Chemical Physics 96 Springer Series in Chemical Physics

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Physics 96 Springer Series in Chemical Physics Springer Series in chemical physics 96 Springer Series in chemical physics Series Editors: A. W. Castleman, Jr. J. P. Toennies K. Yamanouchi W. Zinth The purpose of this series is to provide comprehensive up-to-date monographs in both well established disciplines and emerging research areas within the broad fields of chemical physics and physical chemistry. The books deal with both fun- damental science and applications, and may have either a theoretical or an experi- mental emphasis. They are aimed primarily at researchers and graduate students in chemical physics and related fields. Please view available titles in Springer Series in Chemical Physics on series homepage http://www.springer.com/series/676 Astrid Graslund¨ Rudolf Rigler Jerker Widengren Editors Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium With223Figures 123 Editors ProfessorAstridGraslund¨ Professor Jerker Widengren Stockholm University Royal Institute or Technology (KTH) Department of Biophysics Department of Biomolecular Physics 10691 Stockholm, Sweden 10691 Stockholm, Sweden E-Mail: [email protected] E-Mail: [email protected] Professor Rudolf Rigler SwissFederalInstituteofTechnologyLausanne(EPFL) 1015 Lausanne, Switzerland E-Mail: [email protected] Series Editors: Professor A.W. Castleman, Jr. Department of Chemistry, The Pennsylvania State University 152 Davey Laboratory, University Park, PA 16802, USA Professor J.P. Toennies Max-Planck-Institut fur¨ Stromungsforschung¨ Bunsenstrasse 10, 37073 Gottingen,¨ Germany Professor K. Yamanouchi University of Tokyo, Department of Chemistry Hongo 7-3-1, 113-0033 Tokyo, Japan ProfessorW.Zinth Universitat¨ Munchen,Institutf¨ ur¨ Medizinische Optik Ottingerstr.¨ 67, 80538 Munchen,¨ Germany Springer Series in Chemical Physics ISSN 0172-6218 ISBN 978-3-642-02596-9 e-ISBN 978-3-642-02597-6 DOI 10.1007/978-3-642-02597-6 Springer Heidelberg Dordrecht London New York LibraryofCongressControlNumber:2009934497 © Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublicationor parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design:SPiPublisherServices Printed on acid-free paper Springer is a part of Springer Science+Business Media (www.springer.com) Nobel Symposium, June 2008, at the S˚anga S¨aby Conference Foreword By selecting the first week of June 2008 for the Nobel Symposium “Single Molecular Spectroscopy in Chemistry, Physics and Biology”, Rudolf Rigler, Jerker Widengren and Astrid Gr¨aslund have once again won the top prize for Meeting Organizers, providing us with a Mediterranean climate on top of the warm hospitality that is unique to Sweden. The S˚anga S¨aby Conference Center was an ideal place to spend this wonderful week, and the comfort of this beautiful place blended perfectly with the high calibre of the scientific programme. It was a special privilege for me to be able to actively participate in this meeting on a field that is in many important ways complementary to my own research. I was impressed by the interdisciplinary ways in which single molecule spectroscopy has evolved and is currently pursued, with ingredients originating from physics, all branches of chemistry and a wide range of bio- logical and biomedical research. A beautiful concert by Semmy Stahlhammer and Johan Ull´en further extended the interdisciplinary character of the sym- posium. I would like to combine thanks to Rudolf, Jerker and Astrid with a glance into a future of other opportunities to enjoy top-level science combined with warm hospitality in the Swedish tradition. Z¨urich, Kurt W¨uthrich April 2009 Participants of the Nobel-Symposium 138: First row: Sarah Unterkofler, Anders Liljas, Xiao-Dong Su, Birgitta Rigler, Carlos Busta- mante, Toshio Yanagida, Steven Block, Xiaowei Zhuang, Sunney Xie. Second row: Ivan Scheblykin, Lars Thelander, Petra Schwille, Watt W. Webb, Rudolf Rigler, Jerker Widengren, Peter Lu, Shimon Weiss, William E Moerner, David Bensimon. Third row: Anders Ehrenberg, Yu Ming, Fredrik Elinder, Kazuhiko