EVOLUTION of PHENOTYPIC PLASTICITY: INSIGHTS from ECHINOID LARVAE by BENJAMIN G. MINER a DISSERTATION PRESENTED to the GRADUATE

Total Page:16

File Type:pdf, Size:1020Kb

EVOLUTION of PHENOTYPIC PLASTICITY: INSIGHTS from ECHINOID LARVAE by BENJAMIN G. MINER a DISSERTATION PRESENTED to the GRADUATE EVOLUTION OF PHENOTYPIC PLASTICITY: INSIGHTS FROM ECHINOID LARVAE By BENJAMIN G. MINER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Benjamin G. Miner This dissertation is dedicated to my parents, who always supported my dreams. ACKNOWLEDGMENTS This dissertation could not have been completed and would not have been as enjoyable without the help and support of many people. I would like to first acknowledge my late advisor Larry R. McEdward for his encouragement and support. I will miss him. I also thank my current advisors, Craig Osenberg and Colette St Mary, for adopting me and challenging me to think more critically. Marta Wayne, David Julian, Gustav Paulay, Dan Brazeau, and Kaoru Kitajima helped me to think more broadly. In addition, I thank Diana Padilla, Steven Morgan, Greg Wray, Richard Strathmann, John Lawrence, and Richard Emlet for all their time and help. My fellow graduate students provided an excellent learning environment. I would especially like to thank James Vonesh for almost always being louder than me, and for his contagious excitement for science. I would also like to thank my co-conspirators (Nat Seavy, Mike McCoy, Suhel Quader, Becca Hale, Kavita Isvaran, Eric Sanford, Bruno Pernet, Jenny Hoffman, Jason Hodin, and Marney Pratt) who helped distract me with many side projects. My 13 labmates exposed me to a variety of disciplines and organisms through their various research interests. I benefited greatly from our lab discussions. Members of the Friday Harbor Laboratories Losers Club, Jon Allen (president), Scot Santagata (ex-president), Eric Edsinger-Gonzalez, Tansy Clay, and Melissa Wilson, made my time at FHL much more enjoyable. I thank the directors of the Friday Harbor Laboratories, Dennis Willows; and the Bodega Marine Laboratories, Ernie Chang, for providing me with space. I thank the staff iv at both institutions for their assistance. Grants in aid of research from the Society of Comparative and Integrated Biology, and Sigma XI; and the Alan Kohn, Robert Fernald, McLaughlin, and Grinter fellowships funded my dissertation research. Lastly, I thank Melissa Wilson and my family for their support, encouragement, and love. v TABLE OF CONTENTS Page ACKNOWLEDGMENTS.................................................................................................. iv LIST OF TABLES ...........................................................................................................viii LIST OF FIGURES............................................................................................................ix ABSTRACT........................................................................................................................x 1 INTRODUCTION: A BRIEF REVIEW OF PHENOTYPIC PLASTICITY.............. 1 Introduction.................................................................................................................. 1 What is Phenotypic Plasticity?..................................................................................... 2 Types of Phenotypic Plasticity..................................................................................... 4 Adaptive vs. Nonadaptive Phenotypic Plasticity ......................................................... 7 Testing for Adaptive Phenotypic Plasticity ............................................................... 11 The Evolutionary and Ecological Consequences of Plasticity................................... 14 2 DIFFERENT CUES FOR DIFFERENT FOLKS: THE TIMING AND CUES OF INDUCIBLE OFFENSES IN ECHINOID LARVAE............................................... 16 Introduction................................................................................................................ 16 Materials and Methods............................................................................................... 17 Results........................................................................................................................ 23 Discussion.................................................................................................................. 26 Pre-Feeding Response......................................................................................... 26 Different Species Use Different Cues................................................................. 27 3 EVOLUTION OF PHENOTYPIC PLASTICITY IN SEA URCHIN LARVAE: A TRADE-OFF BETWEEN ARM LENGTH AND STOMACH SIZE....................... 30 Introduction................................................................................................................ 30 Materials and Methods............................................................................................... 32 Results........................................................................................................................ 