Canalization and Robustness - Evolutionary Biology - Oxford Bibliog
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of Imitation Without Cultural Transmission
The Evolution of Imitation Without Cultural Transmission Lee Altenberg∗1, Susanne Still1, and Christopher J. Watkins2 1University of Hawai`i at M¯anoa 2Royal Holloway University of London July 22, 2021 Abstract The evolution and function of imitation in animal learning has always been associated with its crucial role in cultural transmission and cultural evolution. Can imitation evolve in the absence of cultural transmission? We investigate a model in which imitation is unbundled from cultural transmission: an organism's adult phenotype is plastically altered by its juvenile experiences of genetically determined juvenile traits within its co- hort, and the only information transmitted between generations is genetic. Transmission of phenotypic information between generations is precluded by the population being semelparous with discrete, non-overlapping gen- erations. We find that during a period of directional selection towards a phenotypic optimum, natural selection favors modifiers which cause an organism to bias its plastic phenotype in the direction opposite to the mean phenotype of the population. As the population approaches the phenotypic optimum and shifts into stabilizing selection, selection on the modifier reverses and favors strong imitation of the population mean. Imitation can become so strong that it results in \genotype-phenotype disengagement" (Gonzalez et al., 2017) or even \hyper-imitation"|where the adult phenotype overshoots the mean phenotype. Hyper-imitation produces an evolutionary pathology, where the phenotype is driven away from the optimum, resulting in a drop in mean fitness, and the collapse of imitation. Repeated cycles of hyper-imitation and its collapse are observed. Genetic constraints on hyper-imitation will prevent these cycles. -
From Developmental Constraint to Evolvability
From Developmental Constraint to Evolvability How Concepts Figure in Explanation and Disciplinary Identity Ingo Brigandt Department of Philosophy, University of Alberta 2-40 Assiniboia Hall, Edmonton, AB T6G2E7, Canada [email protected] Abstract The concept of developmental constraint was at the heart of develop- mental approaches to evolution of the 1980s. While this idea was widely used to criticize neo-Darwinian evolutionary theory, critique does not yield an alternative framework that offers evolutionary explanations. In current Evo-devo the concept of constraint is of minor importance, whereas notions as evolvability are at the center of attention. The latter clearly defines an explanatory agenda for evolution- ary research, so that one could view the historical shift from ‘developmental con- straint’ towards ‘evolvability’ as the move from a concept that is a mere tool of criticism to a concept that establishes a positive explanatory project. However, by taking a look at how the concept of constraint was employed in the 1980s, I argue that developmental constraint was not just seen as restricting possibilities (‘con- straining’), but also as facilitating morphological change in several ways. Ac- counting for macroevolutionary transformation and the origin of novel form was an aim of these developmental approaches to evolution. Thus, the concept of de- velopmental constraint was part of a positive explanatory agenda long before the advent of Evo-devo as a genuine scientific discipline. In the 1980s, despite the lack of a clear disciplinary identity, this concept coordinated research among pale- ontologists, morphologists, and developmentally inclined evolutionary biologists. I discuss the different functions that scientific concepts can have, highlighting that instead of classifying or explaining natural phenomena, concepts such as ‘devel- opmental constraint’ and ‘evolvability’ are more important in setting explanatory agendas so as to provide intellectual coherence to scientific approaches. -
Innovation and Robustness in Complex Regulatory Gene Networks
Innovation and robustness in complex regulatory gene networks S. Ciliberti*, O. C. Martin*†, and A. Wagner‡§ *Unite´Mixte Recherche 8565, Laboratoire de Physique The´orique et Mode`les Statistiques, Universite´Paris-Sud and Centre National de la Recherche Scientifique, F-91405 Orsay, France; †Unite´Mixte de Recherche 820, Laboratoire de Ge´ne´ tique Ve´ge´ tale, L’Institut National de la Recherche Agronomique, Ferme du Moulon, F-91190 Gif-sur-Yvette, France; and ‡Department of Biochemistry, University of Zurich, Y27-J-54, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland Communicated by Giorgio Parisi, University of Rome, Rome, Italy, June 20, 2007 (received for review November 24, 2006) The history of life involves countless evolutionary innovations, a environmental variation. Mutational robustness means that a steady stream of ingenuity that has been flowing for