Recovery of PEX1-Gly843asp Peroxisome Dysfunction by Small-Molecule Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Recovery of PEX1-Gly843asp Peroxisome Dysfunction by Small-Molecule Compounds Recovery of PEX1-Gly843Asp peroxisome dysfunction by small-molecule compounds Rui Zhanga, Li Chena, Sarn Jiralerspongb, Ann Snowdenc, Steven Steinbergc, and Nancy Bravermanb,1 aMcKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University, Baltimore, MD 21205; bMontreal Children’s Hospital Research Institute, McGill University, Montreal, QC H3Z 2Z3, Canada; and cDepartment of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD 21205 Edited by William S. Sly, St. Louis University School of Medicine, St. Louis, MO, and approved February 11, 2010 (received for review January 8, 2010) Zellweger spectrum disorder (ZSD) is a heterogeneous group of transcript level in these patients is normal (10), it is likely that diseases with high morbidity and mortality caused by failure to the PEX1-p.G843D is misfolded and degraded. PEX1 is an AAA assemble normal peroxisomes. There is no therapy for ZSD, but (ATPase associated with diverse cellular activities) ATPase that management is supportive. Nevertheless, one-half of the patients oligomerizes with PEX6 AAA ATPase and when complexed to have a phenotype milder than classic Zellweger syndrome and PEX26, recycles PEX5 from the peroxisome membrane to the exhibit a progressive disease course. Thus, patients would benefit cytosol (11). The interaction between PEX1-p.G843D and PEX6 is if therapies became available and were instituted early. Recent reduced to less than 70% of wild type (12). Peroxisome functions reports indicate several interventions that result in partial perox- also recover when PEX6 is overexpressed in PEX1-p.G843D cells, isome recovery in ZSD fibroblasts. To identify drugs that recover consistent with conformational rescue by a binding partner (12). peroxisome functions, we expressed a GFP-peroxisome targeting Finally, when ZSD fibroblasts, including those containing PEX1-p. signal 1 reporter in fibroblasts containing the common disease G843D, are cultured in 4-phenylbutyrate, peroxisome numbers allele, PEX1-p.Gly843Asp. The GFP reporter remained cytosolic at increase 2- to 3-fold and functions improve (13). Overall, these baseline, and improvement in peroxisome functions was detected observations suggest that patient defects are amenable to inter- by the redistribution of the GFP reporter from the cytosol to the vention at the cellular level and implicate peroxin stabilization and peroxisome. We established a high-content screening assay based peroxisome proliferation as mechanisms that drugs could recapit- on this phenotype assay and evaluated 2,080 small molecules. The ulate. We sought to develop a high-throughput assay to screen cells were cultured in chemical for 2 days and then, were fixed and small-molecule libraries and identify drugs that may be further MEDICAL SCIENCES fl imaged by epi uorescent microscopy on a high-content imaging developed into clinical therapy. Identified compounds can serve as fi platform. We identi ed four compounds that partially recover starting points for the development of others with optimal fi matrix protein import, and we con rmed three using independent pharmacologic profiles. assays. Our results suggest that PEX1-p.G843D is a misfolded pro- tein amenable to chaperone therapy. Results Development of a High-Throughput Assay. We chose to test PEX1-p. Zellweger spectrum | AAA ATPase | misfolded protein | chemical G843D, a missense allele rescued by the mechanisms discussed screening | pharmacologic chaperone and accounting for one-third of all ZSD alleles. To monitor PEX1 function, a primary cell line, heterozygous for the common PEX1 he peroxisome biogenesis disorders, including Zellweger alleles p.G843D and I700fs, was transformed, immortalized, and Tspectrum disorder (ZSD) and Rhizomelic chondrodysplasia transfected with a GFP-peroxisome targeting signal 1 (PTS1) punctata (RCDP), are a heterogeneous group of autosomal re- reporter. A stable clone was selected; we refer to these cells as PEX1- cessive diseases caused by mutations in PEX genes. Among the G843D-PTS1, because the second allele is null (10). We verified that mutations