward Hughes Medical Institute, University of Washington, Seattle, WA 98195 Edited by Wah Chiu, Baylor College of Medicine, Houston, TX, and approved June 15, 2015 (received for review January 6, 2015) Members of the AAA family of ATPases assemble into hexameric short succession (3, 8–10). For double-ring ATPases, the co- double rings and perform vital functions, yet their molecular ordination between ATPase subunits is even more complex, as mechanisms remain poorly understood. Here, we report structures there may be communication both within a given ring and be- of the Pex1/Pex6 complex; mutations in these proteins frequently tween the two rings. It seems that generally most of the ATP cause peroxisomal diseases. The structures were determined in the hydrolysis occurs in only one ring. For example, the N-terminal presence of different nucleotides by cryo-electron microscopy. Models ATPase domains of NSF, which form the D1 ring, hydrolyze were generated using a computational approach that combines ATP much more rapidly than the subunits in the D2 ring (11). Monte Carlo placement of structurally homologous domains into den- The reverse is true for p97, in which the D2 ring performs the sity maps with energy minimization and refinement protocols. Pex1 bulk of ATP hydrolysis (12, 13). Although single-ring AAA and Pex6 alternate in an unprecedented hexameric double ring. Each ATPases seem to move polypeptides through their central pore, protein has two N-terminal domains, N1 and N2, structurally related it is not clear whether this model applies to NSF or p97 (14). to the single N domains in p97 and N-ethylmaleimide sensitive factor More generally, it is unknown why some ATPases even have a BIOCHEMISTRY (NSF); N1 of Pex1 is mobile, but the others are packed against the second ring. In fact, some members of the double-ring ATPase double ring. The N-terminal ATPase domains are inactive, forming a family perform functions similar to their single ring counterparts symmetric D1 ring, whereas the C-terminal domains are active, likely (e.g., ClpAP vs. ClpXP, although ClpAP appears to grip sub- in different nucleotide states, and form an asymmetric D2 ring. These strates more tightly than ClpXP) (15). results suggest how subunit activity is coordinated and indicate strik- Double-ring ATPases pose particular challenges. For single- ing similarities between Pex1/Pex6 and p97, supporting the hypothe- ring ATPases, it was possible to covalently link three or even all sis that the Pex1/Pex6 complex has a role in peroxisomal protein six of the ATPase subunits (16). This linkage enabled muta- import analogous to p97 in ER-associated protein degradation. genesis of individual subunits, which in turn allowed testing the effect of one subunit on the activity of adjacent subunits in the Pex1 | Pex6 | AAA ATPase | cryo-electron microscopy | peroxisome ring. A similar analysis is possible in single-ring hexameric he AAA (ATPases associated with diverse cellular activities) Significance Tfamily of ATPases contains a large number of proteins that perform important functions in cells (1). Many members of this Pex1 and Pex6 are members of the AAA family of ATPases, which family form hexamers. These hexamers consist either of a single contain two ATPase domains in a single polypeptide chain and ring of ATPase domains or of stacked rings formed by tandem form hexameric double rings. These two Pex proteins are involved ATPase domains in a single polypeptide chain (type I and II in the biogenesis of peroxisomes, and mutations in them fre- ATPases, respectively). Both classes of AAA ATPases often use quently cause diseases. Here, we determined structures of the the energy of ATP hydrolysis to move macromolecules. Ex- Pex1/Pex6 complex by cryo-electron microscopy. Novel computa- amples of single-ring ATPases include the F1 ATPase (2), which tional modeling methods allowed placement of Pex1/Pex6 do- rotates a polypeptide inside its central pore, ClpX (3), which mains into subnanometer density maps. Our results show that moves polypeptides into the proteolytic chamber of ClpP, and the peroxisomal Pex1/Pex6 ATPases form a unique double-ring the helicase gp4 of T7 phage (4), which pulls a DNA strand structure in which the two proteins alternate around the ring. Our through its center. Double-ring ATPases generally act on poly- data shed light on the mechanism and function of this ATPase and peptides. Prominent members of this family include N-ethyl- suggest a role in peroxisomal protein import similar to that of p97 maleimide sensitive factor (NSF), p97/VCP (valosin-containing in ER-associated protein degradation. protein), and Hsp104 in eukaryotes and ClpB in bacteria (5–7). NSF dissociates SNARE complexes generated during membrane Author contributions: D.B., F.D., T.A.R., and T.W. designed research; N.B.B., D.T., R.Y.