Electrical Resistance Heating Elements: an Overview
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Tubular Heaters Heat up the Foodservice Industry
FOODSERVICE TUBULAR HEATERS Tubular Heaters Heat Up the Foodservice Industry When there’s a need for heat in your foodservice equipment Applications application—from fryers to griddles to ovens—turn to Watlow, the leader with more than 25 years experience providing • Griddles heating solutions to the foodservice equipment market. Using • Rotisserie ovens • Convection ovens Watlow’s WATROD round tubular and FIREBAR® flat tubular heating elements in the cooking process promotes faster • Combi ovens cooking, consistent food preparation, ease of operation and • Conveyor ovens low maintenance. • Fryers • Steamers These reliable, versatile heating elements can be configured • Smokers with a variety of wattage and voltage ratings, terminations, • Warewashers sheath materials and mounting options to satisfy the most • Warming cabinets demanding foodservice applications. • Toasters • Other clamp-on applications Advantages • Watlow’s heaters for the foodservice industry are constructed with epoxy or silicone seals to combat moisture contamination from environmental kitchen conditions. • Compacted MgO insulation transfers heat away from resistance wire to sheath material and media more efficiently resulting in faster heat up. • Over 36 standard and a virtually limitless array of custom bend formation options enable the heating element to be HAN-FTH-0807 designed around available space to maximize heating efficiency. To be automatically connected to the nearest North American Technical and Sales Office: 1-800-WATLOW2 • www.watlow.com • [email protected] -
Commercial Electric Water Heaters
Service Handbook COMMERCIAL ELECTRIC WATER HEATERS MODELS CSB52**I, CSB82**I, CSB120**I & CSB52**S, CSB82**S, CSB120**S INSTALLATION CONSIDERATIONS - PRE SERVICE CHECKS - WATER HEATER CONSTRUCTION - 500 Tennessee Waltz Parkway OPERATION & SERVICE - TROUBLESHOOTING Ashland City, TN 37015 SERVICING SHOULD ONLY BE PERFORMED BY A QUALIFIED SERVICE AGENT. PRINTED IN THE U.S.A 1008 315015-000 1 COMMERCIAL ELECTRIC WATER HEATER SERVICE MANUAL TABLE OF CONTENTS INTRODUCTION .......................................................................2 ELECTRONIC CONTROLS..................................................... 41 Qualifications ......................................................................2 CCB - Central Control Board............................................ 42 Service Warning .................................................................2 CCB Socket & Wiring Terminal Identification ............ 43 Tools Required....................................................................3 CCB Enable Disable Circuit(s) Test........................... 45 INSTALLATION CONSIDERATIONS ........................................4 Checking Power And Ground To The CCB ............... 46 Closed Water Systems .......................................................4 UIM - User Interface Module ............................................ 47 Thermal Expansion.............................................................4 ELECTRONIC CONTROL SYSTEM ....................................... 48 Electrical Requirements......................................................5 -
Misc Thesisdb Bythesissuperv
Honors Theses 2006 to August 2020 These records are for reference only and should not be used for an official record or count by major or thesis advisor. Contact the Honors office for official records. Honors Year of Student Student's Honors Major Thesis Title (with link to Digital Commons where available) Thesis Supervisor Thesis Supervisor's Department Graduation Accounting for Intangible Assets: Analysis of Policy Changes and Current Matthew Cesca 2010 Accounting Biggs,Stanley Accounting Reporting Breaking the Barrier- An Examination into the Current State of Professional Rebecca Curtis 2014 Accounting Biggs,Stanley Accounting Skepticism Implementation of IFRS Worldwide: Lessons Learned and Strategies for Helen Gunn 2011 Accounting Biggs,Stanley Accounting Success Jonathan Lukianuk 2012 Accounting The Impact of Disallowing the LIFO Inventory Method Biggs,Stanley Accounting Charles Price 2019 Accounting The Impact of Blockchain Technology on the Audit Process Brown,Stephen Accounting Rebecca Harms 2013 Accounting An Examination of Rollforward Differences in Tax Reserves Dunbar,Amy Accounting An Examination of Microsoft and