identified in ZSD, the PEX1-p.Gly843Asp or G843D GFP-PTS1 remains predominantly cytosolic in these cells when (c.2528G > A) founder allele occurs in high frequency in patients cultured at 37 °C (Fig. 1, untreated). After 2 days at 30 °C, we of European origin (1). The presence of at least one PEX1-p. observed redistribution of GFP-PTS1 from the cytosol to punctate G843D allele predicts a phenotype milder than classic Zellweger structures, indicating recovery of PTS1 matrix-protein import syndrome (ZS) (2). Overall, the milder phenotypes, neonatal (Fig. 1, 30 °C). Because lower temperature recovers matrix-pro- adrenoleukodystrophy (NALD) and infantile Refsum disease tein import, we predicted that nonspecific chemical chaperones (IRD), are associated with missense alleles in PEX genes, less would also recover matrix-protein import. Chemical chaperones severe biochemical deficiencies, and more functional peroxi- are small-molecule osmolytes, such as glycerol, DMSO, amino somes, findings consistent with residual peroxin function. acids and trimethylamines, including trimethylamine N-oxide When fibroblasts from NALD-IRD patients are cultured at (TMAO), and betaine (trimethylglycine). The mechanism for 30 °C, peroxisome biogenesis improves. This was noted for cell their chaperone function is unknown, but might include con- lines with missense alleles in PEX1 (G843D) (3), PEX2 (E55K) formational correction and prevention of nonproductive protein (4), PEX6 (G572I, I845T, L57P) (5, 6), PEX26 (R98W, L45P) (7), interactions (14). To evaluate these chemicals, PEX1-G843D- and PEX13 (I326T) (8) and suggests reduced protein misfolding PTS1 cells were seeded in 96-well plates and cultured at 37 °C. at lower temperature (9). In contrast, ZS cell lines did not re- Chemical was added the next day, and after 2 days, we observed spond. These studies showed increased peroxisome number and robust recovery of punctate GFP-PTS1 in 3% DMSO, 200 mM improved import, matrix protein processing, very long chain fatty TMAO, 5% glycerol, 100 mM betaine, and 300 mM proline acid (VLCFA) oxidation, and plasmalogen biosynthesis. Over- expression of PEX missense alleles in CHO cells null for the corresponding peroxin conferred the temperature-sensitive phe- Author contributions: R.Z., S.S., and N.B. designed research; R.Z., L.C., S.J., A.S., S.S., and N.B. notype, directly implicating the expressed protein in causing this performed research; R.Z., S.S., and N.B. analyzed data; and N.B. wrote the paper. phenotype (7). The authors declare no conflict of interest. Several groups have studied PEX1-p.G843D. Walter et al. (3) This article is a PNAS Direct Submission. showed markedly reduced levels (5–15%) compared with wild- 1To whom correspondence should be addressed. E-mail: [email protected]. fi type PEX1 in broblast lysates from patients homozygous for This article contains supporting information online at www.pnas.org/cgi/content/full/ this mutation and a 2- to 3-fold increase at 30 °C. Because PEX1 0914960107/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.0914960107 PNAS Early Edition | 1of6 Downloaded by guest on September 27, 2021 Fig. 1. Response to nonspecific chemical chaperones in PEX1-G843D-PTS1 cells. Cells were cultured for 2 days at 30 °C or 37 °C with chemical and imaged live (30 °C; glycerol and DMSO) or after fixation (the remainder). Note the redistribution of GFP-PTS1 from the cytosol to the peroxisome in the treated groups; results were similar for 300 mM proline. In the lower right two images, cells cultured in TMAO were permeabilized and incubated with PEX14 antiserum and Texas Red conjugated secondary antibody. Colocalization of PEX14 and GFP is shown in the last image. (Fig. 1). To confirm that the punctate structures were perox- column). For each condition, plasmalogen biosynthesis improved isomes, we performed indirect immunofluorescence (IF) with significantly compared with the untreated results. antiserum to the membrane peroxin, PEX14, and all punctate Finally, we evaluated the recovery of PTS2 protein processing GFP structures colocalized with peroxisome membranes (Fig. 1 by immunoblotting (Fig. 2). Mammalian PTS2 proteins are thi- GFP-PTS1, PEX14). olase, phytanoyl-CoA hydroxylase (PhyH), and alkylglycerone To show that