-R.W., fusion, p97/VCP plays a role in many processes, including ER- P.A.P., and T.W. performed research; N.B.B., D.T., and R.Y.-R.W. analyzed data; and N.B.B. associated protein degradation (ERAD), and Hsp104 and ClpB and T.A.R. wrote the paper. disassemble protein aggregates. The authors declare no conflict of interest. The molecular mechanism of many hexameric AAA ATPases This article is a PNAS Direct Submission. is only poorly understood, particularly for those that move Data deposition: The EM 3D maps of Pex1/Pex6 without imposed symmetry have been polypeptide chains. In addition, the mechanism appears to differ deposited in the EMDatabank, www.emdatabank.org (accession codes EMD-6359 and EMD-6360, for maps of complexes with ATPγS or ADP, respectively). among the known examples. For the F1 ATPase, it has been 1N.B.B., D.T., and R.Y.-R.W. contributed equally to this work. established that ATPase domains hydrolyze ATP continuously 2To whom correspondence may be addressed. Email: [email protected] or in a strictly consecutive manner around the ring (2). In contrast, [email protected]. in another single-ring ATPase, ClpX, several ATPase domains This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. hydrolyze ATP in sporadic bursts, either simultaneously or in 1073/pnas.1500257112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1500257112 PNAS Early Edition | 1of9 Downloaded by guest on September 29, 2021 ATPases that consist of different subunits, such as the six Rpt over X-ray crystallography, as flexible particles can be analyzed subunits that form an ATPase ring in the 19S regulatory sub- and asymmetry is not limiting. Until recently, EM structures, unit of the proteasome (17) or the mitochondrial AAA pro- including those of p97, NSF, and ClpB, were of relatively low teases composed of two alternating subunits (18). For double- resolution (>15 Å) (20, 22–25). Recent developments in cryo- ring ATPases, covalent linkage of the subunits is impractical. electron microscopy (cryo-EM) single-particle analysis, including However, double-ring ATPases consisting of different subunits the use of direct electron detectors and novel image analysis al- are conceivable and would offer the opportunity to mutate gorithms, have paved the way to obtain higher resolution. Indeed, specific subunits. while this manuscript was under review, subnanometer-resolution A deeper understanding of the mechanism of polypeptide- structures of NSF were reported (26). moving hexameric ATPases requires structural information. We are interested in understanding the structure and function Unfortunately, only a few full-length structures are available at a of the Pex1/Pex6 complex, as this complex is important for hu- resolution that allows fitting of the polypeptide chain (10, 19– man health and is a potential example of a double-ring ATPase 21). Crystallography has proven difficult, particularly because consisting of two different polypeptide chains. Both proteins are crystallization is favored by symmetric structures in which all predicted to contain two ATPase domains (D1 and D2; Fig. 1A) subunits are in the same nucleotide state. In addition, some and are known to associate with one another (27, 28). Pex1 and domains in ATPases seem to be rather flexible. In such cases, Pex6 are peroxisome-associated proteins that are conserved in all electron microscopy (EM) analysis offers significant advantages eukaryotic cells. They were identified in genetic screens for A B C MW LysateNi-NTAStreptavidin El.Gel Filtration El. 170 kDa 130 kDa 100 kDa 55 kDa 35 kDa 15 kDa 50 nm D Top ediS mottoB D2 Ring 1 E 2 3 3 3 1 2 1 Top Oblique 2 Fig. 1. Structure determination of the Pex1/Pex6 complex. (A) Domain structures of Pex1, Pex6, p97, and NSF. Shown are the N-terminal domains (N1, N2, N) and the ATPase domains (D1 and D2). (B) The Pex1/Pex6 complex was expressed in yeast cells and purified in different steps. Samples were analyzed by SDS/PAGE and Coomassie blue staining. Shown are samples from the crude lysate, after elution from Ni-NTA beads, after elution from streptavidin beads, and after gel filtration. MW, molecular weight markers. (C) Negative-stain EM image of the purified Pex1/Pex6 complex in the presence of ATPγS.
