bioRxiv preprint doi: https://doi.org/10.1101/066175; this version posted July 27, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Genetic Regulation of Phenotypic Plasticity and Canalisation in Yeast 2 Growth 3 Anupama Yadav1,*, Kaustubh Dhole1, Himanshu Sinha1,2,3,* 4 1Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai 5 400005, India 6 2Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian 7 Institute of Technology Madras, Chennai 600036, India 8 3Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, 9 Chennai 600036, India 10 11 *Authors for Correspondence: Anupama Yadav, Department of Biological Sciences, Tata 12 Institute of Fundamental Research, Mumbai 400005, India; Tel: +91-9869336415, Email: 13
[email protected]; and Himanshu Sinha, Department of Biotechnology, Bhupat and Jyoti 14 Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; 15 Tel: +91-44-22574120, Email:
[email protected] 16 17 18 Short title: Genetic Regulation of Phenotypic Plasticity 19 20 Keywords: phenotypic plasticity, canalisation, QTL mapping, reaction norm, environmental 21 variance 22 23 ABSTRACT 24 The ability of a genotype to show diverse phenotypes in different environments is called 25 phenotypic plasticity. Phenotypic plasticity helps populations to evade extinctions in novel 26 environments, facilitates adaptation and fuels evolution. However, most studies focus on 27 understanding the genetic basis of phenotypic regulation in specific environments.