Human Anatomy (6-Year Course) , 1St Semester, Academic Year 2019/2020 No

Total Page:16

File Type:pdf, Size:1020Kb

Human Anatomy (6-Year Course) , 1St Semester, Academic Year 2019/2020 No Department of Anatomy Medical Faculty CM UMK Human anatomy (6-year course) , 1st semester, academic year 2019/2020 No. Data Subject Rules and regulations. Anatomical axes and planes. General structure of bones. Classification of junctions and 1. 3.10 joints. Classification of skeleton. 2. 7.10 Bones, joints and ligaments of the upper limb. Imaging of upper limb. Regions of upper limb. Surface anatomy of the upper limb. Muscles and fasciae of upper limb. Synovial sheaths 3. 10.10 of hand. 4. 14.10 The spinal nerves. Brachial plexus. Lesions of nerves in the upper limb. Arteries, veins and lymphatic vessels of upper limb. Places for measuring pulse in the upper limb. Fractures of 5. 17.10 upper limb’s bones causing injuries of nerves and blood vessels. Topographical anatomy of upper limb: axillary cavity, axillary fossa, deltopectoral triangle and groove, bicipital 6. 21.10 grooves, radial nerve canal, ulnar canal, cubital fossa, forearm grooves, carpeal canal, radial fovea. 7. 24.10* Upper limb: Practical and theoretical tests 1 (90 min.) Regional characteristics of the vertebrae. General structure of vertebral column. Curvatures of the vertebral 8. 28.10 column. Ribs and sternum. Skeleton of the thorax. Junctions of the thoracic wall and vertebral column. Movements of thorax and vertebral column. Imaging of thorax and vertebral column. Lines and regions of thorax and back. Muscles and fasciae of thorax and back. Diaphragm. The mammary 9. 4.11 gland. Intercostal nerves. Short branches of braxial plexus. Dorsal branches of the spinal nerves. Phrenic nerve. 10. 7.11 Thoracic part of vagus nerve. Thoracic part of sympathetic trunk. Cardiac plexus. Heart and pericardium. Surface anatomy of the heart and great vessels, percussion and auscultation areas, 11. 14.11 heart sounds. Ascending aorta, arch of aorta, thoracic aorta. Pulmonary trunk, pulmonary arteries. Pulmonary veins. Superior cava vein. Trachea and principial bronchi. Bronchopulmonary segmentation (tree). Lungs. Pleural cavity. Mechanics of respiration. Thymus. Esophagus. Thoracic duct and right lymphatic duct. Azygos veins system. Topographical 12. 18.11 anatomy and subdivisions of mediastinum. Topographical anatomy of the back: suboccipital triangle, intersplenial triangle, superior and inferior lumbar triangle, triangle of auscultation. 13. 21.11* Thorax: Practical and theoretical tests 2 (90 min.) Regions of abdomen. Muscles and fasciae of abdomen. Inguinal canal. Rectus sheath. Abdominal hernias. 14. 25.11 Lower intercostal nerves. Lumbar plexus. Peritoneum. Omental bursa, epiploic foramen, lesser and greater omentum. Peritoneal cavity and peritoneal reflections. Abdominal part of esophagus, stomach, duodenum. Liver, gallbladder and biliary ducts. Pancreas. Spleen. 15. 28.11 Celiac trunk. 16. 2.12 Small and large intestines. Superior and inferior mesenteric arteries. Portal vein. Retroperitoneal space. Abdominal aorta. Inferior cava vein. Abdominal lymphatic system. Lumbar part of 17. 5.12 sympathetic trunk. Celiac and intermesenteric plexuses. Topographical anatomy of posterior abdominal wall. Regions of perineum. Pelvis and urogenital diaphragm. Internal iliac artery. Inferior hypogastric plexus. Pudendal nerve. Lumbar splanchnic nerves. Neurovascular connective tissue lamina. Pelvic canal. Fibrous 18. 