recovery of GFP-PTS1 targeting is a reliable phosphate synthase (AGPS). After import of these preproteins, a indicator of the recovery of functional peroxisomes, we evaluated PTS1 matrix protease removes the N-terminal PTS2 sequence, peroxisome functions by three independent assays. First, we generating a smaller, mature protein (15). The relative increase evaluated the recovery of endogenous matrix protein import by IF in this maturation step should reflect the recovery of both PTS1 using primary fibroblasts homozygous for PEX1-p.G843D. Cells and PTS2 import observed in the previous experiments. PEX1-p. were cultured at 37 °C in glycerol and TMAO or at 30 °C without G843D primary fibroblasts were incubated for 2 days with non- chemicals for 2 days. Then, they were fixed, permeabilized, and specific chaperones, and immunoblotting was performed on incubated with antiserum to the PTS2 matrix protein (thiolase) whole cell lysates. Results were interpreted by comparing the and catalase. Thiolase import enabled us to assess the competency amounts of unprocessed to mature protein in untreated and of the PTS2 import pathway. Although catalase uses the PTS1 treated samples. We observed a relative increase
Recommended publications
  • Elevated Hydrogen Peroxide and Decreased Catalase and Glutathione
    Sullivan-Gunn and Lewandowski BMC Geriatrics 2013, 13:104 http://www.biomedcentral.com/1471-2318/13/104 RESEARCH ARTICLE Open Access Elevated hydrogen peroxide and decreased catalase and glutathione peroxidase protection are associated with aging sarcopenia Melanie J Sullivan-Gunn1 and Paul A Lewandowski2* Abstract Background: Sarcopenia is the progressive loss of skeletal muscle that contributes to the decline in physical function during aging. A higher level of oxidative stress has been implicated in aging sarcopenia. The current study aims to determine if the higher level of oxidative stress is a result of increased superoxide (O2‾ ) production by the NADPH oxidase (NOX) enzyme or decrease in endogenous antioxidant enzyme protection. Methods: Female Balb/c mice were assigned to 4 age groups; 6, 12, 18 and 24 months. Body weight and animal survival rates were recorded over the course of the study. Skeletal muscle tissues were collected and used to measure NOX subunit mRNA, O2‾ levels and antioxidant enzymes. Results: Key subunit components of NOX expression were elevated in skeletal muscle at 18 months, when sarcopenia was first evident. Increased superoxide dismutase 1 (SOD1) activity suggests an increase in O2‾ dismutation and this was further supported by elevated levels of hydrogen peroxide (H2O2) and decline in catalase and glutathione peroxidase (GPx) antioxidant protection in skeletal muscle at this time. NOX expression was also higher in skeletal muscle at 24 months, however this was coupled with elevated levels of O2‾ and a decline in SOD1 activity, compared to 6 and 12 months but was not associated with further loss of muscle mass.
    [Show full text]
  • Ophthalmic Manifestations of Heimler Syndrome Due to PEX6 Mutations
    Thomas Jefferson University Jefferson Digital Commons Wills Eye Hospital Papers Wills Eye Hospital 5-4-2018 Ophthalmic manifestations of Heimler syndrome due to PEX6 mutations. Nutsuchar Wangtiraumnuay Wills Eye Hospital; Queen Sirikit National Institute of Child Health Waleed Abed Alnabi Wills Eye Hospital Mai Tsukikawa Thomas Jefferson University Avrey Thau Wills Eye Hosptial; Thomas Jefferson University Jenina Capasso Wills Eye Hospital Follow this and additional works at: https://jdc.jefferson.edu/willsfp Part of the Ophthalmology Commons LetSee next us page know for additional how authors access to this document benefits ouy Recommended Citation Wangtiraumnuay, Nutsuchar; Alnabi, Waleed Abed; Tsukikawa, Mai; Thau, Avrey; Capasso, Jenina; Sharony, Reuven; Inglehearn, Chris F.; and Levin, Alex V., "Ophthalmic manifestations of Heimler syndrome due to PEX6 mutations." (2018). Wills Eye Hospital Papers. Paper 83. https://jdc.jefferson.edu/willsfp/83 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Wills Eye Hospital Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Authors Nutsuchar Wangtiraumnuay, Waleed Abed Alnabi, Mai Tsukikawa, Avrey Thau, Jenina Capasso, Reuven Sharony, Chris F.
