Geometric Self-Calibration of Yaogan-13 Images Using Multiple Overlapping Images

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Self-Calibration of Yaogan-13 Images Using Multiple Overlapping Images sensors Article Geometric Self-Calibration of YaoGan-13 Images Using Multiple Overlapping Images Guo Zhang 1 , Mingjun Deng 1,2,*, Chenglin Cai 2 and Ruishan Zhao 3 1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China; [email protected] 2 School of Information Engineering, Xiangtan University, Xiangtan 411000, China; [email protected] 3 School of Geomatics, Liaoning Technical University, Fuxin 123000, China; [email protected] * Correspondence: [email protected]; Tel.: +86-027-68778266 Received: 4 April 2019; Accepted: 17 May 2019; Published: 23 May 2019 Abstract: Geometric calibration is an important means of improving the absolute positioning accuracy of space-borne synthetic aperture radar imagery. The conventional calibration method is based on a calibration field, which is simple and convenient, but requires a great deal of manpower and material resources to obtain ground control points. Although newer cross-calibration methods do not require ground control points, calibration accuracy still depends on a periodically updated reference image. Accordingly, this study proposes a geometric self-calibration method based on the positioning consistency constraint of conjugate image points to provide rapid and accurate calibration of the YaoGan-13 satellite. The proposed method can accurately calibrate geometric parameters without requiring ground control points or high-precision reference images. To verify the absolute positioning accuracy obtained using the proposed self-calibration method, YaoGan-13 Stripmap images of multiple regions were collected and evaluated. The results indicate that high-accuracy absolute positioning can be achieved with a plane accuracy of 3.83 m or better for Stripmap data, without regarding elevation error. Compared to the conventional calibration method using high-accuracy control data, the difference between the two methods is only about 2.53 m, less than the 3-m resolution of the image, verifying the effectiveness of the proposed self-calibration method. Keywords: YaoGan-13; geometric accuracy; self-calibration 1. Introduction The Chinese YaoGan-13 (YG-13) satellite mission, launched in November 2015, is equipped with a high-resolution synthetic aperture radar (SAR) X-band sensor. Synthetic aperture radar image products can be acquired using ScanSAR, Stripmap, and Sliding-spot modes, with the last of these providing SAR images at a very high resolution of about 0.5 m. The launch of YG-13 provided China with the ability to acquire high-resolution SAR images globally [1,2]. However, despite the strong capability of YG-13 in acquiring high-resolution SAR images, most of the images obtained by the satellite have exhibited poor absolute positioning accuracy, due to systematic timing offsets in the SAR system, including the time shift between the radar time and Global Positioning System (GPS) time (i.e., azimuth or along-track), and the internal electronic delay of the SAR instrument itself (i.e., the range delay time) [3]. As a result, the application of YG-13 images in activities such as resource monitoring has been significantly restricted. Using high-accuracy control data, a conventional geometric calibration method can eliminate systematic errors, such as those experienced by YG-13 (including the internal electronic delay of the instrument and systematic azimuth shifts), improving the geometric positioning accuracy of the images. The conventional geometric calibration method has been thoroughly studied by many researchers Sensors 2019, 19, 2367; doi:10.3390/s19102367 www.mdpi.com/journal/sensors Sensors 2019, 19, 2367 2 of 11 and fully validated using the ERS-1/2, ENVISAT-ASAR, ALOS-PALSAR, TerraSAR-X/TanDEM-X, Sensors 2019, 19, x FOR PEER REVIEW 2 of 12 Sentinel-1A/1B, YaoGan-13, GaoFen-3, and other high-resolution satellites [4–14]. However, the conventionalX/TanDEM-X, calibration Sentinel-1A/1B, method YaoGan-13, requires satellites GaoFen-3 to, and acquire otherimages high-resolution of calibration satellites fields [4–14]. prior to conductingHowever, geometric the conventional calibration, calibration reducing method its timeliness requires satellites in practical to acquire applications. images