9.12 spaces of pelvis. Ischiorectal fossa. Pubic recess. Pudendal canal. Superficial and deep perineal space. Greater and lesser sciatic foramina. 19. 12.12 Urinary system - organs, vessels and nerves. 20. 16.12* Female genital system - division, organs, vessels and nerves. (90 min.) 21. 19.12* Male genital system - division, organs, vessels and nerves (90 min.) 22. 9.01.2020* Abdomen and pelvis: Practical and theoretical tests 4 (90 min.) 23. 13.01 Bones, joints and ligaments of the lower limb. Imaging of lower limb. 24. 16.01 Regions of lower limb. Muscles and fasciae of lower limb. Synovial sheaths of lower limb. 25. 20.01 Sacral and lumbar plexuses. Lesions of nerves in the lower limb. 26. 23.01 Arteries, veins and lymphatic vessels of lower limb. The places for pulse measuring in the lower limb. Topographical anatomy of lower limb: muscular and vascular lacuna, femoral canal, adductor canal, greater and 27 27.01 lesser triangles, iliopubic fossa, popliteal fossa, medial and lateral ankle canals. 28 29.01* Lower limb: Practical and theoretical tests 4 (90 min.) 29 30.01* Revision of semester I. Department of Anatomy Medical Faculty CM UMK * → 90 min. Classes: 1st group (a): Monday 7.15 – 9.30, Thursday 7.30 – 9.45 2nd group (a): Monday 7.15 – 9.30, Thursday 12.30 – 14.45 3rd group (a): Monday 7.15 – 9.30, Thursday 7.30 – 9.45 1st group (b): Monday 9.45 – 12.00, Thursday 10.00 – 12.15 2nd group (b): Monday 9.45 – 12.00, Thursday 15.00 – 17.15 3rd group (b): Monday 9.45 – 12.00, Thursday 10.00 – 12.15 .
Recommended publications
  • Bilateral Anomalous Muscle in the Popliteal Fossa & Its Clinical
    International Journal of Anatomy and Research, Int J Anat Res 2014, Vol 2(4):614-16. ISSN 2321- 4287 Case Report DOI: 10.16965/ijar.2014.501 BILATERAL ANOMALOUS MUSCLE IN THE POPLITEAL FOSSA & ITS CLINICAL SIGNIFICANCE Sowmya S *, Meenakshi Parthasarathi, Sharmada KL, Sujana M. Department of anatomy, Bangalore Medical College & Research Institute, Bangalore, India. ABSTRACT Muscle variation may occur due to genetic or developmental causes. Some variations may compromise the vascular, muscular or nervous system in the region. Bilateral muscle variation in popliteal fossa is very rare. In present study an instance of bilateral muscle variation in popliteal fossa, arising from different muscles like gastrocnemius and from biceps femoris is recorded. There is no report of such variations. These observations are rare of its kind because of bilateral asymmetrical presence and difference in the origins in different legs. This is the first report as for the literatures available. Clinical and functional importance of such variation is discussed with the morphological aspects of this anomalous muscle. KEY WORDS: Popliteal fossa, Gastrocnemius, Biceps femoris, Popliteal Artery Entrapment Syndrome. Address for Correspondence: Dr.Sowmya S, Assistant Professor, Department of Anatomy, Bangalore Medical College & Research Institute, Bangalore-560002, India. Mobile: +919482476545. E-Mail: [email protected] Access this Article online Quick Response code Web site: International Journal of Anatomy and Research ISSN 2321-4287 www.ijmhr.org/ijar.htm Received: 08 Sep 2014 Peer Review: 08 Sep 2014 Published (O):31 Oct 2014 DOI: 10.16965/ijar.2014.501 Accepted: 22 Sep 2014 Published (P):31 Dec 2014 INTRODUCTION Insertion of muscle slips from biceps femoris into gastrocnemius and into tendocalcaneus have The popliteal fossa is a rhomboidal region been reported [3].