36 Discussion.................................................................................................................. 38 vi 4 EFFECTS OF FINE GRAIN ENVIRONMENTAL VARIABILITY ON MORPHOLOGICAL PLASTICITY ......................................................................... 43 Introduction................................................................................................................ 43 Materials and Methods............................................................................................... 46 Results........................................................................................................................ 50 Discussion.................................................................................................................. 52 5 EFFECTS OF ENVIRONMENTAL VARIATION ON THE EVOLUTION OF PHENOTYPIC PLASTICITY................................................................................... 56 Introduction................................................................................................................ 56 The Model.................................................................................................................. 58 Reaction Norms .................................................................................................. 58 Environmental Variation..................................................................................... 59 Within-Individual Variation ............................................................................... 60 Among-Individual Variation............................................................................... 61 Benefits ............................................................................................................... 62 Costs.................................................................................................................... 63 Calculating Fitness.............................................................................................. 64 Results........................................................................................................................ 65 Discussion.................................................................................................................. 67 6 SUMMARY AND CONCLUSIONS ........................................................................ 72 Adaptive Plasticity in Plutei....................................................................................... 72 Environmental Variation and Phenotypic Plasticity .................................................. 75 Future Directions........................................................................................................ 76 Adaptive Larval Feeding-Structure Plasticity..................................................... 76 Environmental Variation and the Evolution of Plasticity................................... 76 Other Directions.................................................................................................. 77 APPENDIX A FITNESS CALCULATIONS FOR THE SLOPE OF PLASTICITY ....................... 78 B FITNESS CALCULATIONS FOR THE RANGE OF PLASTICITY...................... 79 LIST OF REFERENCES .................................................................................................. 80 BIOGRAPHICAL SKETCH ............................................................................................ 93 vii LIST OF TABLES Table page 2-1. Results of a nested ANCOVA .................................................................................. 23 3-1. Results of a nested 2-factor ANCOVA..................................................................... 37 6-1. Review of studies demonstrating feeding-structure plasticity in echinoids.............. 74 viii LIST OF FIGURES Figure page 1-1. Graph of a reaction norm............................................................................................ 2 2-1. Photomicrograph of a pluteus (S. purpuratus).......................................................... 21 2-2. Response of postoral arm length in sea urchin larvae (S. purpuratus) to putative cues.. ........................................................................................................................ 24 2-3. Response of postoral arm length in sanddollar larvae (D. excentricus) to putative cues.. ........................................................................................................................ 25 3-1. Photomicrograph of a pluteus (S. purpuratus).........................................................
Recommended publications
  • How Morphological Development Can Guide Evolution Sam Kriegman1,*, Nick Cheney1, and Josh Bongard1