Recommended publications
  • Ophthalmic Manifestations of Heimler Syndrome Due to PEX6 Mutations
    Thomas Jefferson University Jefferson Digital Commons Wills Eye Hospital Papers Wills Eye Hospital 5-4-2018 Ophthalmic manifestations of Heimler syndrome due to PEX6 mutations. Nutsuchar Wangtiraumnuay Wills Eye Hospital; Queen Sirikit National Institute of Child Health Waleed Abed Alnabi Wills Eye Hospital Mai Tsukikawa Thomas Jefferson University Avrey Thau Wills Eye Hosptial; Thomas Jefferson University Jenina Capasso Wills Eye Hospital Follow this and additional works at: https://jdc.jefferson.edu/willsfp Part of the Ophthalmology Commons LetSee next us page know for additional how authors access to this document benefits ouy Recommended Citation Wangtiraumnuay, Nutsuchar; Alnabi, Waleed Abed; Tsukikawa, Mai; Thau, Avrey; Capasso, Jenina; Sharony, Reuven; Inglehearn, Chris F.; and Levin, Alex V., "Ophthalmic manifestations of Heimler syndrome due to PEX6 mutations." (2018). Wills Eye Hospital Papers. Paper 83. https://jdc.jefferson.edu/willsfp/83 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Wills Eye Hospital Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Authors Nutsuchar Wangtiraumnuay, Waleed Abed Alnabi, Mai Tsukikawa, Avrey Thau, Jenina Capasso, Reuven Sharony, Chris F.
    [Show full text]
  • The Peroxisomal PTS1-Import Defect of PEX1- Deficient Cells Is Independent of Pexophagy in Saccharomyces Cerevisiae
    International Journal of Molecular Sciences Communication The Peroxisomal PTS1-Import Defect of PEX1- Deficient Cells Is Independent of Pexophagy in Saccharomyces cerevisiae Thomas Mastalski, Rebecca Brinkmeier and Harald W. Platta * Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; [email protected] (T.M.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +49-234-3224-968 Received: 10 January 2020; Accepted: 27 January 2020; Published: 29 January 2020 Abstract: The important physiologic role of peroxisomes is shown by the occurrence of peroxisomal biogenesis disorders (PBDs) in humans. This spectrum of autosomal recessive metabolic disorders is characterized by defective peroxisome assembly and impaired peroxisomal functions. PBDs are caused by mutations in the peroxisomal biogenesis factors, which are required for the correct compartmentalization of peroxisomal matrix enzymes. Recent work from patient cells that contain the Pex1(G843D) point mutant suggested that the inhibition of the lysosome, and therefore the block of pexophagy, was beneficial for peroxisomal function. The resulting working model proposed that Pex1 may not be essential for matrix protein import at all, but rather for the prevention of pexophagy. Thus, the observed matrix protein import defect would not be caused by a lack of Pex1 activity, but rather by enhanced removal of peroxisomal membranes via pexophagy. In the present study, we can show that the specific block of PEX1 deletion-induced pexophagy does not restore peroxisomal matrix protein import or the peroxisomal function in beta-oxidation in yeast. Therefore, we conclude that Pex1 is directly and essentially involved in peroxisomal matrix protein import, and that the PEX1 deletion-induced pexophagy is not responsible for the defect in peroxisomal function.