    [Show full text]
  • Part 1 the Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3
    ECA1 7/18/06 6:30 PM Page 1 Part 1 The Thorax ECA1 7/18/06 6:30 PM Page 2 ECA1 7/18/06 6:30 PM Page 3 Surface anatomy and surface markings The experienced clinician spends much of his working life relating the surface anatomy of his patients to their deep structures (Fig. 1; see also Figs. 11 and 22). The following bony prominences can usually be palpated in the living subject (corresponding vertebral levels are given in brackets): •◊◊superior angle of the scapula (T2); •◊◊upper border of the manubrium sterni, the suprasternal notch (T2/3); •◊◊spine of the scapula (T3); •◊◊sternal angle (of Louis) — the transverse ridge at the manubrio-sternal junction (T4/5); •◊◊inferior angle of scapula (T8); •◊◊xiphisternal joint (T9); •◊◊lowest part of costal margin—10th rib (the subcostal line passes through L3). Note from Fig. 1 that the manubrium corresponds to the 3rd and 4th thoracic vertebrae and overlies the aortic arch, and that the sternum corre- sponds to the 5th to 8th vertebrae and neatly overlies the heart. Since the 1st and 12th ribs are difficult to feel, the ribs should be enu- merated from the 2nd costal cartilage, which articulates with the sternum at the angle of Louis. The spinous processes of all the thoracic vertebrae can be palpated in the midline posteriorly, but it should be remembered that the first spinous process that can be felt is that of C7 (the vertebra prominens). The position of the nipple varies considerably in the female, but in the male it usually lies in the 4th intercostal space about 4in (10cm) from the midline.
    [Show full text]
  • Gross Anatomy
    www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H.
    [Show full text]
  • The Square Flap Technique for Burn Contractures: Clinical Experience and Analysis of Length Gain
    Annals of Burns and Fire Disasters - vol. XXXI - n. 4 - December 2018 THE SQUARE FLAP TECHNIQUE FOR BURN CONTRACTURES: CLINICAL EXPERIENCE AND ANALYSIS OF LENGTH GAIN DOUBLE LAMBEAU RHOMBOÏDE POUR BRIDE SÉQUELLAIRE DE BRÛ- LURE: EXPÉRIENCE PRATIQUE ET ANALYSE DE LA LONGUEUR GAGNÉE Hifny M.A. Department of Plastic Surgery, Faculty of Medicine, Qena University Hospital, South Valley University, Egypt SUMMARY. Post-burn contractures, affecting the joints especially, are demanding problems. Many surgical techniques have been designated for burn contracture release. The aim of this study is to investigate the efficiency of the square flap technique to release a post-burn scar contracture, and assess the post-operative length gain that can be achieved by simple mathematical calculation. In this study, sixteen patients with linear contracture bands were treated with the square flap tech- nique. The anatomical distribution of the contractures was: axilla, cubital fossa, flank, perineum and popliteal fossa. Scar maturity ranged from 4 months - 9 years. Square flap width and contracture band length before and immediately after surgery were recorded by simple mathematical calculation. Flap complication was assessed. Patient satisfaction was also assessed during the follow-up period. All square flaps were effective in lengthening the contracture bands. The length of the contracture that was released ranged from 2 to 6 cm. The gain in length provided with this technique ranged from 212 to 350%, average 247%, and adequate contracture release was achieved in all cases postoperatively. All square flaps healed uneventfully except for one (6%), which demonstrated limited epidermolysis that healed by secondary intention. The fol- low-up interval ranged from 6 months to 1.5 years.