    How morphological development can guide evolution Sam Kriegman1,*, Nick Cheney1, and Josh Bongard1 1University of Vermont, Department of Computer Science, Burlington, VT, USA *[email protected] ABSTRACT Organisms result from adaptive processes interacting across different time scales. One such interaction is that between development and evolution. Models have shown that development sweeps over several traits in a single agent, sometimes exposing promising static traits. Subsequent evolution can then canalize these rare traits. Thus, development can, under the right conditions, increase evolvability. Here, we report on a previously unknown phenomenon when embodied agents are allowed to develop and evolve: Evolution discovers body plans robust to control changes, these body plans become genetically assimilated, yet controllers for these agents are not assimilated. This allows evolution to continue climbing fitness gradients by tinkering with the developmental programs for controllers within these permissive body plans. This exposes a previously unknown detail about the Baldwin effect: instead of all useful traits becoming genetically assimilated, only traits that render the agent robust to changes in other traits become assimilated. We refer to this as differential canalization. This finding also has implications for the evolutionary design of artificial and embodied agents such as robots: robots robust to internal changes in their controllers may also be robust to external changes in their environment, such as transferal from simulation to reality or deployment in novel environments. Introduction The shape of life changes on many different time scales. From generation to generation, populations gradually increase in complexity and relative competency. At the individual level, organisms grow from a single-celled egg and exhibit extreme postnatal change as they interact with the outside world during their lifetimes.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Reaction Norms for the Study of Genotype- Environment Interaction for Growth and Indicator Traits of Sexual Precocity in Nellore Cattle
    Reaction norms for the study of genotype- environment interaction for growth and indicator traits of sexual precocity in Nellore cattle M.V.A. Lemos, H.L.J. Chiaia, M.P. Berton, F.L.B. Feitosa, C. Aboujaoude, G.C. Venturini, H.N. Oliveira, L.G. Albuquerque and F. Baldi Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP, Brasil Corresponding author: F. Baldi E-mail: [email protected] Genet. Mol. Res. 14 (2): 7151-7162 (2015) Received August 8, 2014 Accepted February 5, 2015 Published June 29. 2015 DOI http://dx.doi.org/10.4238/2015.June.29.9 ABSTRACT. The objective of this study was to quantify the magnitude of genotype-environment interaction (GxE) effects on age at first calving (AFC), scrotal circumference (SC), and yearling weight (YW) in Nellore cattle using reaction norms. For the study, 89,152 weight records of female and male Nellore animals obtained at yearling age were used. Genetic parameters were estimated with a single-trait random- regression model using Legendre polynomials as base functions. The heritability estimates were of low to medium magnitude for AFC (0.05 to 0.47) and of medium to high magnitude for SC (0.32 to 0.51) and YW (0.13 to 0.72), and increased as the environmental gradient became more favorable. The genetic correlation estimates ranged from 0.25 to 1.0 for AFC, from 0.71 to 1.0 for SC, and from 0.42 to 1.0 for YW. High Spearman correlation coefficients were obtained for the three traits, ranging from 0.97 to 0.99.
    [Show full text]
  • Phenotypic Plasticity and Plant Adaptation
    Acta Bot. Neerl. 44(4), December 1995, p. 363-383 * Phenotypic plasticity and plant adaptation S.E. Sultan Department of Biology, Wesleyan University, Middletown, CT 06459-0170, USA SUMMARY This paper focuses on phenotypic plasticity as a major mode of adaptation in plants. A methodological critique examines difficulties in studying plasticity, including the conceptually critical distinction between functionally adaptive and inevitable aspects of response. It is that argued plasticity studies depend critically upon the genotypic the and factor sample, choice of environmental factors states, and the definitionof phenotypic traits. Examples are drawn from recent studies to showing adaptive response by genotypes physical aspects of the environment, as well as to biotic factors such as neighbour density and the presence of bacterial symbionts. Alterations of offspring traits by parental plants of Polygonum persicaria are discussed as a cross-generational aspect of plastic response to environment. Finally, individual plasticity and local ecotypes are alternative bases of examined as species ecological breadth, and these alternatives methodological problems in distinguishing are discussed. Key-words: adaptation, maternal effects, norm of reaction, phenotypic plasticity, Polygonum, species distribution. INTRODUCTION Natural environments inevitably vary, both spatially and temporally. According to the classic neo-Darwinian model, organisms accommodate that variation by means of natural selection, which through evolutionary time matches specific genotypes and environments. By assuming a simple Mendelian relationship of genotype to phenotype, this powerful model provides a genetic mechanism for adaptive phenotypic changes in In this I wish to focus second mode of populations. paper on a major adaptation, one which is becoming particularly well understood in plants: the capacity of a single genotype to produce different, functionally appropriate phenotypes in different This environments, or adaptive phenotypic plasticity.