more than 3 system produces little phenotypic variation when subjected to billion years. Very little is known about the principles of biological genotypic variation caused by mutations. At first sight, such organization that allow such innovation. Here, we examine these robustness might pose a problem for evolutionary innovation, principles for evolutionary innovation in gene expression patterns. because a robust system cannot produce much of the variation To this end, we study a model for the transcriptional regulation that can become the basis for evolutionary innovation. networks that are at the heart of embryonic development. A As we shall see, there is some truth to this appearance, but it genotype corresponds to a regulatory network of a given topol- is in other respects flawed. Robustness and the ability to innovate ogy, and a phenotype corresponds to a steady-state gene expres- cannot only coexist, but the first may be a precondition for the sion pattern. -
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B. -
Gene Expression and Phenotypic Traits Yuan-Chuan Chen
Chapter Introductory Chapter: Gene Expression and Phenotypic Traits Yuan-Chuan Chen 1. Gene expression Gene expression is a process by which the genetic information is used in the syn- thesis of functional products including proteins and functional RNAs (e.g., tRNA, small nuclear RNA, microRNA, small/short interfering RNA, etc.). The process of gene expression is applied by all organisms including eukaryotes, prokaryotes, and viruses to produce the macromolecular machinery for life. Through controlling the cell structure and function, the gene plays an important role in cellular dif- ferentiation, morphogenesis, adaptability, and diversity. Because the control of the timing, location, and levels of gene expression can have a significant effect on gene functions in a single cell or a multicellular organism, gene regulation may also drive evolutionary change. Several steps in the gene expression process can be regulated, such as transcription, posttranscriptional modification (e.g., RNA splicing, 3′ poly A adding, 5′-capping), translation, and posttranslational modification (e.g., protein splicing, folding, and processing). 1.1 Transcription The genomic DNA is composed of two antiparallel strands with 5′ and 3′ ends which are reverse and complementary for each. Regarding to a gene, the two DNA strands are classified as the “coding strand (sense strand),” which includes the DNA version of the RNA transcript sequence, and the “template strand (antisense strand, noncoding strand)” which serves as a blueprint for synthesizing an RNA strand. During transcription, the DNA template strand is read by an RNA polymerase to produce a complementary and antiparallel RNA primary transcript. Transcription is the first step of gene expression which involves copying a DNA sequence to make an RNA molecule including messenger RNA (mRNA), ribosome RNA (rRNA), and transfer RNA (tRNA) by the principle of complementary base pairing. -
Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in A
Program Nr: 1 from the 2004 ASHG Annual Meeting Mutations in a novel member of the chromodomain gene family cause CHARGE syndrome. L.E.L.M. Vissers1, C.M.A. van Ravenswaaij1, R. Admiraal2, J.A. Hurst3, B.B.A. de Vries1, I.M. Janssen1, W.A. van der Vliet1, E.H.L.P.G. Huys1, P.J. de Jong4, B.C.J. Hamel1, E.F.P.M. Schoenmakers1, H.G. Brunner1, A. Geurts van Kessel1, J.A. Veltman1. 1) Dept Human Genetics, UMC Nijmegen, Nijmegen, Netherlands; 2) Dept Otorhinolaryngology, UMC Nijmegen, Nijmegen, Netherlands; 3) Dept Clinical Genetics, The Churchill Hospital, Oxford, United Kingdom; 4) Children's Hospital Oakland Research Institute, BACPAC Resources, Oakland, CA. CHARGE association denotes the non-random occurrence of ocular coloboma, heart defects, choanal atresia, retarded growth and development, genital hypoplasia, ear anomalies and deafness (OMIM #214800). Almost all patients with CHARGE association are sporadic and its cause was unknown. We and others hypothesized that CHARGE association is due to a genomic microdeletion or to a mutation in a gene affecting early embryonic development. In this study array- based comparative genomic hybridization (array CGH) was used to screen patients with CHARGE association for submicroscopic DNA copy number alterations. De novo overlapping microdeletions in 8q12 were identified in two patients on a genome-wide 1 Mb resolution BAC array. A 2.3 Mb region of deletion overlap was defined using a tiling resolution chromosome 8 microarray. Sequence analysis of genes residing within this critical region revealed mutations in the CHD7 gene in 10 of the 17 CHARGE patients without microdeletions, including 7 heterozygous stop-codon mutations. -
Evolution of a Polyphenism by Genetic Accommodation