    [Show full text]
  • Popliteal Fossa
    POPLITEAL FOSSA Dr Kaweri Dande Resident Department Of Anatomy King George’s Medical University, UP, Lucknow DISCLAIMER: • The presentation includes images which are either hand drawn or have been taken from google images or books. • They are being used in the presentation only for educational purpose. • The author of the presentation claims no personal ownership over images taken • from books or google images. • However, the hand drawn images are the creation of the author of the presentation Learning objectives • By the end of this teaching session all the students must be able to correctly:- • Describe and demonstrate the location of the popliteal fossa • Enumerate the boundaries, roof and floor of the popliteal fossa • Enumerate the contents of the popliteal fossa • Describe the relations of the popliteal fossa • Draw a labelled diagram of the popliteal fossa • Describe the applied anatomy of the popliteal fossa Preface • Important transition area • Between thigh and leg • Passes structure between two Location • Diamond shaped space • Behind knee joint • Formed between muscles • Posterior compartment of thigh and leg Outline of right popliteal fossa Boundaries • Superolaterally: biceps femoris • Superomedially: semitendinosus, semimembranosus supplemented: gracilis, sartorius, adductor magnus • Inferolaterally: lateral head of gastrocnemius, Plantaris • Inferomedially: medial head of gastrocnemius Floor Above downwards • Popliteal surface of femur • Capsule of knee joint • Oblique popliteal ligament • Popliteal fascia • Popliteal muscle
    [Show full text]
  • Six Steps to the “Perfect” Lip Deborah S
    September 2012 1081 Volume 11 • Issue 9 Copyright © 2012 ORIGINAL ARTICLES Journal of Drugs in Dermatology SPECIAL TOPIC Six Steps to the “Perfect” Lip Deborah S. Sarnoff MD FAAD FACPa and Robert H. Gotkin MD FACSb,c aRonald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY bLenox Hill Hospital—Manhattan Eye, Ear & Throat Institute, New York, NY cNorth Shore—LIJ Health Systems, Manhasset, NY ABSTRACT Full lips have always been associated with youth and beauty. Because of this, lip enhancement is one of the most frequently re- quested procedures in a cosmetic practice. For novice injectors, we recommend hyaluronic acid (HA) as the filler of choice. There is no skin test required; it is an easily obtainable, “off-the-shelf” product that is natural feeling when skillfully implanted in the soft tissues. Hyaluronic acid is easily reversible with hyaluronidase and, therefore, has an excellent safety profile. While Restylane® is the only FDA-approved HA filler with a specific indication for lip augmentation, one can use the following HA products off-label: Juvéderm® Ultra, Juvéderm Ultra Plus, Juvéderm Ultra XC, Juvéderm Ultra PLUS XC, Restylane-L®, Perlane®, Perlane-L®, and Belotero®. We present our six steps to achieve aesthetically pleasing augmented lips. While there is no single prescription for a “perfect” lip, nor a “one size fits all” approach for lip augmentation, these 6 steps can be used as a basic template for achieving a natural look. For more comprehensive, global perioral rejuvenation, our 6-step technique can be combined with the injection of neuromodulating agents and fractional laser skin resurfacing during the same treatment session.
    [Show full text]
  • Pleurectomy Through the Triangle of Auscultation
    Thorax: first published as 10.1136/thx.37.12.945 on 1 December 1982. Downloaded from Thorax 1982;37:945-946 Pleurectomy through the triangle of auscultation OJ LAU, S SHAWKAT From the Thoracic Surgical Unit, Preston Hall Hospital, Aylesford, Kent The aetiology of primary spontaneous pneumothorax is Outpatient follow-up for one to three years has shown no unknown, though several theories have been proposed. The recurrence of pneumothorax. formation and rupture of "blebs" in the lung are frequently associated with primary pneumothorax, 1-3 but the manage- Discussion ment of the condition remains controversial and depends on its severity and the patient's previous medical history. For For most cases of primary spontaneous pneumothorax, definitive treatment pleurectomy still remains the treatment observation, bed rest, or intercostal tube drainage are of choice.4 5 We have treated 25 young patients with primary adequate; but for patients with persistent air leak, and for spontaneous pneumothorax with apical pleurectomy those with a history of recurrent attacks, some form of through the auscultation triangle, without incision of the definitive treatment is necessary. Various methods have muscles of the chest wall. We have found that this approach been recommended, from artificial obliteration of the has several advantages over a full thoracotomy. pleural space with various chemicals or oils to the stripping of the parietal pleura and closure of the air leak through a Operative technique and results formal thoracotomy. In our experience, these forms of treatment are often Twenty-five young patients with primary spontaneous associated with unnecessary pain and discomfort for the pneumothorax have been treated, of whom 15 were men.