of Additionally, calibration the conventionalfields prior calibration to conducting method geometric typically calibration, uses a high-precisionreducing its timeliness corner in reflector practical to applications. generate control data,Additionally, which can bethe expensive. conventional calibration method typically uses a high-precision corner reflector to generateIn the opticalcontrol data, remote which sensing can be field,expensive. many scholars have researched methods for geometric self-calibrationIn the optical that doremote not sensing rely on field, control many data, schola achievingrs have researched notable successmethods [for15, 16geometric]. In the self- field of calibration that do not rely on control data, achieving notable success [15,16]. In the field of SAR SAR geometric calibration, researchers have also begun to study geometric calibration without field geometric calibration, researchers have also begun to study geometric calibration without field calibration control data. Deng et al. performed cross calibration without using corner reflectors or calibration control data. Deng et al. performed cross calibration without using corner reflectors or high-precisionhigh-precision digital digital elevation elevation models models to improve to improv thee absolutethe absolute positioning positioning accuracy accuracy of images of images collected by thecollected GaoFen-3 by the (GF-3) GaoFen-3 satellite (GF-3) [2]. satellite However, [2]. thisHowever, method this does method not completelydoes not completely eliminate eliminate dependence on controldependence data, on as control it still requiresdata, as it high-precision still requires high-precision reference images. reference To theimages. authors’ To the knowledge, authors’ no studiesknowledge, of completely no studies independent of completely SAR independent geometric SA self-calibrationR geometric self-calibrati have beenon reportedhave been to reported date. toIn date. this paper, a novel self-calibration method is proposed to determine the systematic timing offsets inIn the this SAR paper, system, a novel independent self-calibration of ground method control is proposed points to (GCPs). determineThis the method systematic uses attiming least three imagesoffsets containing in the SAR overlapping system, independent areas and of takes ground advantage control points of the (GCPs). spatial intersectionThis method residualuses at least between three images containing overlapping areas and takes advantage of the spatial intersection residual conjugate points in these images to detect the timing offsets. The proposed method is free from the between conjugate points in these images to detect the timing offsets. The proposed method is free constraintfrom the of fieldconstraint control of datafield presentcontrol data in traditional present in calibration traditional methods.calibration To methods. demonstrate To demonstrate the accuracy of the proposedthe accuracy method, of the aproposed series of method, experiments a series using of experiments Stripmap imagesusing Stripm collectedap images by YG-13 collected is presented. by The resultsYG-13 is show presented. that the The proposed results show method that is the able prop to effectivelyosed method eliminate is able theto effectively systematic eliminate errors, due the to the internalsystematic electronic errors, delay due of to the the instrument internal electronic and the delay systematic of the instrument azimuth shifts. and the After systematic calibration, azimuth the plane absoluteshifts. positioning After calibration, accuracy the ofplane the YaoGan-13absolute posi Stripmaptioning accuracy image wasof the better YaoGan-13 than 3.83 Stripmap m, just image larger than the 3-mwas resolutionbetter than of3.83 the m, images, just larger verifying than the the 3-m effectiveness resolution of of the the images, proposed verifying method. the effectiveness of the proposed method. 