Kinosita, Vladana Vukojevic, Masataka Kinjo, May D Wang, Yu Ohsugi, Shuming Nie, Andreas Engel, Peter G Wolynes, Michel Orrit, Hans Blom, Johan Hofkens. Fourth row: Claus Seidel, Heike Hevekerl, Taekjip Ha, Evangelos Sisamakis, Per Ahlberg, Joseph Nordgren, Kurt Wthrich, Sune Svanberg, Bengt Nordn, Paul Alivisatos, Per Thyberg, Richard Keller, Andriy Chmyrov, Johan Elf, Per Rigler, Kai Hassler, Gustav Persson, J¨urgen K¨ohler, Eric Betzig, Thomas Schmidt, Christoph Br¨auchle, Elliot Elson, M˙ans Ehrenberg, Dimitrios K Papadopoulos, Ingemar Lundstr¨om, Horst Vogel, Stefan Wennmalm, Hermann Gaub, H˚akan Wennerstr¨om, Yosif Klafter, Julio Fernandez. Preface The development of Single Molecule Detection and Spectroscopy started in the late eighties. The developments came from several areas. Fluorescence-based single molecule spectroscopy developed in particular from (i) holeburning and zero phonon spectroscopy of organic molecules at cryo temperatures and (ii) confocal fluctuation spectroscopy of emitting molecules at elevated tempera- tures. Of crucial importance for these approaches was the ability to suppress background radiation to the point where signals of single molecules could be detected. Today, confocal single molecule analysis is the dominating approach, particularly in chemistry and in biosciences, but attempts to combine analysis at low and high temperatures are being pursued. In parallel with this development, significant progress has been made in the field of single molecule force spectroscopy. Approaches based on atomic force microscopy, optical trapping, microneedles or magnetic beads have made it possible to investigate mechanical properties, and not least, the interplay between mechanics and chemistry on a single molecule level. In June 1999 the first Nobel Conference on Single Molecule Spectroscopy was organized in S¨odergarn Mansion, Liding¨o (Sweden) and a comprehensive presentation of the results obtained in the first decade of single molecule analysis was given (Orrit, Rigler, Basche (eds.) 1999) Now after almost another decade, it was of interest to find out whether the developments and promises presented at the S¨odergarn Conference were still valid or had even exceeded our expectations. The contributions to this volume come from the pioneers of the early period of single molecule spectroscopy as well as from other laboratories which have made important contributions to demonstrate the importance of SM analysis in various applications in Chemistry, Physics and BioSciences. The Nobel Symposium No. 138 dedicated to Single Molecule Spectroscopy in Chemistry, Physics and Biosciences was held at the Mansion S˚anga-S¨aby situated at the island of Eker¨oinLakeM¨alaren outside Stockholm, from June 1–6, 2008. The Conference was blessed with pleasant weather and sunshine all the days. Together with the wonderful surroundings this contributed to many XPreface stimulating opportunities for individual discussions, in parallel with outdoor excursions including swimming in the lake, jogging tours, walks in the forests and sauna. The Symposium started with an evening session on molecules and dynamic processes by Kurt W¨uthrich and Martin Karplus. The program of the next days included the presentation of the fields which initiated single molecule analysis in cryo temperatures (Moerner,Orrit) followed by confocal analysis of molecular fluctuations at room temperature (Keller, Rigler, Elson, Webb, Widengren, Schwille). Major topics in the following sessions included quan- tum dots (Alivasatos, Nie), the analysis of conformational dynamics (Weiss, Ha, Seidel), the motion of molecular motors (Yanagida, Kinosita) and repli- cating assemblies (Bustamante, Block). A special session was devoted to the analysis of forces operating on single molecules (Gaub, Fernandez) as well as to high resolution imaging of single molecules (Hell, Betzig, Zhuang, Engel). Stochastic single molecule events at the cellular level were another important topic (Xie, Schmidt, Vogel, Wolynes) as well as single molecule enzymology (Lu, Xie, Rigler, Hofkens, Klafter, K¨ohler), which together with atomic force microscopy formed