    [Show full text]
  • DEPARTMENT of ANATOMY IGMC SHIMLA Competency Based Under
    DEPARTMENT OF ANATOMY IGMC SHIMLA Competency Based Under Graduate Curriculum - 2019 Number COMPETENCY Objective The student should be able to At the end of the session student should know AN1.1 Demonstrate normal anatomical position, various a) Define and demonstrate various positions and planes planes, relation, comparison, laterality & b) Anatomical terms used for lower trunk, limbs, joint movement in our body movements, bony features, blood vessels, nerves, fascia, muscles and clinical anatomy AN1.2 Describe composition of bone and bone marrow a) Various classifications of bones b) Structure of bone AN2.1 Describe parts, blood and nerve supply of a long bone a) Parts of young bone b) Types of epiphysis c) Blood supply of bone d) Nerve supply of bone AN2.2 Enumerate laws of ossification a) Development and ossification of bones with laws of ossification b) Medico legal and anthropological aspects of bones AN2.3 Enumerate special features of a sesamoid bone a) Enumerate various sesamoid bones with their features and functions AN2.4 Describe various types of cartilage with its structure & a) Differences between bones and cartilage distribution in body b) Characteristics features of cartilage c) Types of cartilage and their distribution in body AN2.5 Describe various joints with subtypes and examples a) Various classification of joints b) Features and different types of fibrous joints with examples c) Features of primary and secondary cartilaginous joints d) Different types of synovial joints e) Structure and function of typical synovial
    [Show full text]
  • Popliteal Masses Masquerading As Popliteal Cysts
    Ann Rheum Dis: first published as 10.1136/ard.43.1.60 on 1 February 1984. Downloaded from Annals ofthe Rheumatic Diseases, 1984, 43, 60-62 Popliteal masses masquerading as popliteal cysts H. T. GRIFFITHS, C. W. ELSTON, C. L. COLTON, AND A. J. SWANNELL From the Departments ofRheumatology, Orthopaedics and Pathology, City Hospital, Nottingham SUMMARY Two popliteal swellings, thought initially to be synovial cysts associated with arthritic knees, were found to be unrelated tumours of serious significance. In the presence of neurological signs or a large cyst in association with a noninflammed knee joint a disease other than a simple synovial cyst should be considered. A mass in the popliteal fossa may arise from a variety the left leg followed by cytotoxic chemotherapy. For of different causes including synovial. cysts, throm- the last 18 months she has had no antimitotic treat- bophlebitis, popliteal artery or vein aneurysms, gas- ment, and apart from her persisting rheumatoid arth- trocnemius haematomas, and neoplastic tumours. Of ritis she remains well. She walks with the aid of. a these the lesion most commonly associated with arth- foot-drop splint. ntis in the knee is a popliteal synovial cyst, or Baker's cyst. In certain circumstances a high index of suspi- CASE 2 cion should be maintained that despite the presence- A 69-year-old woman presented with a history of 12 of arthritis a popliteal mass may not be a synovial months of progressive, painless swelling of the right copyright. cyst. calf and politeal fossa. Over the preceding 4 years she Two cases are reported in which the initial diag- had noted mild pain in both knees but had suffered no nosis was of a synovial cyst, but at subsequent surgery other joint symptoms.
    [Show full text]
  • Surface and Regional Anatomy 297
    Van De Graaff: Human IV. Support and Movement 10. Surface and Regional © The McGraw−Hill Anatomy, Sixth Edition Anatomy Companies, 2001 Surface and Regional 10 Anatomy Introduction to Surface Anatomy 297 Surface Anatomy of the Newborn 298 Head 300 Neck 306 Trunk 309 Pelvis and Perineum 318 Shoulder and Upper Extremity 319 Buttock and Lower Extremity 326 CLINICAL CONSIDERATIONS 330 Clinical Case Study Answer 339 Chapter Summary 340 Review Activities 341 Clinical Case Study A 27-year-old female is brought to the emergency room following a motor vehicle accident. You examine the patient and find her to be alert but pale and sweaty, with breathing that is rapid and shallow. You see that she has distension of her right internal jugular vein visible to the jaw and neck. Her trachea is deviated 3 cm to the right of midline. She has tender contu- sions on her left anterior chest wall with minimal active bleeding over one of the ribs. During the brief period of your examination, the patient exhibits more respiratory distress, and her blood pressure begins to drop. You urgently insert a large-gauge needle into her left hemitho- rax and withdraw 20 cc of air. This results in immediate improvement in the patient’s breath- ing and blood pressure. Why does the patient have a distended internal jugular vein on the right side of her neck? Could this be related to a rapid drop in blood pressure? What is the clinical situation of this patient? Hint: As you read this chapter, note that knowledge of normal surface anatomy is vital to the FIGURE: In order to effectively administer medical treatment, it is imperative for a recognition of abnormal surface anatomy, and that the latter may be an easy clue to the pathol- physician to know the surface anatomy of each ogy lying deep within the body.