2. Methodology 2. Methodology 2.1. Fundamental Theory of the Proposed Method 2.1. Fundamental Theory of the Proposed Method Figure1 illustrates the proposed method of SAR image geometric self-calibration. In Figure1a, Figure 1 illustrates the proposed method of SAR image geometric self-calibration. In Figure 1a, S1 and S2 correspond to the two SAR antenna phase centers when the ground surface at Point A is S1 and S2 correspond to the two SAR antenna phase centers when the ground surface at Point A is photographedphotographed twice. twice.The The slant slant range range between between S1S1 and A is is R1 R1 and and the the slant slant range range between between S2 and S2 and A A is R2, andis R2, so and the so intersection the intersection point point between between R1 R1 and and R2 R2 is is Point Point A. A. If If aa slantslant range measurement measurement error error DR exists△ dueR exists to thedue geolocationto the geolocat parameterion parameter error, error, the the slant slant range range R1 R1 becomes becomes R1R1 + △DR,R, the the slant slant range range R2 becomesR2 becomes R2 + D R2R, and+ △R, the and new the spatialnew spatial intersection intersection is at is Point at Point B. B. In In this this way, way, the the spatial spatial intersectionintersection point is affectedpoint is by affected the error by ofthe
Recommended publications
  • China's Space Program
    China’s Space Program An Introduction China’s Space Program ● Motivations ● Organization ● Programs ○ Satellites ○ Manned Space flight ○ Lunar Exploration Program ○ International Relations ● Summary China’s Space Program Motivations Stated Purpose ● Explore outer space and to enhance understanding of the Earth and the cosmos ● Utilize outer space for peaceful purposes, promote human civilization and social progress, and to benefit the whole of mankind ● Meet the demands of economic development, scientific and technological development, national security and social progress ● Improve the scientific and cultural knowledge of the Chinese people ● Protect China's national rights and interests ● Build up China’s national comprehensive strength National Space Motivations • Preservation of its political system is overriding goal • The CCP prioritizes investments into space technology ○ Establish PRC as an equal among world powers ○ Space for international competition and cooperation ○ Manned spaceflight ● Foster national pride ● Enhance the domestic and international legitimacy of the CCP. ○ Space technology is metric of political legitimacy, national power, and status globally China’s Space Program Organization The China National Space Administration (CNSA) ● The China National Space Administration (CNSA, GuóJiā HángTiān Jú,) ○ National space agency of the People's Republic of China ○ Responsible for the national space program. ■ Planning and development of space activities. The China National Space Administration ● CNSA and China Aerospace
    [Show full text]
  • Orbital Debris Program Office Figure 1
    National Aeronautics and Space Administration Orbital Debris Quarterly News Volume 13, Issue 1 January 2009 Inside... New Debris Seen from Decommissioned Fengyun-1C Debris: Two Years Later 2 Satellite with Nuclear Power Source The ESA’s ATV-1 Reentry Event 3 A 21-year-old satellite containing a dormant According to Russian reports, the nuclear reactors nuclear reactor was the source of an unexpected on Cosmos 1818 and Cosmos 1867 functioned for Two New Microsatellite debris cloud in early July 2008. Launched by the approximately 5 and 11 months, respectively. For Impact Tests 4 former Soviet Union in February 1987, Cosmos the next two decades, the two inactive spacecraft 1818 (International Designator 1987-011A, circled the Earth without significant incident. Review of Different U.S. Satellite Number 17369) was the first of two Following the fragmentation event on or about Solar Cycle 24 vehicles designed to test a new, more advanced 4 July 2008, the U.S. Space Surveillance Network Predictions 7 nuclear power supply in low Earth orbit. Dozens was able to produce orbital data on 30 small debris of small particles were released during the still- (Figure 2). The majority of these debris were ejected Don Kessler Wins unexplained debris generation event. in a posigrade direction with velocities of less Space Safety Pioneer Cosmos 1818 and its sister spacecraft, than 15 meters per second, suggesting a relatively Award 8 Cosmos 1867 (Figure 1), carried a thermionic low energy event. From radar detections, a larger nuclear power supply, in contrast to the simpler, number of very small debris appear to have also Abstracts from the thermoelectric nuclear device which provided been released, but routine tracking of these debris NASA OD Program energy to the well-known RORSATs (Radar Ocean has proven difficult.