the basis for intense discussions. Several presentations brought the single molecule methodologies and perspectives to a sub-cellular and cellular context (Rigler, Schwille, Weiss, Bensimon, Axner, Hell, Betzig, Zhuang, Schmidt, Xie, Orwar, Br¨auchle), which seems to form one of several exciting future directions of this field. A special event was the evening concert with Semmy Stalhammer on the violin and Johan Ull´en on the piano. The violin sonata of Cesar Franck and its masterly performance matched perfectly the level and tension of the scientific sessions. As organizers we would like to thank all the invited speakers for their excellent
Recommended publications
  • Martin Karplus &LISTING RELEASE IMMEDIATE for 7:30 PM PM 7:30 SEP 24 52 East 11 Cultural New Forum Austrian York SEP 25 1953 Photographs MARTIN KARPLUS Exhib
    FOR IMMEDIATE RELEASE & LISTING Exhibition: MARTIN KARPLUS Photographs 1953 – 2009 SEP 25 – NOV 28, 2014 Austrian Cultural Forum New York 11 East 52nd Street, New York SEP 24 | EXHIBITION OPENING 7:30 PM – 9PM (no RSVP req'd) Self Portrait of Martin Karplus, Marineland of the pacific, California, USA 1956 Martin Karplus is a chemist, Professor emeritus at Harvard University, and Nobel laureate who has spent the past treet treet york| new | ny 10022 | phone:(212) 319 5300 | (212) fax: 644 8660 [email protected] | | www.acfny.org fifty years consumed by a passion for documenting humanity in thousands of photographs. Sourced from Europe, s Asia, and the Americas, these photographs candidly capture societies at pivotal moments in their cultural and nd economic development in rich Kodachrome color. From September 25 through November 28, the Austrian Cultural Forum New York will present these works in his first ever New York retrospective, Martin Karplus | Photographs 1953- 2009. In 1953, nearing the completion of his PhD at Cal Tech, the Austrian-born, American Karplus received his uncle’s Leica camera as a gift from his parents and headed to Oxford University on a fellowship. In the ensuing years he austriancultural forum | east 11 52 would spend months on end exploring the globe, documenting what he describes in his artist statement as a “vision of a world, much of which no longer exists”. Images from the Netherlands, Denmark, Greece, Italy, France, Yugoslavia, and Germany present the closure of a bygone lifestyle as societies modernized and rebuilt in the wake of World War II and the dawning of the Cold War.
    [Show full text]
  • Nfap Policy Brief » October 2019
    NATIONAL FOUNDATION FOR AMERICAN POLICY NFAP POLICY BRIEF» OCTOBER 2019 IMMIGRANTS AND NOBEL PRIZES : 1901- 2019 EXECUTIVE SUMMARY Immigrants have been awarded 38%, or 36 of 95, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics since 2000.1 In 2019, the U.S. winner of the Nobel Prize in Physics (James Peebles) and one of the two American winners of the Nobel Prize in Chemistry (M. Stanley Whittingham) were immigrants to the United States. This showing by immigrants in 2019 is consistent with recent history and illustrates the contributions of immigrants to America. In 2018, Gérard Mourou, an immigrant from France, won the Nobel Prize in Physics. In 2017, the sole American winner of the Nobel Prize in Chemistry was an immigrant, Joachim Frank, a Columbia University professor born in Germany. Immigrant Rainer Weiss, who was born in Germany and came to the United States as a teenager, was awarded the 2017 Nobel Prize in Physics, sharing it with two other Americans, Kip S. Thorne and Barry C. Barish. In 2016, all 6 American winners of the Nobel Prize in economics and scientific fields were immigrants. Table 1 U.S. Nobel Prize Winners in Chemistry, Medicine and Physics: 2000-2019 Category Immigrant Native-Born Percentage of Immigrant Winners Physics 14 19 42% Chemistry 12 21 36% Medicine 10 19 35% TOTAL 36 59 38% Source: National Foundation for American Policy, Royal Swedish Academy of Sciences, George Mason University Institute for Immigration Research. Between 1901 and 2019, immigrants have been awarded 35%, or 105 of 302, of the Nobel Prizes won by Americans in Chemistry, Medicine and Physics.