Hewlett Packard Tax Avoidance Strategies Anne Jensen 2013 Accounting Dunbar,Amy Accounting and Related Financial Statement Disclosures Measuring Tax Aggressiveness after FIN 48: The Effect of Multinational Status, Audrey Manning 2012 Accounting Dunbar,Amy Accounting Multinational Size, and Disclosures Chelsey Nalaboff 2015 Accounting Tax Inversions: Comparing Corporate Characteristics of Inverted Firms Dunbar,Amy Accounting Jeffrey Peterson 2018 Accounting The Tax Implications of Owning a Professional Sports Franchise Dunbar,Amy Accounting Brittany Rogan 2015 Accounting A Creative Fix: The Persistent Inversion Problem Dunbar,Amy Accounting Foreign Account Tax Compliance Act: The Most Revolutionary Piece of Tax Szwakob Alexander 2015D Accounting Dunbar,Amy Accounting Legislation Since the Introduction of the Income Tax Prasant Venimadhavan 2011 Accounting A Proposal Against Book-Tax Conformity in the U.S. -
Processing, Microstructure, and Mechanical Properties of Zirconium Diboride-Molybdenum Disilicide Ceramics and Dual Composite Architectures
Scholars' Mine Doctoral Dissertations Student Theses and Dissertations Spring 2017 Processing, microstructure, and mechanical properties of zirconium diboride-molybdenum disilicide ceramics and dual composite architectures Ryan Joseph Grohsmeyer Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations Part of the Energy Systems Commons, and the Materials Science and Engineering Commons Department: Materials Science and Engineering Recommended Citation Grohsmeyer, Ryan Joseph, "Processing, microstructure, and mechanical properties of zirconium diboride- molybdenum disilicide ceramics and dual composite architectures" (2017). Doctoral Dissertations. 2561. https://scholarsmine.mst.edu/doctoral_dissertations/2561 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. PROCESSING, MICROSTRUCTURE, AND MECHANICAL PROPERTIES OF ZIRCONIUM DIBORIDE-MOLYBDENUM DISILICIDE CERAMICS AND DUAL COMPOSITE ARCHITECTURES by RYAN JOSEPH GROHSMEYER A DISSERTATION Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in MATERIALS SCIENCE AND ENGINEERING 2017 Submitted to: Gregory Hilmas, Advisor William Fahrenholtz Jeffrey Smith David Van Aken Lokeswarappa Dharani iii PUBLICATION DISSERTATION OPTION This dissertation consists of the following five articles that will be submitted for publication as follows and have been formatted in the style of the journal Ceramics International. The manuscripts entitled, “ZrB2-MoSi2 Ceramics with Varying MoSi2 Content: Part 1. Processing and Microstructure with Varying ZrB2 Particle Size:” (Paper I, Pages 50–80), and the manuscript entitled “ZrB2-MoSi2 Ceramics with Varying MoSi2 Content: Part 2. -
Research Memorandum
RM E52B06 NACA RESEARCH MEMORANDUM SOME FACTORS AFFECTING FABRICATION AND HIGH-TEMPERATURE STRENGTH OF MOLYBDENUM DISILICIDE By W. A. Maxwell Lewis Flight Propulsion Labora tory Cleveland, Ohio NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON April 17 , 1952 1U NACA RM E58B06 NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS RESEARCH MEMORANDUM SOME FACTORS AFFECTING FABRICATION AND HIGH-TEMPERATURE STRENGTH OF MOLYBDENUM DISILICIDE By W. A. Maxwell SUMMARY In an investigation of the properties of molybdenum disilicide, a fine-grain material having a moderately high oxygen content has been produced by cold-pressing and sintering, and a large-grain material having a lower oxygen content and a density of 99 percent of the theo retical density has been produced by hot-pressing. In a series of experiments with the fine-grain material in which the only variable was the amount of carbon added, marked increases in modulus-of-rupture strength were found at carbon contents between 0.15 and 0.3 percent. Improvements in the long-time deformation properties, as shown by the flexure-creep test, and decreased high-temperature plasticity accompanied the carbon additions. The Knoop hardness was 1160. The beneficial effects of carbon additions on strength are attri buted to partial deoxidation of the material, particularly the reduction of molybdenum oxides, and the formation of silicon carbide and other carbides. Exceptionally high short-time strengths, in comparison with other high-temperature materials, were obtained with sintered molybdenum disilicide containing from 1.0 to 1.4 percent oxygen. The effects of such oxygen contents on sintering and binding may be beneficial. The large-grain, hot-pressed molybdenum disilicide having a low oxygen content possessed superior high-temperature deformation resist ance, slightly inferior short-time strength, and decreased high temperature plasticity as compared with the fine-grain molybdenum disili cide to which carbon was added. -