    [Show full text]
  • Espinsights the Global Space Activity Monitor
    ESPInsights The Global Space Activity Monitor Issue 1 January–April 2019 CONTENTS SPACE POLICY AND PROGRAMMES .................................................................................... 1 Focus .................................................................................................................... 1 Europe ................................................................................................................... 4 11TH European Space Policy Conference ......................................................................... 4 EU programmatic roadmap: towards a comprehensive Regulation of the European Space Programme 4 EDA GOVSATCOM GSC demo project ............................................................................. 5 Programme Advancements: Copernicus, Galileo, ExoMars ................................................... 5 European Space Agency: partnerships continue to flourish................................................... 6 Renewed support for European space SMEs and training ..................................................... 7 UK Space Agency leverages COMPASS project for international cooperation .............................. 7 France multiplies international cooperation .................................................................... 7 Italy’s PRISMA pride ................................................................................................ 8 Establishment of the Portuguese Space Agency: Data is King ................................................ 8 Belgium and Luxembourg
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • 25 April 2021
    2 5 A P R I L 2 0 2 1 THE FINAL FRONTIER FLASH Developments & Analysis of the Space Domain In This Issue China Launches Shiyan-6 China to Build Ningbo Commercial Spaceport Russia Counterspace Lasers Mission Extension Vehicle-2 (MEV-2) Docking Upcoming China Space Station Missions Airbus to Lead On-Orbit Manufacturing Study 1411 Frontier, Suite 1A Spring Branch, TX 78070 isruniversity.com integrityisr.com All hyperlinks are underlined #WeKnowISR China Launches Shiyan 6 (03) Shiyan 6 (03) Launch from Taiyuan 8 April 2021: China launched the third in a series of experimental Shiyan 6 satellites April 8 aboard a Long March 4B rocket. Not much is known about the satellite other than it will test new space technologies, including a new super- black coating to absorb stray light and improve the sensitivity of on-board optics. See VIDEO - The Long March 4B rocket carried the Shiyan 6 spacecraft into a polar orbit about 620 miles (1,000 km) above Earth, with an inclination of 99.5 degrees to the equator. - This is the third in a series of Shiyan 6-type satellites. The first two Shiyan 6 satellites launched on Long March 2D rockets from the Jiuquan space center in northwestern China in November 2018 and July 2020. The first two Shiyan 6 satellites were deployed at lower altitudes. - Shiyan means “experiment” in Shiyan 6 (01, 02 & 03) Orbits Chinese. - One of the technologies to be tested on the Shiyan 6 spacecraft is a new super-black coating designed to prevent stray light from disrupting optical cameras.
    [Show full text]
  • The Final Frontier Flash 27 December 2020: China Launches Secret Military Satellite Using a Long March 4C Rocket
    Northern Lights from the ISS Video 17 January 2021 The Final Frontier Flash 27 December 2020: China launches secret military satellite using a Long March 4C rocket. - U.S. military tracking data indicated the launcher reached a 425 mile orbit with a 98.3 degree inclination. View Orbit. - Chinese officials stated the primary payload as Yaogan 33. - Independent analysts believe Yaogan 33 might carry a radar imager designed to obtain all-weather, day-and-night imagery of strategic targets around the world. Some references name the new satellite “Yaogan 33R.” - Yaogan 33 was also the name of a military remote sensing satellite lost in May 2019. Yaogan 33R launched into a slightly different orbit…some analysts believe it may be a new type of Chinese surveillance payload. Reporting of Yaogan 33 capabilities is inconsistent: SAR, EO and SIGINT are all mentioned in different forums. The 27 December launch was China’s final for the year. China successfully launched 35 space missions into orbit this year in 39 attempts. U.S. companies performed 44 orbital launch attempts, with 40 successes, including flights by California- headquartered Rocket Lab from its private launch base in New Zealand. China Space 2020 Year in Review. 1 Jan 21: China expands the power of its Central Military Commission (CMC) – headed by President Xi – to mobilise military and civilian resources in defense of the national interest, both home & abroad. - Military and political analysts said the amendments aimed to strengthen the country’s military leadership under Xi. - The legislation includes “development interests” as a reason for armed mobilization and war and provides legal grounds for China to launch war in the name of defending national development interests.