    [Show full text]
  • Modeling Atomic Structure of the Emre Multidrug Pump to Design Inhibitor Peptides
    PI: Karplus, Martin Title: Modeling atomic structure of the EmrE multidrug pump to design inhibitor peptides Received: 06/14/2013 FOA: PA11-262 Council: 01/2014 Competition ID: ADOBE-FORMS-B2 FOA Title: NIH SMALL RESEARCH GRANT PROGRAM (PARENT R03) 1 R03 AI111416-01 Dual: Accession Number: 3599020 IPF: 3212901 Organization: HARVARD UNIVERSITY Former Number: Department: Chemistry and Chemical Biology IRG/SRG: ZRG1 MSFD-N (08)F AIDS: N Expedited: N Subtotal Direct Costs Animals: N New Investigator: N (excludes consortium F&A) Humans: N Early Stage Investigator: N Year 1: Clinical Trial: N Year 2: Current HS Code: 10 HESC: N Senior/Key Personnel: Organization: Role Category: Martin Karplus Ph.D. Harvard University PD/PI Victor Ovchinnikov Ph.D Harvard University Co-Investigator Always follow your funding opportunity's instructions for application format. Although this application demonstrates good grantsmanship, time has passed since the grantee applied. The sample may not reflect the latest format or rules. NIAID posts new samples periodically: https://www.niaid.nih.gov/grants-contracts/sample-applications The text of the application is copyrighted. You may use it only for nonprofit educational purposes provided the document remains unchanged and the PI, the grantee organization, and NIAID are credited. Note on Section 508 conformance and accessibility: We have reformatted these samples to improve accessibility for people with disabilities and users of assistive technology. If you have trouble accessing the content, please contact the NIAID Office of Knowledge and Educational Resources at [email protected]. Principal Investigator/Program Director (Last, first, middle): Karplus, Martin Specific Aims Many aromatic compounds are used as antibiotic, antiseptic, and antineoplastic agents in the control of pathogens.
    [Show full text]
  • Interview with Harry B. Gray
    HARRY B. GRAY (b. 1935) INTERVIEWED BY SHIRLEY K. COHEN SEPTEMBER 2000 – MARCH 2001 AND HEIDI ASPATURIAN JANUARY – MAY 2016 Photo taken in 1997 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Chemistry Abstract Two interviews in seven and six sessions respectively, with Harry Gray, the Arnold O. Beckman Professor of Chemistry. The first series of interviews, conducted in 2000-01 with Shirley Cohen, deals with Gray’s life and career up to that time. The second series, conducted in 2016 with Heidi Aspaturian, covers the period 2001–2016, expands on a number of topics discussed in the first interview series, and adds to the account of Gray’s earlier decades. Discussion topics common to the two interviews are cross-referenced in both texts. 2000–01 Interview Gray opens this interview series with a description of his family roots and formative years in Kentucky’s tobacco-farming country, including his youthful career with the local newspaper and early interest in chemistry. He then provides an account of his undergraduate studies at Western Kentucky State College (BS 1957), graduate work with F. Basolo and R. Pearson at Northwestern University http://resolver.caltech.edu/CaltechOH:OH_Gray_H (PhD 1960), and postdoctoral work with C. Ballhausen at the University of Copenhagen, where he pioneered the development of ligand field theory. As a professor at Columbia University, he continued work at the frontiers of inorganic chemistry, published several books and, through an affiliation with Rockefeller University, was drawn to interdisciplinary research, which led him to accept a faculty position at Caltech in 1966. He talks about his approach to teaching and his research in inorganic chemistry and electron transfer at Caltech, his interactions with numerous Caltech personalities, including A.