The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: a Survey of Their Thermodynamic Properties
The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties Cite as: Journal of Physical and Chemical Reference Data 22, 1459 (1993); https:// doi.org/10.1063/1.555922 Submitted: 21 December 1992 . Published Online: 15 October 2009 M. S. Chandrasekharaiah, J. L. Margrave, and P. A. G. O’Hare ARTICLES YOU MAY BE INTERESTED IN Thermodynamic considerations in refractory metal-silicon-oxygen systems Journal of Applied Physics 56, 147 (1984); https://doi.org/10.1063/1.333738 Thermal and Electrical Conductivity of Graphite and Carbon at Low Temperatures Journal of Applied Physics 15, 452 (1944); https://doi.org/10.1063/1.1707454 Formation of thin films of NiSi: Metastable structure, diffusion mechanisms in intermetallic compounds Journal of Applied Physics 55, 4208 (1984); https://doi.org/10.1063/1.333021 Journal of Physical and Chemical Reference Data 22, 1459 (1993); https://doi.org/10.1063/1.555922 22, 1459 © 1993 American Institute of Physics for the National Institute of Standards and Technology. The Disilicides of Tungsten, Molybdenum, Tantalum, Titanium, Cobalt, and Nickel, and Platinum Monosilicide: A Survey of Their Thermodynamic Properties M. s. Chandrasekharaiah and J. L. Margrave HARC, Materials Science Research Center, 4802 Research Forest Drive, The Woodlands, TX 77381 and P. A. G. O'Hare Chemical Kinetics and Thennodynamics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-0001 Received December 21, 1992; revised manuscript received February 19, 1993 A critical evaluation is presented of the thermodynamic properties of six disiIi cides and one monosilicide that are important in the manutacture ot very large scale integrated circuits. -
Research Memorandum
RESEARCH MEMORANDUM PROPERTIES OF CERTAIN INTER&UXTALLICS AS RELATtiD . TO ELEVATED-TEMPERATURE APPLICATIONS I - MOLYBDENUM DISILKXDE Ld By W. A. MaxweJ.l. Lewis l&&t Propulsion Laboratory Cleveland, Ohio .: _i. I_ -.ClASSIFICATfON CANC NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS WASHINGTON October 6,1949 NACA RM E9GOl NA!KCONALADVISORYCOMKETEEFORAXRONAUTICS I -MOL~DISILIC~ By W. A. Maxwell A method for the preparation and purification of the inter- metallic, molybdenum disilicide, was developed and the following properties were determined for the sintered material: Tanperature Room 2000°F 2400°F Modulus of rupture, lb/sq in. 50,700 35,700 20,700 Total elongation calculated f4 fletietests, percent . 0.09 0.72 3.2 Plastic elongation calculated from flexure tests, percent . none 0.39 1.4 DeIlBity: Theoretioal (X-ray data), grams/cm1 . 6.24 Potiered,gramsbl........, . 6.2 Sintered,msj%l... ..5.66 Rockwell hardness (superpioial) . , . C-57 Crystal structure tetragonal body-centered Oxidation resistax.d,'s~a;le'&Z ;n'aL 200ooF' 2400°F (gnmgaFnlBqcm)fhr. -0.000ooo4 0.000005 Chemical mpertles of molybdenum disilicide were found to be: highly inert, unattadsed by boilin@; hydroohloric acid, sulfuric acid, or aqueous sodium hydroxide; elightly attacked by nitrio acid; dis- solved by molten sodium h-de. The sintered material is silvery white in co&, possesses high eleutria oonductivity, and is resistant to thermal shock. Molybdenum disilicide melts at 3500° &IL@ F with decomposition. 2 NACA FM lBGO1 Plastic deformation of the intermetallic at temperatures well below the melting point was observed although only brittle behavior wasapparentatroomtemperature. From the Investigation c&Tpropertiee of molybdenum dieilioide, it appear0 that: 1. -
Mosi2 and Other Silicides As High Temperature Structural Materials