REPORTS every generation, and approximately 60 with Evolution of a Polyphenism by the most desirable phenotypic response were selected to establish the subsequent generation. An unselected control line was heat-shocked Genetic Accommodation every generation to monitor any change that was not a direct result of selection. The re- Yuichiro Suzuki* and H. Frederik Nijhout sponse to selection (Fig. 2A) shows that the induced color change is heritable. The varia- Polyphenisms are adaptations in which a genome is associated with discrete alternative phenotypes tion in the phenotype is continuous rather than in different environments. Little is known about the mechanism by which polyphenisms originate. discrete, which indicates that the induced color We show that a mutation in the juvenile hormone-regulatory pathway in Manduca sexta enables change is under polygenic control. The mono- heat stress to reveal a hidden reaction norm of larval coloration. Selection for increased color phenic line lost its response to temperature change in response to heat stress resulted in the evolution of a larval color polyphenism and a shock after about the seventh generation of corresponding change in hormonal titers through genetic accommodation. Evidently, mechanisms selection and remained black thereafter, with that regulate developmental hormones can mask genetic variation and act as evolutionary little phenotypic response to heat shock. capacitors, facilitating the origin of novel adaptive phenotypes. The reaction norms of the three lines in the 13th generation are shown in Fig. 2B. The olyphenisms, such as the castes of social hormone (JH) secretion (17), which results in unselected control line has a narrow threshold insects, the solitary and gregarious phases an increased melanization of the larval epi- between 30-C and 33-C, with the inflection Pof migratory locusts, and the winged and dermis. -
The Control of Shoot Branching: an Example of Plant Information Processing
Plant, Cell and Environment (2009) 32, 694–703 doi: 10.1111/j.1365-3040.2009.01930.x The control of shoot branching: an example of plant information processing OTTOLINE LEYSER Department of Biology, Area 11, University of York, York YO10 5YW, UK ABSTRACT the apical–basal axis defined by the establishment of the shoot apical meristem at one end, and the root apical mer- Throughout their life cycle, plants adjust their body plan istem at the other. Post-embryonically, the meristems give to suit the environmental conditions in which they are rise to the entire shoot and root systems, respectively. Fur- growing. A good example of this is in the regulation of thermore, the tissues they establish can produce secondary shoot branching. Axillary meristems laid down in each leaf meristems, which if activated can produce entirely new formed from the primary shoot apical meristem can remain axes of growth with the same developmental potential as dormant, or activate to produce a branch. The decision the primary root or shoot from which they were derived. whether to activate an axillary meristem involves the assess- Thus, the body plan of a plant is determined continuously ment of a wide range of external environmental, internal throughout its life cycle, allowing it to be exquisitely envi- physiological and developmental factors. Much of this infor- ronmentally responsive. Plants can alter their body plan to mation is conveyed to the axillary meristem via a network suit their environment, and thus the environmentally regu- of interacting hormonal signals that can integrate inputs lated development of new growth axes is functionally from diverse sources, combining multiple local signals to equivalent to environmentally regulated animal behav- generate a rich source of systemically transmitted informa- iours. -
The Evolution of Dispersal in Random Environments and the Principle of Partial Control
The Evolution of Dispersal in Random Environments and The Principle of Partial Control Lee Altenberg [email protected] Abstract If a genotype is distributed in space and its fitness varies with location, then selection will McNamara and Dall (2011) identified novel relationships change the spatial distribution of the genotype between the abundance of a species in different environ- through its effect on population demography. ments, the temporal properties of environmental change, This process can accumulate genotype members and selection for or against dispersal. Here, the mathemat- in locations to which they are well suited. This ics underlying these relationships in their two-environment accumulation by selection is the multiplier effect. model are investigated for arbitrary numbers of environ- ments. The effect they described is quantified as the It is possible, they discover, for the `multiplier effect’ to fitness-abundance covariance. The phase in the life cycle reverse | for there to be an excess of the population in where the population is censused is crucial for the impli- the worst habitats | when there is very rapid environ- cations of the fitness-abundance covariance. These rela- mental change. The environmental change they model tionships are shown to connect to the population genetics is a Markov process where are large number of patches literature on the Reduction Principle for the evolution of switch independently between two environments that pro- genetic systems and migration. Conditions that produce duce different growth rates for a population of organ- selection for increased unconditional dispersal are found to isms. They find that for moderate rates of environmental be new instances of departures from reduction described change, populations will have higher asymptotic growth by the \Principle of Partial Control" proposed for the evo- rates if they reduce their rate of unconditional disper- lution of modifier genes. -