    [Show full text]
  • ESPI Insights Space Sector Watch
    ESPI Insights Space Sector Watch Issue 12 January 2021 THIS MONTH IN THE SPACE SECTOR… 2021 AND NEW EUROPEAN SPACE AMBITIONS ............................................................................. 1 POLICY & PROGRAMMES .............................................................................................................. 2 Josef Aschbacher elected new ESA DG .................................................................................................. 2 BREXIT deal and future UK participation in EU space programmes..................................................... 2 French space sector to receive €500 million investment boost ........................................................... 2 Multiple new U.S. Space Policies released ............................................................................................. 3 Updates on Artemis Accords: new MoU with Brazil ............................................................................... 4 Jim Bridenstine bids farewell to NASA as the agency awaits new administrator nomination.......... 4 Phil Evans becomes new EUMETSAT DG ............................................................................................... 4 NASA and FAA sign MoU on Commercial Space Activities .................................................................. 4 Congress approves Omnibus spending bill for Fiscal Year 2021 ......................................................... 4 Hayabusa-2 capsule returns Ryugu asteroid sample to Earth .............................................................
    [Show full text]
  • Ladies and Gentlemen, It Is My Great Pleasure to Attend the 1St
    Ladies and gentlemen, It is my great pleasure to attend the 1st International Space Forum. First of all, I would like to convey Minister Wan Gang’s congratulation to the Forum and greetings to all delegates. Outer space is the common wealth of the mankind. Exploring outer space is our common pursuit. This year marks the 60th anniversary of China's inception of the space industry. For the past six decades, China’s space program has made remarkable progress and outstanding accomplishments in artificial satellite technology, manned space flight and lunar exploration. It has made a positive contribution to the promotion of science, the economy and the national strength. Currently,China has been standing at the forefront of space technologies in the world. China has successfully soft landed a spacecraft on the moon and has grasped the key technologies of manned space flight. China itself-developed Beidou Navigation System is advancing towards the integration into the global networking and the resolution ratio of remote sensing satellites has entered the Amish era. China has launched the Long March series of carrier rockets for more than 230 times with a very high success rate. It has satellite systems with complete function ranging from communication, remote sensing and navigation to technological experiment, with nearly 150 satellites currently in orbit. China's space technology has extensively served economic and social development. The remote sensing satellites represented by a Gaofen, Fengyun, Ocean and Resources series widely applied in agriculture, forestry, land observation, mapping, water conservancy, housing construction, environmental protection, disaster reduction, transportation, meteorology and 1 ocean development.
    [Show full text]
  • China's Evolving Reconnaissance- Strike Capabilities
    DRAFT China’s Evolving Reconnaissance- Strike Capabilities Implications for the U.S.-Japan Alliance Ian Easton February 2014 |China’s Evolving Reconnaissance-Strike Capabilities | Ian Easton is a Research Fellow at the Project 2049 Institute. He also recently served as a visiting fellow at the Japan Institute of International Affairs (JIIA) in Tokyo. Before his current fellowship at the Project 2049 Institute, he spent some two years at the Center for Naval Analyses (CNA) as a China analyst. Prior to that, he consulted for a Taiwanese software company, the Defense News Asia Bureau Chief, and the Foundation on Asia-Pacific Peace Studies. Mr. Easton holds an M.A. in China studies from National Chengchi University in Taipei, a B.A. in international studies from the University of Illinois at Urbana-Champaign, and a certification in advanced Mandarin Chinese. He received his formal language training at National Taiwan Normal University’s Mandarin Training Center in Taipei, and Fudan University in Shanghai. *** The author would like to acknowledge and thank JIIA for its generous support of this project. He is especially thankful for the guidance provided by Tetsuo Kotani, and in particular for his leadership during three research trips to Yokosuka, Ishigaki and Okinawa. In addition, the author would like to thank Toshiro Iijima, Nobuyasu Abe, Seiichiro Takagi, Kyoichi Wakayama, Yasuyuki Ishida, Asuka Mastsumoto, and Alan Vick for their comments and suggestions, which served to greatly improve this paper’s analysis and conclusions. Finally, the author is indebted to the men and women of the U.S. State Department, the U.S.