MoSi2 AND OTHER SILICIDES AS HIGH TEMPERATURE STRUCTURAL MATERIALS DILIP M. SHAH Pratt & Whitney 400 Main St. E. Hartford, CT. 06108 Abstract There has been a revival of interest in MoSi;? and other refractory silicides, hitherto used for heating elements and coatings, as high temperature structural materials. With their high melting point and excellent high temperature oxidation resistance, silicides as a class of intermetallics, have potential for developing temperature capability beyond nickel base superalloys. Though metal like in their physical properties, silicides are in general brittle at room temperature. This drawback is being addressed through a variety of in-situ and artificial composite approaches. This paper attempts to provide a perspective on these approaches with a review of current activities. To provide a background, the development strategies for high temperature structural materials are discussed, followed by an overview on formation of silicides. The relevant mechanical and physical properties and environmental resistance of silicides are compared using superalloys as the benchmark, to help assess the risks versus benefits. Finally, the paper concludes with a brief summary of primarily fiber reinforced MoSi2 composites and ductile phase reinforced in-situ composites based on other silicides. The unavailability of suitable fibers and interface coating for conventional composites and containerless solidification for in-situ composites are identified as the principal problems. Superalloys 1992 Edited by S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstmm The Minerals, Metals & Materials Society, 1992 409 Introduction Since as early as 1956, molybdenum disilicide (MoSi2) based material has been commercially available as Super Kanthal [l], along with nickel-chromium based heating elements. -
Putting It All Together: Infrared Heat and Ceramicx ENGINEERING COMPETENCIES PRODUCT GUIDE TYPES of HEATERS NEW BUILDING CERAMICX INFRARED for INDUSTRY
HeatWorksHeatWorks 20 │ www.ceramicx.com Putting it all together: Infrared Heat and Ceramicx ENGINEERING COMPETENCIES PRODUCT GUIDE TYPES OF HEATERS NEW BUILDING CERAMICX INFRARED FOR INDUSTRY Welcome A fresh look at a new science A new factory certainly gives inspiration to take a fresh look at all manner of things. Such is the case here at Ceramicx and especially with regard to this the 20th issue of our in-house magazine – HeatWorks. We have chosen to celebrate our newly constructed facilities with a companion issue of the magazine – one that reminds, re-iterates and underscores the fundamentals of the science of Infrared heating. It is my hope that the reader retains this magazine issue as a regular primer and refresher on these IR heating matters. Four sections cover the ground; Principal types of IR heaters Primary Industrial Applications for IR heating Energy and radiation fundamentals Control and measurement of IR energy and heating. Make no mistake, Ceramicx is at the forefront of the scientific advancement of Infrared heating: Our commercial successes on five continents simply attest to the superior technical and scientific nature of our manufacturing and our resulting products and heaters. Empirical scientific research backs everything we do. And - as this magazine issue clearly shows - such IR science is not approximate. No ‘black art’ skills are required here. Instead, the clean, green and cost-effective energy solution for the C21 is becoming better understood and applied with every passing year. The new Ceramicx factory and enterprise remains at the cutting edge of that advancement. Frank Wilson Managing Director, Ceramicx Ltd. -
Technical Information Radiant Infrared Heating - Theory & Principles
Technical Technical Information Radiant Infrared Heating - Theory & Principles Infrared Theory Emissivity and an Ideal Infrared Source — Reflectivity — Materials with poor emissivity The ability of a surface to emit radiation is frequently make good reflectors. Polished gold Infrared energy is radiant energy which passes defined by the term emissivity. The same term with an emissivity of 0.018 is an excellent through space in the form of electromagnetic is used to define the ability of a surface to infrared reflector that does not oxidize easily. waves (Figure 1). Like light, it can be reflected absorb radiation. An ideal infrared source Polished aluminum with an emissivity of 0.04 and focused. Infrared energy does not depend would radiate or absorb 100% of all radiant is an excellent second choice. However, once on air for transmission and is converted to energy. This ideal is referred to as a “perfect” the surface of any metal starts to oxidize or heat upon absorption by the work piece. In black body with an emissivity of unity or 1.0. collect dirt, its emissivity increases and its fact, air and gases absorb very little infrared. The spectral distribution of an ideal infrared effectiveness as an infrared reflector decreases. As a result, infrared energy provides for emitter is below. efficient heat transfer without contact between Table 1 — Approximate Emissivities the heat source and the work piece. Spectral Distribution of a Blackbody Metals Polished Rough Oxidized Figure 1 at Various Temperatures Aluminum 0.04 0.055 0.11-0.19 !Peak Wavelength Brass 0.03 0.06-0.2 0.60 Copper 0.018-0.02 — 0.57 1400°F Gold 0.018-0.035 — — Wien Displacement Curve Steel 0.12-0.40 0.75 0.80-0.95 Stainless 0.11 0.57 0.80-0.95 ! Lead 0.057-0.075 0.28 0.63 1200°F Nickel 0.45-0.087 — 0.37-0.48 Silver 0.02-0.035 — — Tin 0.04-0.065 — — Infrared heating is frequently missapplied and Zinc 0.045-0.053 — 0.11 capacity requirements underestimated due to Radiant Energy 1000°F Galv. -