    [Show full text]
  • Catalase and Oxidase Test
    CATALASE TEST Catalase is the enzyme that breaks hydrogen peroxide (H 2O2) into H 2O and O 2. Hydrogen peroxide is often used as a topical disinfectant in wounds, and the bubbling that is seen is due to the evolution of O 2 gas. H 2O2 is a potent oxidizing agent that can wreak havoc in a cell; because of this, any cell that uses O 2 or can live in the presence of O 2 must have a way to get rid of the peroxide. One of those ways is to make catalase. PROCEDURE a. Place a small amount of growth from your culture onto a clean microscope slide. If using colonies from a blood agar plate, be very careful not to scrape up any of the blood agar— blood cells are catalase positive and any contaminating agar could give a false positive. b. Add a few drops of H 2O2 onto the smear. If needed, mix with a toothpick. DO NOT use a metal loop or needle with H 2O2; it will give a false positive and degrade the metal. c. A positive result is the rapid evolution of O 2 as evidenced by bubbling. d. A negative result is no bubbles or only a few scattered bubbles. e. Dispose of your slide in the biohazard glass disposal container. Dispose of any toothpicks in the Pipet Keeper. OXIDASE TEST Basically, this is a test to see if an organism is an aerobe. It is a check for the presence of the electron transport chain that is the final phase of aerobic respiration.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • The Peroxisomal PTS1-Import Defect of PEX1- Deficient Cells Is Independent of Pexophagy in Saccharomyces Cerevisiae
    International Journal of Molecular Sciences Communication The Peroxisomal PTS1-Import Defect of PEX1- Deficient Cells Is Independent of Pexophagy in Saccharomyces cerevisiae Thomas Mastalski, Rebecca Brinkmeier and Harald W. Platta * Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; [email protected] (T.M.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +49-234-3224-968 Received: 10 January 2020; Accepted: 27 January 2020; Published: 29 January 2020 Abstract: The important physiologic role of peroxisomes is shown by the occurrence of peroxisomal biogenesis disorders (PBDs) in humans. This spectrum of autosomal recessive metabolic disorders is characterized by defective peroxisome assembly and impaired peroxisomal functions. PBDs are caused by mutations in the peroxisomal biogenesis factors, which are required for the correct compartmentalization of peroxisomal matrix enzymes. Recent work from patient cells that contain the Pex1(G843D) point mutant suggested that the inhibition of the lysosome, and therefore the block of pexophagy, was beneficial for peroxisomal function. The resulting working model proposed that Pex1 may not be essential for matrix protein import at all, but rather for the prevention of pexophagy. Thus, the observed matrix protein import defect would not be caused by a lack of Pex1 activity, but rather by enhanced removal of peroxisomal membranes via pexophagy. In the present study, we can show that the specific block of PEX1 deletion-induced pexophagy does not restore peroxisomal matrix protein import or the peroxisomal function in beta-oxidation in yeast. Therefore, we conclude that Pex1 is directly and essentially involved in peroxisomal matrix protein import, and that the PEX1 deletion-induced pexophagy is not responsible for the defect in peroxisomal function.
    [Show full text]
  • Myeloperoxidase Mediates Cell Adhesion Via the Αmβ2 Integrin (Mac-1, Cd11b/CD18)
    Journal of Cell Science 110, 1133-1139 (1997) 1133 Printed in Great Britain © The Company of Biologists Limited 1997 JCS4390 Myeloperoxidase mediates cell adhesion via the αMβ2 integrin (Mac-1, CD11b/CD18) Mats W. Johansson1,*, Manuel Patarroyo2, Fredrik Öberg3, Agneta Siegbahn4 and Kenneth Nilsson3 1Department of Physiological Botany, University of Uppsala, Villavägen 6, S-75236 Uppsala, Sweden 2Microbiology and Tumour Biology Centre, Karolinska Institute, PO Box 280, S-17177 Stockholm, Sweden 3Department of Pathology, University of Uppsala, University Hospital, S-75185 Uppsala, Sweden 4Department of Clinical Chemistry, University of Uppsala, University Hospital, S-75185 Uppsala, Sweden *Author for correspondence (e-mail: [email protected]) SUMMARY Myeloperoxidase is a leukocyte component able to to αM (CD11b) or to β2 (CD18) integrin subunits, but not generate potent microbicidal substances. A homologous by antibodies to αL (CD11a), αX (CD11c), or to other invertebrate blood cell protein, peroxinectin, is not only integrins. Native myeloperoxidase mediated dose- a peroxidase but also a cell adhesion ligand. We demon- dependent cell adhesion down to relatively low concen- strate in this study that human myeloperoxidase also trations, and denaturation abolished the adhesion mediates cell adhesion. Both the human myeloid cell line activity. It is evident that myeloperoxidase supports cell HL-60, when differentiated by treatment with 12-O- adhesion, a function which may be of considerable tetradecanoyl-phorbol-13-acetate (TPA) or retinoic acid, importance for leukocyte migration and infiltration in and human blood leukocytes, adhered to myeloperoxi- inflammatory reactions, that αMβ2 integrin (Mac-1 or dase; however, undifferentiated HL-60 cells showed only CD11b/CD18) mediates this adhesion, and that the αMβ2 minimal adhesion.
