Unique Double-Ring Structure of the Peroxisomal Pex1/Pex6 Atpase
Unique double-ring structure of the peroxisomal PNAS PLUS Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy Neil B. Bloka,b,1, Dongyan Tana,b,1, Ray Yu-Ruei Wangc,d,1, Pawel A. Penczeke, David Bakerc,f, Frank DiMaioc, Tom A. Rapoporta,b,2, and Thomas Walza,b,2 aHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115; bDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115; cDepartment of Biochemistry, University of Washington, Seattle, WA 98195; dGraduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195; eDepartment of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77054; and fHoward Hughes Medical Institute, University of Washington, Seattle, WA 98195 Edited by Wah Chiu, Baylor College of Medicine, Houston, TX, and approved June 15, 2015 (received for review January 6, 2015) Members of the AAA family of ATPases assemble into hexameric short succession (3, 8–10). For double-ring ATPases, the co- double rings and perform vital functions, yet their molecular ordination between ATPase subunits is even more complex, as mechanisms remain poorly understood. Here, we report structures there may be communication both within a given ring and be- of the Pex1/Pex6 complex; mutations in these proteins frequently tween the two rings. It seems that generally most of the ATP cause peroxisomal diseases. The structures were determined in the hydrolysis occurs in only one ring. For example, the N-terminal presence of different nucleotides by cryo-electron microscopy. Models ATPase domains of NSF, which form the D1 ring, hydrolyze were generated using a computational approach that combines ATP much more rapidly than the subunits in the D2 ring (11).
[Show full text]