    [Show full text]
  • Spectrum of PEX1 and PEX6 Variants in Heimler Syndrome
    European Journal of Human Genetics (2016) 24, 1565–1571 Official Journal of The European Society of Human Genetics www.nature.com/ejhg ARTICLE Spectrum of PEX1 and PEX6 variants in Heimler syndrome Claire EL Smith1, James A Poulter1, Alex V Levin2,3,4, Jenina E Capasso4, Susan Price5, Tamar Ben-Yosef6, Reuven Sharony7, William G Newman8,9, Roger C Shore10, Steven J Brookes10, Alan J Mighell1,11,12 and Chris F Inglehearn*,1,12 Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6,both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G4A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families.
    [Show full text]
  • Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity
    International Journal of Molecular Sciences Review Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity Yannick Das, Daniëlle Swinkels and Myriam Baes * Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; [email protected] (Y.D.); [email protected] (D.S.) * Correspondence: [email protected] Abstract: Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or β-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors. Citation: Das, Y.; Swinkels, D.; Baes, Keywords: peroxisome; Zellweger; metabolism; fatty acid; retina M. Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity.
    [Show full text]
  • A Novel PEX1 Mutation in a Moroccan Family with Zellweger Spectrum Disorders
    OPEN Citation: Human Genome Variation (2017) 4, 17009; doi:10.1038/hgv.2017.9 Official journal of the Japan Society of Human Genetics www.nature.com/hgv DATA REPORT A novel PEX1 mutation in a Moroccan family with Zellweger spectrum disorders Amale Bousfiha1, Amina Bakhchane1, Hicham Charoute1, Zied Riahi2,3, Khalid Snoussi1, Hassan Rouba1, Crystel Bonnet2,3, Christine Petit2,3,4,5 and Abdelhamid Barakat1 Mutations in the PEX1 gene are usually associated with recessive inherited diseases including Zellweger spectrum disorders. In this work, we identified a new pathogenic missense homozygous PEX1 mutation (p.Leu1026Pro, c.3077T4C) in two Moroccan syndromic deaf siblings from consanguineous parents. This variation is located in the P-loop containing nucleoside triphosphate hydrolase of protein domain and probably causes an alteration in the hydrolysis of ATP. Human Genome Variation (2017) 4, 17009; doi:10.1038/hgv.2017.9; published online 13 April 2017 Peroxisomal biogenesis factor 1 (PEX1) gene, located on 7q21.2,1 is deficiency, craniofacial dysmorphism, hearing impairment, the most involved gene associated with Zellweger spectrum vision abnormalities, liver and renal dysfunction, and sometimes disorders (ZSDs) accounting for nearly 70% of Zellweger syndrome epileptic seizures.11,12 (ZS) patients, showing the importance of the ATPase (Pex1p) In this work, a novel homozygous PEX1 mutation, the encoded by this gene in peroxisome function.2 Moreover, this p.Leu1026Pro (c.3077T4C), was identified in two deaf siblings hydrophilic protein plays an
    [Show full text]
  • Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
    Zellweger Spectrum Disorder Panel Test Code D4611 Test Summary This panel analyzes 15 genes that have been associated with Zellweger Spectrum Disorders. Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing This panel may be appropriate for individuals with signs and symptoms of a peroxisomal biogenesis disfuction and/or Zellweger syndrome spectrum disorder and/or a family history of these conditions. Test Description This panel analyzes 15 genes that have been associated with Zellweger Spectrum Disorders. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Zellweger syndrome spectrum disorders include Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), an intermediate form and infantile Refsum disease (IRD). Symptoms may include hypotonia, feeding problems, hearing and vision loss, seizures, distinctive facial characteristics and skeletal abnormalities. Zellweger spectrum disorder is estimated to occur in 1/50,000 individuals. Genes ACOX1, AMACR, HSD17B4, PEX1, PEX10, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6 Test Methods and Limitations Sequencing is performed on genomic DNA using an Agilent targeted sequence capture method to enrich for the genes on this panel.