Evolving Neural Networks That Are Both Modular and Regular: Hyperneat Plus the Connection Cost Technique Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune
Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune To cite this version: Joost Huizinga, Jean-Baptiste Mouret, Jeff Clune. Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique. GECCO ’14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, ACM, 2014, Vancouver, Canada. pp.697-704. hal-01300699 HAL Id: hal-01300699 https://hal.archives-ouvertes.fr/hal-01300699 Submitted on 11 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. To appear in: Proceedings of the Genetic and Evolutionary Computation Conference. 2014 Evolving Neural Networks That Are Both Modular and Regular: HyperNeat Plus the Connection Cost Technique Joost Huizinga Jean-Baptiste Mouret Jeff Clune Evolving AI Lab ISIR, Université Pierre et Evolving AI Lab Department of Computer Marie Curie-Paris 6 Department of Computer Science CNRS UMR 7222 Science University of Wyoming Paris, France University of Wyoming [email protected] [email protected] [email protected] ABSTRACT 1. INTRODUCTION One of humanity’s grand scientific challenges is to create ar- An open and ambitious question in the field of evolution- tificially intelligent robots that rival natural animals in intel- ary robotics is how to produce robots that possess the intel- ligence and agility. -
Mapping of the Waxy Bloom Gene in 'Black Jewel'
agronomy Article Mapping of the Waxy Bloom Gene in ‘Black Jewel’ in a Parental Linkage Map of ‘Black Jewel’ × ‘Glen Ample’ (Rubus) Interspecific Population Dora Pinczinger 1, Marcel von Reth 1, Jens Keilwagen 2 , Thomas Berner 2, Andreas Peil 1, Henryk Flachowsky 1 and Ofere Francis Emeriewen 1,* 1 Julius Kühn-Institut (JKI)—Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326 Dresden, Germany; [email protected] (D.P.); [email protected] (M.v.R.); [email protected] (A.P.); henryk.fl[email protected] (H.F.) 2 Julius Kühn-Institut (JKI)—Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; [email protected] (J.K.); [email protected] (T.B.) * Correspondence: [email protected] Received: 16 September 2020; Accepted: 12 October 2020; Published: 16 October 2020 Abstract: Black and red raspberries (Rubus occidentalis L. and Rubus idaeus L.) are the prominent members of the genus Rubus (Rosaceae family). Breeding programs coupled with the low costs of high-throughput sequencing have led to a reservoir of data that have improved our understanding of various characteristics of Rubus and facilitated the mapping of different traits. Gene B controls the waxy bloom, a clearly visible epicuticular wax on canes. The potential effects of this trait on resistance/susceptibility to cane diseases in conjunction with other morphological factors are not fully studied. Previous studies suggested that gene H, which controls cane pubescence, is closely associated with gene B. -
Cryptic Genetic Variation: Evolution's Hidden Substrate
REVIEWS Cryptic genetic variation: evolution’s hidden substrate Annalise B. Paaby and Matthew V. Rockman Abstract | Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution. Standing genetic variation Cryptic genetic variation (CGV) is genetic variation alleles) and variance (that is, VA) parallels the difference 4 Genetic variation that is that normally has little or no effect on phenotypic vari- between compositional and statistical epistasis ; variants present in a population, as ation but that under atypical conditions, rare in the his- deal with the genotype–phenotype map, whereas vari- opposed to new mutations. tory of a population, generates heritable phenotypic ance concerns heritability in populations. Both forms Additive genetic variance variation. Although CGV is often perceived as mecha- are relevant to CGV. nistically special and mysterious, it is simply a subclass Early investigations into CGV and their implica- (VA). The transmissible or heritable component of the of variation with conditional effects, which has two tions are thoroughly discussed elsewhere2; here, we phenotypic variation of a well-studied forms: gene‑by‑gene (G × G) interactions, briefly summarize the historically provocative role of population.