    [Show full text]
  • Nobel Special Issue of Chemical Physics Letters
    Accepted Manuscript Editorial Nobel Special Issue of Chemical Physics Letters David Clary, Mitchio Okumura, Villy Sundstrom PII: S0009-2614(13)01325-0 DOI: http://dx.doi.org/10.1016/j.cplett.2013.10.045 Reference: CPLETT 31683 To appear in: Chemical Physics Letters Please cite this article as: D. Clary, M. Okumura, V. Sundstrom, Nobel Special Issue of Chemical Physics Letters, Chemical Physics Letters (2013), doi: http://dx.doi.org/10.1016/j.cplett.2013.10.045 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Nobel Special Issue of Chemical Physics Letters Editorial The hallmark of Chemical Physics Letters is the fast publication of urgent communications of the highest quality. It has not escaped our notice that this policy has allowed several of the breakthrough papers in chemistry to be published in our journal. Indeed, looking through Chemical Physics Letters over the last 42 years we found papers published by as many as 15 authors who went on subsequently to win the Nobel Prize in Chemistry for work linked to their articles. Furthermore, several of these papers were referenced in the Nobel citations. We thought our readers would find it of interest to see a collection of these papers brought together and introduced with summaries explaining their significance and written by the Nobelists themselves, close colleagues or editors of the journal.
    [Show full text]
  • Development of Multiscale Models for Complex Chemical Systems
    9 OCTOBER 2013 Scientifc Background on the Nobel Prize in Chemistry 2013 DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS THE ROYAL SWEDISH ACADEMY OF SCIENCES has as its aim to promote the sciences and strengthen their infuence in society. BOX 50005 (LILLA FRESCATIVÄGEN 4 A), SE-104 05 STOCKHOLM, SWEDEN Nobel Prize® and the Nobel Prize® medal design mark TEL +46 8 673 95 00, [email protected] HTTP://KVA.SE are registrated trademarks of the Nobel Foundation Scientific background on the Nobel Prize in Chemistry 2013 DEVELOPMENT OF MULTISCALE MODELS FOR COMPLEX CHEMICAL SYSTEMS The Royal Swedish Academy of Science has decided to award the 2013 Nobel Prize in Chemistry to Martin Karplus, Harvard U., Cambridge, MA, USA Michael Levitt, Stanford U., Stanford, CA, USA and Arieh Warshel, U. Southern Ca., Los Angeles, CA, USA For “Development of Multiscale Models for Complex Chemical Systems” 1 (10) Multiscale models for Complex Chemical Systems The Nobel Prize in Chemistry 2013 has been awarded to Martin Karplus, Michael Levitt and Arieh Warshel for development of multiscale models of complex chemical systems. Background Chemistry and Biochemistry have developed very rapidly during the last 50 years. This applies to all parts of the fields, but the development of Biochemistry is perhaps the most striking one. In the first half of these 50 years the determination of protein structure was perhaps the field where the largest efforts were spent and the largest progress was made. The standard methods to analyse the structure of proteins are X-ray crystallography of crystals or analysing the spin – spin couplings obtained from NMR-spectroscopy.
    [Show full text]
  • Profile of Martin Karplus, Michael Levitt, and Arieh Warshel, 2013
    PROFILE Profile of Martin Karplus, Michael Levitt, and Arieh Warshel, 2013 Nobel Laureates in Chemistry Alan R. Fersht1 Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom You can read the Nobel Prize Web site for affectionately called “LMB,” thehomeof the best description of the science behind the Sydney Brenner, Francis Crick, John Ken- 2013 Nobel Prize in Chemistry. However, let drew, Aaron Klug, Cesar Milstein, Max me tell you what the beginnings of the sci- Perutz, and Fred Sanger—all now legends ence and its immediate impact were really in molecular biology. LMB was small and like–a personal account from a close by- overcrowded. Theoreticians were crammed stander and indirect collaborator in a neigh- side by side in small offices; experimentalists boring field who grew up scientifically with did not have offices, but sat at the end of the two of the laureates, and knows well the bench for paper work. Nobel laureates occu- third. The new laureates’ papers in the mid- pied tiny cubbyholes, and Sydney Brenner 1970s changed the way we think about pro- and Francis Crick shared a small office. We Michael Levitt. Credit: Linda A. Cicero/Stan- teins and set up a new area of science, which metallofthetimeincorridors,andinthe ford News Service. immediately and radically influenced and in- canteen for coffee, lunch, and tea. There spired me, along with many others. was continual cross-fertilization of ideas and The 1960s and 1970s were a time of great discussions among the different strands of timewasratheresotericandmainlyappealed excitement in the world of proteins. Their scientists.