    [Show full text]
  • Genomic and Environmental Determinants and Their Interplay Underlying Phenotypic Plasticity
    Genomic and environmental determinants and their interplay underlying phenotypic plasticity Xin Lia,1, Tingting Guoa,1,QiMua, Xianran Lia,2, and Jianming Yua,2 aDepartment of Agronomy, Iowa State University, Ames, IA 50011 Edited by Magnus Nordborg, Gregor Mendel Institute, and accepted by Editorial Board Member Joseph R. Ecker May 11, 2018 (received for review October 19, 2017) Observed phenotypic variation in living organisms is shaped by To understand G × E, we initiated a focused study in 2010 on genomes, environment, and their interactions. Flowering time under sorghum, a model crop species (10). Flowering time is a typical natural conditions can showcase the diverse outcome of the gene– subject in G × E research (11–13) and has significant bearing on environment interplay. However, identifying hidden patterns and spe- evolution and adaptation of plants to different environments (14, cific factors underlying phenotypic plasticity under natural field con- 15). Following our initial observation of the altered flowering ditions remains challenging. With a genetic population showing times for two sorghum inbreds in summer and winter nurseries, dynamic changes in flowering time, here we show that the integrated extensive phenotyping and genetic analysis were conducted with analyses of genomic responses to diverse environments is powerful to a mapping population. Expanding the testing to two additional reveal the underlying genetic architecture. Specifically, the effect con- summer nurseries at a higher latitude site and a summer planting at the winter nursery site generated additional interesting ob- tinuum of individual genes (Ma1, Ma6, FT,andELF3) was found to vary in size and in direction along an environmental gradient that was servations.
    [Show full text]
  • 1 Generalized Norms of Reaction for Ecological Developmental Biology
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Philsci-Archive Generalized Norms of Reaction for Ecological Developmental Biology Sahotra Sarkar* and Trevon Fuller Biodiversity and Biocultural Conservation Laboratory, Section of Integrative Biology and Department of Philosophy, University of Texas at Austin, 1 Texas Longhorns, #C3500, Austin, TX 78712 –1180. Abstract A standard norm of reaction (NoR) is a graphical depiction of the phenotypic value of some trait of an individual genotype in a population as a function an environmental parameter. NoRs thus depict the phenotypic plasticity of a trait. The topological properties of NoRs for sets of different genotypes can be used to infer the presence of (non-linear) genotype-environment interactions. While it is clear that many NoRs are adaptive, it is not yet settled whether their evolutionary etiology should be explained by selection on the mean phenotypic trait values in different environments or whether there are specific genes conferring plasticity. If the second alternative is true the NoR is itself an object of selection. Generalized NoRs depict plasticity at the level of populations or subspecies within a species, species within a genus, or taxa at higher levels. Historically, generalized NoRs have routinely been drawn though rarely explicitly recognized as such. Such generalized NoRs can be used to make evolutionary inferences at higher taxonomic levels in a way analogous to how standard NoRs are used for microevolutionary inferences. Running head: Generalized Norms of Reaction. Keywords: Norm of reaction, reaction norm, phenotypic plasticity, developmental evolution. * Corresponding author; e-mail: <[email protected]>; Phone: 1 512 232 7122; FAX: 1 512 471 4806.
    [Show full text]
  • Phenotypic Plasticity of Feeding Structures in Marine Invertebrate Larvae
    CHAPTER 8 Phenotypic Plasticity of Feeding Structures in Marine Invertebrate Larvae Justin S. McAlister and Benjamin G. Miner Researchers have worked over the last thirty years Scheiner (2004). Here we summarize some of the to examine and understand phenotypic plasticity main concepts in order to facilitate discussion of in larvae of marine invertebrates. These studies plasticity in marine invertebrate larvae later in the range from documenting the association between chapter. Phenotypic plasticity is defined as the abil- algal food availability and larval morphology in ity of a genotype to produce different phenotypes different species to examining the ecological and (developmental, physiological, morphological, be- evolutionary implications of the plastic response. havioral, or life history traits) in response to differ- However, investigators have used disparate sys- ent biotic or abiotic environmental factors. Plasticity tems (genera and species of echinoid echinoderms can be adaptive, maladaptive, or effectively neutral. mostly, but also other taxa), employed various When an organism possesses plasticity that confers rearing and measuring techniques and levels of a fitness advantage, then plasticity is considered genetic replication, and relied on different statisti- adaptive. Researchers have focused on examples in cal methodologies for data analysis. They have also which there is evidence that plasticity is adaptive, obtained results ranging from non-plastic to plastic, likely because of the evolutionary and ecological and reached different conclusions about the func- consequences of phenotypes that improve an organ- tional, ecological, and evolutionary roles of pheno- ism’s fitness. However, phenotypic plasticity can be typic plasticity in marine larvae. Our goals with this non-adaptive and still have important ecological chapter are twofold: to review the literature in order consequences (Miner et al., 2005).