    [Show full text]
  • Spectrum of PEX1 and PEX6 Variants in Heimler Syndrome
    European Journal of Human Genetics (2016) 24, 1565–1571 Official Journal of The European Society of Human Genetics www.nature.com/ejhg ARTICLE Spectrum of PEX1 and PEX6 variants in Heimler syndrome Claire EL Smith1, James A Poulter1, Alex V Levin2,3,4, Jenina E Capasso4, Susan Price5, Tamar Ben-Yosef6, Reuven Sharony7, William G Newman8,9, Roger C Shore10, Steven J Brookes10, Alan J Mighell1,11,12 and Chris F Inglehearn*,1,12 Heimler syndrome (HS) consists of recessively inherited sensorineural hearing loss, amelogenesis imperfecta (AI) and nail abnormalities, with or without visual defects. Recently HS was shown to result from hypomorphic mutations in PEX1 or PEX6,both previously implicated in Zellweger Syndrome Spectrum Disorders (ZSSD). ZSSD are a group of conditions consisting of craniofacial and neurological abnormalities, sensory defects and multi-organ dysfunction. The finding of HS-causing mutations in PEX1 and PEX6 shows that HS represents the mild end of the ZSSD spectrum, though these conditions were previously thought to be distinct nosological entities. Here, we present six further HS families, five with PEX6 variants and one with PEX1 variants, and show the patterns of Pex1, Pex14 and Pex6 immunoreactivity in the mouse retina. While Ratbi et al. found more HS-causing mutations in PEX1 than in PEX6, as is the case for ZSSD, in this cohort PEX6 variants predominate, suggesting both genes play a significant role in HS. The PEX6 variant c.1802G4A, p.(R601Q), reported previously in compound heterozygous state in one HS and three ZSSD cases, was found in compound heterozygous state in three HS families.
    [Show full text]
  • Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
    Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific.
    [Show full text]
  • Research Article Label-Free Proteomics of the Fetal Pancreas Identifies Deficits in the Peroxisome in Rats with Intrauterine Growth Restriction
    Hindawi Oxidative Medicine and Cellular Longevity Volume 2019, Article ID 1520753, 15 pages https://doi.org/10.1155/2019/1520753 Research Article Label-Free Proteomics of the Fetal Pancreas Identifies Deficits in the Peroxisome in Rats with Intrauterine Growth Restriction Xiaomei Liu ,1 Yanyan Guo ,1 Jun Wang ,1,2 Linlin Gao ,3 and Caixia Liu 1 1Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China 2Department of Obstetrics and Gynecology, Benxi Central Hospital of China Medical University, Benxi 117022, China 3Medical Research Center, Shengjing Hospital, China Medical University, Shenyang 110004, China Correspondence should be addressed to Xiaomei Liu; [email protected] Received 14 May 2019; Revised 31 August 2019; Accepted 9 September 2019; Published 3 November 2019 Guest Editor: Roberta Cascella Copyright © 2019 Xiaomei Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aim. The objective of the present study was to identify differentially expressed proteins (DEPs) in the pancreas of a fetus with intrauterine growth restriction (IUGR) and to investigate the molecular mechanisms leading to adulthood diabetes in IUGR. Methods. The IUGR rat model was induced by maternal protein malnutrition. The fetal pancreas was collected at embryonic day 20 (E20). Protein was extracted, pooled, and subjected to label-free quantitative proteomic analysis. Bioinformatics analysis (GO and IPA) was performed to define the pathways and networks associated with DEPs. LC-MS results were confirmed by western blotting and/or quantitative PCR (q-PCR).