    [Show full text]
  • Development of Multiscale Models for Complex Chemical Systems from H+H2 to Biomolecules Nobel Lecture, December 8, 2013
    Development of Multiscale Models for Complex Chemical Systems From H+H2 to Biomolecules Nobel Lecture, December 8, 2013 by Martin Karplus Department of Chemistry & Chemical Biology, Harvard University, U.S.A. and Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, France. “Do not go where the path may lead, go instead where there is no path and leave a trail.” Ralph Waldo Emerson araphrasing Ralph Waldo Emerson, a 19th century New England philoso- P pher and essayist, I shall try to show in this lecture how I have gone where there was no path and lef a trail. It leads from trajectory studies of the reactions of small molecules to molecular dynamics simulations of macromolecules of biological interest. In developing computational methods to study complex chemical systems, the essential element has been to introduce classical concepts wherever possible, to replace the much more time-consuming quantum mechanical calculations. In 1929 [1] Paul Dirac (Nobel Prize in Physics, 1933) wrote (Fig. 1) the now familiar statement: Te underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus 63 6490_Book.indb 63 11/4/14 2:25 PM 64 The Nobel Prizes FIGURE 1. Quote from P.A.M. Dirac in 1929 (reference 1). completely known, and the difculty is only that the exact application of these laws leads to equations that are much too complicated to be soluble. However, the paragraph goes on to a less familiar part (Fig. 2): It therefore becomes desirable that approximate practical methods of applying quantum mechanics should be developed, which can lead FIGURE 2.
    [Show full text]
  • Nobel Laureate Levitt Did Main Work 'When He Was 20' 9 October 2013
    Nobel laureate Levitt did main work 'when he was 20' 9 October 2013 "I thought I was dreaming. My cell phone never rings. I usually only get text messages or emails. At first I thought it was a wrong number," he said of the call that came just before the official announcement at 2:45 am California time (0945 GMT). Levitt said his first reaction was "disbelief, as it always is. My heart rate jumped." Levitt, a US-British citizen who now works at Stanford University School of Medicine in California, won the Nobel together with Martin Karplus, a US-Austrian citizen, and Arieh Warshel of the US and Israel. Photos of scientists (L-R) Martin Karplus, Michael Levitt and Arieh Warshel are displayed on a screen at a press They were honoured for devising computer models conference to announce the laureates of the 2013 Nobel to simulate chemical processes, providing a Prize in Chemistry on October 9, 2013 in Stockholm revolutionary tool for drug designers and engineers. Levitt said he would be attending the gala Nobel Prize ceremony in December in Stockholm with his One of the three winners of the Nobel Chemistry family, including his 98-year-old mother—who was Prize, Michael Levitt, told AFP Wednesday he was "speechless" over his prize—and a two-year-old essentially awarded for work he did when he was grandson. 20 years old. © 2013 AFP Levitt, speaking from his California home, said he felt like he had a "triple espresso" after being informed that the prize was his for research done decades ago.
    [Show full text]
  • Nash Was Placed Upon the Permanent Records of the Faculty
    At a Meeting of the Faculty of Arts and Sciences on May 1, 2018, the following tribute to the life and service of the late Leonard Kollender Nash was placed upon the permanent records of the Faculty. LEONARD KOLLENDER NASH Born: October 27, 1918 Died: November 9, 2013 “He doesn’t really lecture—he dances and cajoles.” When Leonard K. Nash, William R. Kenan, Jr., Professor of Chemistry, Emeritus, died at age 95, droves of former students, across decades and countries, lauded his rare ability to inspire and enchant. A 1977 Harvard Crimson Confi Guide named him one of the “top ten lecturers teaching in the College,” a title that fails to capture the eccentric, passionate, and benevolent flair that stimulated generations of students to pursue chemistry. Leonard enrolled in Harvard College in 1935, at the tender age of 16. After his undergraduate studies, he continued on at Harvard to earn his doctorate in analytical chemistry in 1944. He then taught briefly at the University of Illinois before returning to Harvard in 1948 as a faculty member. Here, he conducted research in thermodynamics and statistical mechanics, chaired the department from 1971 to 1974, and converted countless students to a love of chemistry. Leonard commanded entry-level classes with contagious joy. Once, he swallowed a beaker of what appeared to be fresh blood, perhaps to capture the attention of a lethargic freshman class or demonstrate an obscure scientific point. Full of relentless energy, he would run across his amphitheater to set up his own slides or respond to a student’s incorrect answer with a playful jab.