    [Show full text]
  • Lamarckian Mechanisms As Developmental Bias and Their Darwinian Base – Descriptive Versus Explanatory Biology (Full Version) Andrzej Gecow [email protected]
    Lamarckian mechanisms as developmental bias… (full v.) A.Gecow [email protected] Sep. 29, 2020 1 Lamarckian mechanisms as developmental bias and their Darwinian base – descriptive versus explanatory biology (full version) Andrzej Gecow [email protected] Abstract The article points out the main obstacles in the discussion of Lamarckian mechanisms, resulting from overly persisted beliefs, habits and understatement. The aim of the article is not to show new biological observation, but to indicate the need to change methodology. ‘Lamarckian mechanisms’ are those that create ‘non-random’ changes (in the aspect of adaptation), and even ‘resulting from instruction’, and these changes become evolutionary. It is part of ‘developmental biases’. To avoid widespread prejudices a permanent stress is needed that such ‘Lamarckian mechanisms’ are an effect of Darwinian mechanisms but this stress is not enough visible. The term ‘Lamarckism’ has two meanings unreasonably connected. The correct meaning is, that adaptive evolutionary changes can be induced by environment and next they are inherited, but typically it is understood as irrational believing that evolutionary changes are adaptive without necessity of help of Darwinian mechanisms. In this case the terms ‘Lamarckian mechanisms’ and ‘Lamarckism’ are not coherent which leads to misunderstanding. Such irrational Lamarckism has small base in Lamarck’s view, it arisen from too shallow interpretation of Lamarck. In the theme ‘inheritance of acquired characters’ a few steps to evolutionary change is indicated, which typically are omitted in the description. Old such descriptions need rebuilding in a new coherent system of notions but to create such system a theory is necessary. The Lamarckian dimension of evolution protrudes beyond the basics of Modern Synthesis however necessity to change the name of the synthesis to Extended Evolutionary Synthesis is discretionary decision.
    [Show full text]
  • Canalization and Robustness - Evolutionary Biology - Oxford Bibliog
    Canalization and Robustness - Evolutionary Biology - Oxford Bibliog... http://www.oxfordbibliographies.com/view/document/obo-978019994... Canalization and Robustness Thomas Flatt, Günter Wagner LAST MODIFIED: 27 JUNE 2018 DOI: 10.1093/OBO/9780199941728-0109 Introduction Canalization describes the phenomenon whereby particular genotypes exhibit reduced phenotypic sensitivity or variation (i.e., increased robustness) in response to mutations and/or to environmental changes relative to other genotypes. Canalization is a variational property of genotypes: it implies a reduced potential or propensity of the phenotype, produced by this genotype, to vary in response to genetic or environmental change. The terms “canalization,” “robustness” and “buffering” are typically used interchangeably; today, “robustness” is perhaps more commonly used than “canalization.” The concept of canalization was first introduced by Conrad Hal Waddington in the 1940s; around the same time, Ivan Ivanovich Schmalhausen came up with essentially the same concept (see Books and Early History of the Canalization Concept). Their main conjecture was the existence of a special kind of stabilizing selection, so-called canalizing selection, which favors genotypes that deviate least from the trait optimum (e.g., the fitness optimum), by selecting for genetic mechanisms that suppress phenotypic variation caused by mutations (genetic canalization) or by environmental perturbations or changes (environmental canalization). The concept of canalization is closely related to the phenomenon of genetic assimilation, that is, the idea that previously hidden, cryptic genetic variants can become phenotypically expressed following an environmental or genetic perturbation and increase in frequency by selection. General Overviews Early experimental evidence for the existence of canalization and genetic assimilation is reviewed in depth by Scharloo 1991, the first comprehensive review paper in the field.