    [Show full text]
  • Genetic and Clinical Aspects of Zellweger Spectrum Patients with PEX1 Mutations H Rosewich, a Ohlenbusch, J Ga¨Rtner
    1of6 J Med Genet: first published as 10.1136/jmg.2005.033324 on 1 September 2005. Downloaded from ONLINE MUTATION REPORT Genetic and clinical aspects of Zellweger spectrum patients with PEX1 mutations H Rosewich, A Ohlenbusch, J Ga¨rtner ............................................................................................................................... J Med Genet 2005;42:e58 (http://www.jmedgenet.com/cgi/content/full/42/9/e58). doi: 10.1136/jmg.2005.033324 and can survive up to several decades. RCDP is clinically Objective: To analyse the PEX1 gene, the most common and genetically distinctive from the Zellweger syndrome cause for peroxisome biogenesis disorders (PBD), in a spectrum and includes classical RCDP as the prototype and consecutive series of patients with Zellweger spectrum. also milder variants. Patients with classical RCDP have Methods: Mutations were detected by different methods unique clinical symptoms including proximal shortening of including SSCP analyses as a screening technique on the the limbs (rhizomelia), cataracts, and profound psychomotor basis of genomic or cDNA, followed by direct sequencing of retardation. PCR fragments with an abnormal electrophoresis pattern. PBDs can be caused by defects in any of several processes Results: 33 patients were studied. Two common mutations, in organelle formation, including the synthesis of peroxisome c.2528GRA, G843D and c.2098_2098insT, I700YfsX42, membranes, the recognition of newly synthesised peroxiso- accounted for over 80% of all abnormal PEX1 alleles, mal matrix proteins, or any of the downstream steps in emphasising their diagnostic relevance. Most PEX1 mutations peroxisomal protein import. Progress over the last two were distributed over the two AAA cassettes with the two decades has led to the identification of 13 different human functional protein domains, D1 and D2, and the highly PEX genes involved in peroxisome biogenesis, explaining the conserved Walker motifs.
    [Show full text]
  • Disorders of Peroxisome Biogenesis Due to Mutations in PEX1: Phenotypes and PEX1 Protein Levels Claudia Walter,1 Jeannette Gootjes,4 Petra A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Am. J. Hum. Genet. 69:35–48, 2001 Disorders of Peroxisome Biogenesis Due to Mutations in PEX1: Phenotypes and PEX1 Protein Levels Claudia Walter,1 Jeannette Gootjes,4 Petra A. Mooijer,4 Herma Portsteffen,1 Christina Klein,2 Hans R. Waterham,4 Peter G. Barth,5,6 Jo¨rg T. Epplen,3 Wolf-H. Kunau,1,2 Ronald J. A. Wanders,4,6 and Gabriele Dodt2 Institut fu¨r Physiologische Chemie, Abteilungen fu¨r 1Zellbiochemie und 2Systembiochemie, and 3Institut fu¨r Molekulare Humangenetik, Ruhr- Universita¨t Bochum, Bochum, Germany; Departments of 4Clinical Chemistry, 5Neurology, and 6Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD) are clinically overlapping syndromes, collectively called “peroxisome biogenesis disorders” (PBDs), with clinical features being most severe in ZS and least pronounced in IRD. Inheritance of these disorders is autosomal recessive. The peroxisome biogenesis disorders are genetically heterogeneous, having at least 12 different complementation groups (CGs). The gene affected in CG1 is PEX1. Approximately 65% of the patients with PBD harbor mutations in PEX1.Inthe present study, we used SSCP analysis to evaluate a series of patients belonging to CG1 for mutations in PEX1 and studied phenotype-genotype correlations. A complete lack of PEX1 protein was found to be associated with severe ZS; however, residual amounts of PEX1 protein were found in patients with the milder phenotypes, NALD and IRD. The majority of these latter patients carried at least one copy of the common G843D allele.