    [Show full text]
  • Annual Report 2017
    67th Lindau Nobel Laureate Meeting 6th Lindau Meeting on Economic Sciences Annual Report 2017 The Lindau Nobel Laureate Meetings Contents »67 th Lindau Nobel Laureate Meeting (Chemistry) »6th Lindau Meeting on Economic Sciences Over the last 67 years, more than 450 Nobel Laureates have come 67th Lindau Nobel Laureate Meeting (Chemistry) Science as an Insurance Policy Against the Risks of Climate Change 10 The Interdependence of Research and Policymaking 82 to Lindau to meet the next generation of leading scientists. 25–30 June 2017 Keynote by Nobel Laureate Steven Chu Keynote by ECB President Mario Draghi The laureates shape the scientific programme with their topical #LiNo17 preferences. In various session types, they teach and discuss Opening Ceremony 14 Opening Ceremony 86 scientific and societal issues and provide invaluable feedback Scientific Chairpersons to the participating young scientists. – Astrid Gräslund, Professor of Biophysics, Department of New Friends Across Borders 16 An Inspiring Hothouse of Intergenerational 88 Biochemistry and Biophysics, Stockholm University, Sweden By Scientific Chairpersons Astrid Gräslund and Wolfgang Lubitz and Cross-Cultural Exchange Outstanding scientists and economists up to the age of 35 are – Wolfgang Lubitz, Director, Max Planck Institute By Scientific Chairpersons Torsten Persson and Klaus Schmidt invited to take part in the Lindau Meetings. The participants for Chemical Energy Conversion, Germany Nobel Laureates 18 include undergraduates, PhD students as well as post-doctoral Laureates 90 researchers. In order to participate in a meeting, they have to Nominating Institutions 22 pass a multi-step application and selection process. 6th Lindau Meeting on Economic Sciences Nominating Institutions 93 22–26 August 2017 Young Scientists 23 #LiNoEcon Young Economists 103 Scientific Chairpersons SCIENTIFIC PROGRAMME – Martin F.
    [Show full text]
  • Fasciculata at 2.4-A Resolution (Glutathione Reductase/Oxidative Stress/Trypanosomiasls/Protein Crystaoraphy/Drug Design) JOHN KURIYAN*T, XIANG-PENG Kongt, T
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 8764-8768, October 1991 Biochemistry X-ray structure of trypanothione reductase from Crithidia fasciculata at 2.4-A resolution (glutathione reductase/oxidative stress/trypanosomiasls/protein crystaoraphy/drug design) JOHN KURIYAN*t, XIANG-PENG KONGt, T. S. R. KRISHNA*t, ROBERT M. SWEETt, NICHOLAS J. MURGOLO§, HELEN FIELD§, ANTHONY CERAMI§, AND GRAEME B. HENDERSON§¶ *Howard Hughes Medical Institute and tLaboratory of Molecular Biophysics, and §Laboratory of Medical Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10021; and tDepartment of Biology, Brookhaven National Laboratory, Upton, NY 11973 Communicated by Martin Karplus, July 5, 1991 ABSTRACT Trypanosomes and related protozoan para- promising target for the development ofinhibitors that do not sites lack glutathione reductase and possess instead a closely react with the host enzyme. related enzyme that serves as the reductant of a bis(glu- Insight into the basis of substrate discrimination in these tathione)-spermidine conjugate, trypanothione. The human enzymes has been obtained by studies on the reduction by TR and parasite enzymes have mutually exclusive substrate spec- of T(S)2 analogs (7) and by site-directed mutagenesis and ificities, providing a route for the design of therapeutic agents molecular modeling of TR and GR (10-13). These studies by specific inhibition of the parasite enzyme. We report here have been aided greatly by the x-ray structures of GR (at the three-dimensional structure of trypanothione reductase 1.54-A resolution) and GR complexed with NADPH and from Crithidiafasciculata and show that it closely resembles the GSSG (at 2-A resolution) that have been determined by structure of human glutathione reductase.
    [Show full text]