    [Show full text]
  • Phenotypic Plasticity/A
    Variance Reaction Norms • Yet another complication in studying • A genotype often doesn’t specify exactly what the variance is that some variance might result phenotype will be. from environment-gene interactions (e.g. • The genotype often determines a range of phenotypes that an organism will have under genes “turning on” only because of some different environments. environmental cue) • The fact that phenotypes vary with environment is known as phenotypic plasticity. • VP = VG + VE + VGxE • One example of this is the phenomenon of • The specific relationship between phenotype and environment, given a certain genotype, is called a reaction norms. reaction norm. The rotifer Brachionus calycoflorus develops spines when predators are present in its environment (right), but not in Water crowfoot, their absence (left). This is phenotypic plasticity. Ranunculus aquatilis, grows broad leaves that float on the surface of the water, and branching filamentous leaves below the surface of water—another example of phenotypic plasticity (Lamarck mentioned this). Clausen et al. (1948) grew cuttings from seven wild Two different fruit yarrow plants (Achillea) in the same garden at fly mutant alleles, Mather, California. Here’s what they got. called infrabar and ultrabar, both produce a phenotype with unusually small eyes (the y-axis shows “number of facets” in the eye) —but they differ in their reaction norms They all grew in the same environment, so differences in height must be genetic. When they grew cuttings from the same seven wild plants in a different garden at Stanford, California, Here’s the two they got this. compared directly. Remember that the Mather and Stanford plants are genetically identical—both grew from cuttings from the seven original wild plants.
    [Show full text]
  • Evolutionary Change in Continuous Reaction Norms Courtney J
    West Chester University Digital Commons @ West Chester University Biology Faculty Publications Biology 4-2014 Evolutionary change in continuous reaction norms Courtney J. Murren College of Charleston Heidi J. Maclean University of North Carolina at Chapel Hill Sarah E. Diamond North Carolina State University at Raleigh Ulrich K. Steiner University of Southern Denmark Mary A. Heskel Australian National University See next page for additional authors Follow this and additional works at: http://digitalcommons.wcupa.edu/bio_facpub Part of the Evolution Commons Recommended Citation Murren, C. J., Maclean, H. J., Diamond, S. E., Steiner, U. K., Heskel, M. A., Handelsman, C. A., Ghalambor, C. K., Auld, J. R., Callahan, H. S., Pfennig, D. W., Relyea, R. A., Schlichting, C. D., & Kingsolver, J. (2014). Evolutionary change in continuous reaction norms. American Naturalist, 183(4), 453-467. Retrieved from http://digitalcommons.wcupa.edu/bio_facpub/35 This Article is brought to you for free and open access by the Biology at Digital Commons @ West Chester University. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of Digital Commons @ West Chester University. For more information, please contact [email protected]. Authors Courtney J. Murren, Heidi J. Maclean, Sarah E. Diamond, Ulrich K. Steiner, Mary A. Heskel, Corey A. Handelsman, Cameron K. Ghalambor, Josh R. Auld, Hilary S. Callahan, David W. Pfennig, Rick A. Relyea, Carl D. Schlichting, and Joel Kingsolver This article is available at Digital Commons @ West Chester University: http://digitalcommons.wcupa.edu/bio_facpub/35 vol. 183, no. 4 the american naturalist april 2014 Evolutionary Change in Continuous Reaction Norms Courtney J.
    [Show full text]
  • Thibaut Brunet and Nicole King
    bioRxiv preprint doi: https://doi.org/10.1101/161695; this version posted July 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The origin of animal multicellularity and cell differentiation Thibaut Brunet and Nicole King Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA Lead Contact: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/161695; this version posted July 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 How animals evolved from their single-celled ancestors over 600 million years ago is 3 poorly understood. Comparisons of genomes from animals and their closest relatives – 4 choanoflagellates, filastereans and ichthyosporeans – have recently revealed the genomic 5 landscape of animal origins. However, the cell and developmental biology of the first animals have 6 been less well examined. Using principles from evolutionary cell biology, we reason that the last 7 common ancestor of animals and choanoflagellates (the ‘Urchoanozoan’) used a collar complex - 8 a flagellum surrounded by a microvillar collar – to capture bacterial prey. The origin of animal 9 multicellularity likely occurred through the modification of pre-existing mechanisms for 10 extracellular matrix synthesis and regulation of cytokinesis.
    [Show full text]