    [Show full text]
  • Developing Drug and Gene Therapies for Peroxisome Biogenesis Disorders of the Zellweger Spectrum
    Developing drug and gene therapies for peroxisome biogenesis disorders of the Zellweger Spectrum Catherine Argyriou Department of Human Genetics McGill University, Montréal, Canada June 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Catherine Argyriou 2018 ABSTRACT Zellweger spectrum disorder (ZSD) usually results from biallelic mutations in PEX genes required for peroxisome biogenesis. PEX1-G843D is a common hypomorphic allele associated with milder disease. We previously showed that fibroblasts from patients with a PEX1-G843D allele recovered peroxisome functions when cultured with the nonspecific chaperone betaine and flavonoid acacetin diacetate. To identify more effective flavonoids for preclinical trials, we compared 54 flavonoids using our cell-based peroxisomal assays. Diosmetin showed the most promising combination of potency and efficacy; co-treatments of diosmetin and betaine showed the most robust additive effects. This was confirmed by 5 independent assays in primary PEX1-G843D patient cells. Neither agent was active in PEX1 null cells. I propose that diosmetin acts as a pharmacological chaperone to improve stability, conformation, and function of PEX1/PEX6 exportomer complexes. All individuals with a PEX1-G843D allele develop a retinopathy that progresses to blindness. To investigate pathophysiology and identify endpoints for experimental trials, I used the knock-in mouse model for the equivalent human mutation, PEX1-G844D. I characterized the progression of retinopathy and found reduced cone cell function and number early in life with more gradual deterioration of rod cell function. Electron microscopy at later stage retinopathy showed disorganization of photoreceptor inner segments and enlarged mitochondria. As retino-cortical function was relatively well-preserved, I propose that the vision defect in the Pex1-G844D mouse is primarily at the retinal level.
    [Show full text]
  • Geneseq PLUS
    GeneSeq® PLUS Specimen ID: 00000000050 Container ID: H0655 Control ID: Acct #: LCA-BN Phone: SAMPLE REPORT, F-630068 Patient Details Specimen Details Physician Details DOB: 05/05/1995 Date Collected: 08/05/2019 12:00 (Local) Ordering: Age (yyy/mm/dd): 024/07/04 Date Received: 08/06/2019 Referring: Gender: Female Date Entered: 08/06/2019 ID: Patient ID: 00000000050 Date Reported: 08/16/2019 13:21 (Local) NPI: Ethnicity: Unknown Specimen Type: Blood Lab ID: MNEGA Indication: MAN2B1 carrier testing Genetic Counselor: SUMMARY: POSITIVE POSITIVE RESULTS DISORDER (GENE) RESULTS INTERPRETATION Alpha-mannosidosis POSITIVE Predicted to be a carrier. Genetic counseling is (MAN2B1) Heterozygous for c.2248C>T recommended. NMID: NM_000528 (p.Arg750Trp), pathogenic Chr19:12760746 (GRCh37) Risk: AT INCREASED RISK FOR AFFECTED PREGNANCY. See Additional Clinical Information. Genetic counseling is recommended to discuss the potential clinical and/or reproductive implications of positive results, as well as recommendations for testing family members and, when applicable, this individual's partner. Genetic counseling services are available. To access Integrated Genetics Genetic Counselors please visit www.integratedgenetics.com/genetic-counseling or call (855) GC-CALLS (855-422-2557). ADDITIONAL CLINICAL INFORMATION Alpha-mannosidosis: Alpha-mannosidosis is an autosomal recessive lysosomal storage disorder with variable severity and age at onset. Signs and symptoms may include progressive neurological deterioration, intellectual disability, skeletal and facial abnormalities, immunodeficiency, and hearing impairment. Bone marrow transplant may be an option for some individuals. Treatment is otherwise supportive. (Malm, PMID:18651971). If this individual's reproductive partner is also a carrier of a pathogenic variant in the same gene the risk for an affected fetus is 25%.