Historical Introduction Summarized History of Air Heating and Sheathed Heating Elements
Jacques Jumeau English version History of technologies linked to heating. Chapter 5 Historical introduction Summarized history of air heating and sheathed heating elements Copyright: Jacques Jumeau 1st edition 2015/11/26 Copy is allowed, provided you cite the origin: Ultimheat Museum 1 Update 2019/02/20 Historical introduction Summarized history of air heating and sheathed heating elements The invention of sheathed heating elements comprising a metal tube swaged around a coiled heating wire, and which is insulated by compressed magnesia, was an essential step of the electrothermics development. Thanks to their mechanical strength, impermeability and resistance to corrosion, these are the most professional heating technical solutions. The appearance of these heating elements, now universally used, was the result of a combination of different advanced techniques of the early 20th Century. Over the last two decades of the 19th Century, the emergence of electric heating had revealed the need to find reliable solutions for converting electricity into heat. The first electrical heaters were platinum wires (inherited laboratory equipment), nickel silver or even iron. Research carried on resistive elements with greater resistivity and good temperature resistance. On October 12, 1878, St. George Lane Fox-Pitt filed patent in England 4043, in which he developed the use of electricity for lighting and heating. This patent, based on the use of platinum filaments, was not followed for heating but it was the basis for the development of electric bulbs. In 1884, French Henri Marbeau, a pioneer in the manufacture of Nickel in New Caledonia and France, founded the company "Le Ferro-Nickel'' in Lizy sur Ourcq". -
On the Electrical Behaviour of Metal Mesh Heating Elements for Resistance Welding of Thermoplastic Composites
This is an Accepted Manuscript of an article published by SAGE in The Journal of Thermoplastic Composite Materials on 2015, available online: DOI: 10.1177/0892705712475012 CHARACTERISATION OF A METAL MESH HEATING ELEMENT FOR CLOSED-LOOP RESISTANCE WELDING OF THERMOPLASTIC COMPOSITES Irene Fernandez Villegasa, Harald E.N. Berseea aStructural Integrity and Composites, Faculty of Aerospace Engineering Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands Corresponding author: Irene Fernandez-Villegas, T:+31152789745, F: +31152781151, [email protected] ABSTRACT Resistance welding is one of the most suitable and mature welding techniques for thermoplastic composites. It uses the heat generated at the welding interface when electric current flows through in a resistive element, frequently a metal mesh. Closed- loop resistance welding relies on indirect temperature feedback from the weld line for process control. Its implementation is more complex than the most common open-loop welding, but on the contrary it does not in principle require the definition of processing windows for each welding configuration and it allows for constant-temperature welding. The temperature at the welding interface can be indirectly monitored through the resistance of the heating element. The relationship between resistance and temperature, expected to be approximately linear for a metal mesh heating element, can then be used to translate the welding temperature into a target resistance value for the process control routine. Despite the apparent straightforwardness of this procedure, the research results presented in this paper prove that different types of characterization tests yield different 1 This is an Accepted Manuscript of an article published by SAGE in The Journal of Thermoplastic Composite Materials on 2015, available online: DOI: 10.1177/0892705712475012 resistance versus temperature relations for a metal mesh heating element, which can lead to significant temperature deviations when used in closed-loop processes.