    [Show full text]
  • Common Variants in SOX-2 and Congenital Cataract Genes Contribute to Age-Related Nuclear Cataract
    ARTICLE https://doi.org/10.1038/s42003-020-01421-2 OPEN Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract Ekaterina Yonova-Doing et al.# 1234567890():,; Nuclear cataract is the most common type of age-related cataract and a leading cause of blindness worldwide. Age-related nuclear cataract is heritable (h2 = 0.48), but little is known about specific genetic factors underlying this condition. Here we report findings from the largest to date multi-ethnic meta-analysis of genome-wide association studies (discovery cohort N = 14,151 and replication N = 5299) of the International Cataract Genetics Consortium. We confirmed the known genetic association of CRYAA (rs7278468, P = 2.8 × 10−16) with nuclear cataract and identified five new loci associated with this dis- ease: SOX2-OT (rs9842371, P = 1.7 × 10−19), TMPRSS5 (rs4936279, P = 2.5 × 10−10), LINC01412 (rs16823886, P = 1.3 × 10−9), GLTSCR1 (rs1005911, P = 9.8 × 10−9), and COMMD1 (rs62149908, P = 1.2 × 10−8). The results suggest a strong link of age-related nuclear cat- aract with congenital cataract and eye development genes, and the importance of common genetic variants in maintaining crystalline lens integrity in the aging eye. #A list of authors and their affiliations appears at the end of the paper. COMMUNICATIONS BIOLOGY | (2020) 3:755 | https://doi.org/10.1038/s42003-020-01421-2 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01421-2 ge-related cataract is the leading cause of blindness, structure (meta-analysis genomic inflation factor λ = 1.009, accounting for more than one-third of blindness Supplementary Table 4 and Supplementary Fig.
    [Show full text]
  • Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity
    International Journal of Molecular Sciences Review Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity Yannick Das, Daniëlle Swinkels and Myriam Baes * Lab of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; [email protected] (Y.D.); [email protected] (D.S.) * Correspondence: [email protected] Abstract: Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or β-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors. Citation: Das, Y.; Swinkels, D.; Baes, Keywords: peroxisome; Zellweger; metabolism; fatty acid; retina M. Peroxisomal Disorders and Their Mouse Models Point to Essential Roles of Peroxisomes for Retinal Integrity.
    [Show full text]
  • Unique Double-Ring Structure of the Peroxisomal Pex1/Pex6 Atpase
    Unique double-ring structure of the peroxisomal PNAS PLUS Pex1/Pex6 ATPase complex revealed by cryo-electron microscopy Neil B. Bloka,b,1, Dongyan Tana,b,1, Ray Yu-Ruei Wangc,d,1, Pawel A. Penczeke, David Bakerc,f, Frank DiMaioc, Tom A. Rapoporta,b,2, and Thomas Walza,b,2 aHoward Hughes Medical Institute, Harvard Medical School, Boston, MA 02115; bDepartment of Cell Biology, Harvard Medical School, Boston, MA 02115; cDepartment of Biochemistry, University of Washington, Seattle, WA 98195; dGraduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195; eDepartment of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77054; and fHoward Hughes Medical Institute, University of Washington, Seattle, WA 98195 Edited by Wah Chiu, Baylor College of Medicine, Houston, TX, and approved June 15, 2015 (received for review January 6, 2015) Members of the AAA family of ATPases assemble into hexameric short succession (3, 8–10). For double-ring ATPases, the co- double rings and perform vital functions, yet their molecular ordination between ATPase subunits is even more complex, as mechanisms remain poorly understood. Here, we report structures there may be communication both within a given ring and be- of the Pex1/Pex6 complex; mutations in these proteins frequently tween the two rings. It seems that generally most of the ATP cause peroxisomal diseases. The structures were determined in the hydrolysis occurs in only one ring. For example, the N-terminal presence of different nucleotides by cryo-electron microscopy. Models ATPase domains of NSF, which form the D1 ring, hydrolyze were generated using a computational approach that combines ATP much more rapidly than the subunits in the D2 ring (11).
    [Show full text]