    [Show full text]
  • Popliteal Fossa, Back of Leg & Sole of Foot
    Popliteal fossa, back of leg & Sole of foot Musculoskeletal block- Anatomy-lecture 16 Editing file Color guide : Only in boys slides in Blue Objectives Only in girls slides in Purple important in Red Doctor note in Green By the end of the lecture, students should be able to: Extra information in Grey ✓ The location , boundaries & contents of the popliteal fossa. ✓ The contents of posterior fascial compartment of the leg. ✓ The structures hold by retinacula at the ankle joint. ✓ Layers forming in the sole of foot & bone forming the arches of the foot. Popliteal Fossa Is a diamond-shaped intermuscular space at the back of the knee Boundaries Contents Tibial nerve Common peroneal nerve Semitendinosus Laterally Medially Roof Floor From medial to lateral (above) (above) 1.Skin 1.popliteal surface 1. Popliteal vessels (artery/vein) biceps femoris. semimembranosus 2.superficial of femur 2. Small saphenous vein & semitendinosus fascia & deep 2.posterior ligament 3. Tibial nerve fascia of the of knee joint 4. Common peroneal nerve. (Below) (Below) thigh. 3.popliteus muscle. 5. Posterior cut. nerve of thigh Lateral head of Medial head of 6. Connective tissue & popliteal lymph gastrocnemius gastrocnemius nodes. & plantaris The deepest structure is popliteal artery.* (VERY IMPORTANT) CONTENTS OF THE POSTERIOR FASCIAL COMPARTMENT OF THE LEG The transverse intermuscular septum of the leg is a septum divides the muscles of the posterior Transverse section compartment into superficial and deep groups. Contents 1. Superficial group of muscles 2. Deep group of muscles 3. Posterior tibial artery transverse intermuscular 4. Tibial nerve septum Superficial group Deep group 1. Gastrocnemius 1.
    [Show full text]
  • Unit #2 - Abdomen, Pelvis and Perineum
    UNIT #2 - ABDOMEN, PELVIS AND PERINEUM 1 UNIT #2 - ABDOMEN, PELVIS AND PERINEUM Reading Gray’s Anatomy for Students (GAFS), Chapters 4-5 Gray’s Dissection Guide for Human Anatomy (GDGHA), Labs 10-17 Unit #2- Abdomen, Pelvis, and Perineum G08- Overview of the Abdomen and Anterior Abdominal Wall (Dr. Albertine) G09A- Peritoneum, GI System Overview and Foregut (Dr. Albertine) G09B- Arteries, Veins, and Lymphatics of the GI System (Dr. Albertine) G10A- Midgut and Hindgut (Dr. Albertine) G10B- Innervation of the GI Tract and Osteology of the Pelvis (Dr. Albertine) G11- Posterior Abdominal Wall (Dr. Albertine) G12- Gluteal Region, Perineum Related to the Ischioanal Fossa (Dr. Albertine) G13- Urogenital Triangle (Dr. Albertine) G14A- Female Reproductive System (Dr. Albertine) G14B- Male Reproductive System (Dr. Albertine) 2 G08: Overview of the Abdomen and Anterior Abdominal Wall (Dr. Albertine) At the end of this lecture, students should be able to master the following: 1) Overview a) Identify the functions of the anterior abdominal wall b) Describe the boundaries of the anterior abdominal wall 2) Surface Anatomy a) Locate and describe the following surface landmarks: xiphoid process, costal margin, 9th costal cartilage, iliac crest, pubic tubercle, umbilicus 3 3) Planes and Divisions a) Identify and describe the following planes of the abdomen: transpyloric, transumbilical, subcostal, transtu- bercular, and midclavicular b) Describe the 9 zones created by the subcostal, transtubercular, and midclavicular planes c) Describe the 4 quadrants created
    [Show full text]