    [Show full text]
  • Chinese Intelligence, Surveillance, and Reconnaissance Systems Lt Col Thomas R
    DIGITAL-ONLY COMMENTARY Chinese Intelligence, Surveillance, and Reconnaissance Systems LT COL THOMAS R. MCCABE, USAFR, RETIRED he best weapons in the world are useless unless aimed accurately, which requires a sophisticated intelligence, surveillance, and reconnaissance (ISR) system to detect and track targets, preferably in as close to real time Tas possible. Even more important, at the strategic level, the People’s Republic of China (PRC) views war between modern states as a conflict between systems of systems,1 which means weapons and targeting require an accurate and compre- hensive view of those enemy systems to target them. China has been building a wide variety of ISR systems to provide its forces with such capabilities, including systems that we must expect will be available for military use even if nominally civilian. (China has said its policy of military-civil­­ fusion will include the outer space and maritime domains; so, we must assume that all the surveillance re- sources PRC civilian agencies have will be integrated into crisis/wartime military ISR.2) These systems include the following: Satellites. China has developed and deployed constellations of dual-­­use and military satellite reconnaissance systems, especially the Yaogan (“China remote-­­ sensing satellite”) systems, with both electro-­­optical imagery reconnaissance sat- ellites and synthetic aperture radar satellites.3 Many of the Yaogan satellites are also reported to be electronic intelligence satellites,4 intended to track and locate foreign warships by their
    [Show full text]
  • Chang'e Flying to the Moon
    Issue 7 January 2013 All about the Chinese Space Programme GO TAIKONAUTS! Editor’s Note COVER STORY If you are a fan of the Chinese space pro- gramme, you must have heard about Brian Harvey, who is the first Western writer to publish a book on the Chinese space pro- gramme. We are very happy that Mr. Harvey contributed an article to Go Taikonauts! The article about Chinese ... page 2 Quarterly Report October - December 2012 Launch Events China made six space launches in the last three months of 2012, setting a new annual launch record of 19 and overtaking U.S. in number of suc- cessful annual space launches for the first time. In 2011, China also ... page 3 Deep Space Adventure of Chang’e 2 From A Backup Lunar Orbiter to An Asteroid Probe Observation Just before Chang’e 1 (CE-1)’s successful mission to the Moon was completed, Echo of the Curiosity in China China announced that they would send the second lunar probe Chang’e 2 (CE-2) The 6 August 2012 was a special day to an to the Moon in 2010. No one at that time could anticipate the surprises that CE-2 American-Chinese girl. She is Clara Ma, would bring a few years later since it was just a backup ... page 8 a 15-year-old middle school student from Lenexa, Kansas. She waited for this day for more than three years. In May 2009, History Ma won a NASA essay contest for naming the Mars Science Laboratory, the most Chang’e Flying to the Moon complicated machine ..
    [Show full text]
  • Radiometric Cross-Calibration of the Wide Field View Camera Onboard Gaofen-6 in Multispectral Bands
    remote sensing Article Radiometric Cross-Calibration of the Wide Field View Camera Onboard GaoFen-6 in Multispectral Bands Aixia Yang 1, Bo Zhong 1,* , Longfei Hu 1, Shanlong Wu 1, Zhaopeng Xu 2, Hongbo Wu 3, Junjun Wu 1, Xueshuang Gong 2, Haibo Wang 2 and Qinhuo Liu 1 1 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (A.Y.); [email protected] (L.H.); [email protected] (S.W.); [email protected] (J.W.); [email protected] (Q.L.) 2 China Centre for Resources Satellite Data and Application, Beijing 100094, China; [email protected] (Z.X.); [email protected] (X.G.); [email protected] (H.W.) 3 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-64806256; Fax: +86-10-64806256 Received: 10 March 2020; Accepted: 20 March 2020; Published: 24 March 2020 Abstract: GaoFen6 (GF-6), successfully launched on June 2, 2018, is the sixth satellite of the High-Definition Earth observation system (HDEOS). Although GF-6 is the first high-resolution satellite in China to achieve precise agricultural observation, it will be widely used in many other domains, such as land survey, natural resources management, emergency management, ecological environment and so on. The GF-6 was not equipped with an onboard calibration instrument, so on-orbit radiometric calibration is essential. This paper aimed at the on-orbit radiometric calibration of the wide field of view camera (WFV) onboard GF-6 (GF-6/WFV) in multispectral bands.
    [Show full text]