    [Show full text]
  • Generalised and Conditional Inactivation of Pex Genes in Mice ⁎ Myriam Baes A, , Paul P
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1763 (2006) 1785–1793 www.elsevier.com/locate/bbamcr Review Generalised and conditional inactivation of Pex genes in mice ⁎ Myriam Baes a, , Paul P. Van Veldhoven b a Laboratory for Cell Metabolism, Campus Gasthuisberg Onderwijs en Navorsing II, bus 823 Herestraat 49 B-3000, Department of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Leuven, Belgium b Department of Molecular Cell Biology, Division Pharmacology, Katholieke Universiteit Leuven, Leuven, Belgium Received 4 May 2006; received in revised form 17 August 2006; accepted 18 August 2006 Available online 25 August 2006 Abstract During the past 10 years, several Pex genes have been knocked out in the mouse with the purpose to generate models to study the pathogenesis of peroxisome biogenesis disorders and/or to investigate the physiological importance of the Pex proteins. More recently, mice with selective inactivation of a Pex gene in particular cell types were created. The metabolic abnormalities in peroxisome deficient mice paralleled to a large extent those of Zellweger patients. Several but not all of the clinical and histological features reported in patients also occurred in peroxisome deficient mice as for example hypotonia, cortical and cerebellar malformations, endochondral ossification defects, hepatomegaly, liver fibrosis and ultrastructural abnormalities of mitochondria in hepatocytes. Although the molecular origins of the observed pathologies have not yet been resolved, several new insights on the importance of peroxisomes in different tissues have emerged. © 2006 Elsevier B.V. All rights reserved. Keywords: Pex gene; Peroxisome; Knockout; Mouse model; Zellweger syndrome; Conditional gene inactivation 1.
    [Show full text]
  • Peroksisomale Sykdommer V01
    2/1/2021 Peroksisomale sykdommer v01 Avdeling for medisinsk genetikk Peroksisomale sykdommer Genpanel, versjon v01 * Enkelte genomiske regioner har lav eller ingen sekvensdekning ved eksomsekvensering. Dette skyldes at de har stor likhet med andre områder i genomet, slik at spesifikk gjenkjennelse av disse områdene og påvisning av varianter i disse områdene, blir vanskelig og upålitelig. Disse genetiske regionene har vi identifisert ved å benytte USCS segmental duplication hvor områder større enn 1 kb og ≥90% likhet med andre regioner i genomet, gjenkjennes (https://genome.ucsc.edu). Vi gjør oppmerksom på at ved identifiseringav ekson oppstrøms for startkodon kan eksonnummereringen endres uten at transkript ID endres. Avdelingens websider har en full oversikt over områder som er affisert av segmentale duplikasjoner. ** Transkriptets kodende ekson. Ekson Gen Gen affisert (HGNC (HGNC Transkript Ekson** Fenotype av symbol) ID) segdup* ABCD1 61 NM_000033.3 7-10 1-10 X-linked adrenoleukodystrophy OMIM ABCD3 67 NM_002858.3 1-23 PMP70 deficiency OMIM ACBD5 23338 NM_145698.4 1-13 Acyl-CoA-binding domain-containing protein 5 deficiency OMIM ACOX1 119 NM_004035.6 1-14 Peroxisomal straight-chain acyl-CoA oxidase deficiency OMIM Pseudo-neonatal adrenoleukodystrophy OMIM ACOX2 120 NM_003500.3 2-15 Peroxisomal branched-chain acyl-CoA oxidase deficiency OMIM Congenital bile acid synthesis defect type 6 OMIM file:///data/Peroksisom_v01-web.html 1/4 2/1/2021 Peroksisomale sykdommer v01 Ekson Gen Gen affisert (HGNC (HGNC Transkript Ekson** Fenotype av symbol) ID) segdup*
    [Show full text]