RREA Reports FY2015 Compiled

Total Page:16

File Type:pdf, Size:1020Kb

RREA Reports FY2015 Compiled Title: Alaska RREA Program Sponsoring Agency NIFA Project Status ACTIVE Funding Source Renewable Resources Reporting Frequency Annual Accession No. 228614 Project No. ALK-12-02 Project Start Date 10/01/2011 Project End Date 09/30/2016 Reporting Period Start Date 10/01/2014 Reporting Period End Date 09/30/2015 Submitted By Michele Pogue Date Submitted to NIFA 11/03/2015 Project Director R Gorman 907-747-9413 [email protected] Recipient Organization Performing Department EXT - ALASKA COOPERATIVE EXTENSION Cooperative Extension Service 527 SEWARD DILLINGHAM, ALASKA 99576 DUNS No. 615245164 Non-Technical Summary This project addresses four Alaska strategic issues: 1) high energy costs in rural Alaska, 2) limited economic opportunities in rural Alaska communities and among rural Alaskans, 3) the need to increase knowledge and implementation of forest stewardship plans on private forest land as the way to sustain Alaska's private forest lands; 4) the need to sustain and improve habitat for forest wildlife and fisheries. Alaska forest resources are many and varied. Alaska forest resources may provide alternative energy through wood biomass. Individuals and communities may develop sustainable income-generating opportunities from Alaska forests by utilization of forest resources in consumptive and non-consumptive activities. Alaska forest landowners need increased awareness and knowledge of forest stewardship plans, and they need to implement those plans once developed. Forest wildlife and fisheries are critical to many Alaskans. Private forest landowners must collaborate with agencies and neighbors to sustain and improve forest wildlife and fisheries habitat. This project will use a variety of Extension outreach techniques to make indirect contact through social media, Internet-based information resources, newsletters and fact sheets to increase awareness of these issues and ways to address them. Workshops, short courses, conferences, direct contacts, web-based & other electronic educational activities will be conducted and participants will be tested to evaluate increased knowledge. Forest landowners and managers will be contacted directly to evaluate their implementation of practices and techniques that address the goals and objectives mentioned in this project. Extension professionals funded in part by this project are located in forested portions of Alaska. Their efforts will be concentrated in areas proximate to their work base as it is impossible for Extension forestry professionals to provide adequate coverage statewide. Extension information resources developed by this project to increase awareness of the goals and objectives will be available for all Alaskans. Extension will collaborate with other parts of the university and with federal, state and local government agencies, Alaska Native organizations and nongovernmental organizations to extend the reach of this project and to avoid duplication. Accomplishments Major goals of the project Goal 1 Reduce dependence on expensive imported fuels by substituting locally available wood biomass for energy: Objective 1a Increase awareness among Alaskans of space heating & energy systems using wood biomass compared to non- renewable and other renewable fuels; Objective 1b Increase knowledge among Alaska homeowners and facility managers about wood fuel space heating systems including fuel types, local availability, handling, storing, modern wood burning appliances, ventilation systems, installation, maintenance, known costs; Objective 1c Increase installation of new or upgraded energy systems using wood biomass by Alaska facilities and commercial establishments; Objective 1d Increase awareness and knowledge of sustainable management of forest lands used for biomass; Objective 1e Increase implementation of sustainable forest management practices by forest landowners for wood biomass harvesting. Goal 2 Increase economic opportunities of individuals and communities using local forest resources; Objective 2a Increase awareness of benefits from forest product processors and other income-generating opportunities of local forest resources to individuals and communities; Objective 2b Increase knowledge of forest landowners, community leaders & citizens of the contribution to local and regional economies using sustainably managed local forest resources; Objective 2c Increase the number of new or expanded existing forest resource based income-generating businesses. Goal 3 Increase number of private forest landowners completing and implementing forest stewardship plans: Objective 3a Increase awareness among forest landowners and managers of benefits and opportunities from forest stewardship practices; Objective 3b Increase the knowledge of the benefits and opportunities Report Date 11/03/2015 Page 1 of 4 Accession No. 228614 Project No. ALK-12-02 from forest stewardship practices; Objective 3c Extension support and/or involvement increases the number of forest stewardship plans initiated and/or developed; Objective 3d Extension and collaborators increase the number of forest landowners implementing at least one forest stewardship practice and increase the number of acres with improved forest management. Goal 4 Extension collaborates with partners to improve and sustain habitat for forest wildlife & fisheries resources; Objective 4a Extension and collaborators increase awareness of wildlife and fish habitat management principles and practices; Objective 4b Extension and collaborators increase forest landowners and managers knowledge of wildlife & fish habitat relationships; Objective 4c Forest landowners and managers implement at least one new wildlife and/or fish habitat management practice that increases acres or stream miles with improved habitat as a result of Extension collaborations. Outputs include the number of: educational events, contacts with new awareness, new or upgraded biomass enterprises, forest landowners implemented management practices, new or expanded forest resources based enterprises, forest stewardship plans developed, forest landowners who initiated forest stewardship practices, landowners who implemented new habitat management practice or acres or stream miles with improved habitat. What was accomplished under these goals? G1-Biomass: Obj1a, b, d accomplished 21 Educational Events including workshops, seminars, presentations and field trips statewide often with various cosponsors including Alaska State Forestry, the AHTNA Native Corporation, the US Forest Service, NRCS, BLM, ADF&G, the Ruffed Grouse Society engaging 127,587 contacts that were interested in and increased their knowledge of wood biomass use, projects, facilities design, construction, management, forest management and timber harvesting equipment for biomass fuels. In addition we continued collaboration with Alaska Energy Authority for staff support of the Alaska Wood Energy Development Task Group for feasibility studies, design and construction of 6 new public biomass facilities in rural AK; collaborated with Alaska Center for Energy & Power for ongoing public awareness of bio-energy projects in interior AK as well as regular multi-agency technical providers meetings on biomass facility and bio-fuels forest management and participated in other public meetings on biomass; Obj1c assisted public facility managers with proposals for future new biomass facilities and assisted existing facilities with air quality monitoring and field harvesting situations; Obj1e collaborated with state, federal, private and native forest managers and landowners, resource development councils, Fish & Game Advisory Boards, State Forest Citizen Advisory Boards, Logger Associations, school districts, Soil & Water Conservation Districts and citizen/community advisory board members to understand and implement silviculture based biomass harvesting while maintaining a renewable and sustainable multiple use resource and land base: more than 128,00 Alaskans attended or were indirectly involved in workshops, conferences, or were seeking information throughout the State concerning biomass/firewood/pellets/chips etc. to either save money compared to the cost of non-renewable fuel energy sources, enter or expand their biomass based businesses or diversify their local economies by utilizing local & regional biomass resources for home heating fuel. G2-Economic Opportunities: Obj2a.The participants of workshops, educational events, newsletters, blogs and podcasts learned of forest based economic opportunities related to biomass. In addition, provided technical assistance to more than a dozen forest based businesses on resource availability, product marketing and trends in biomass harvesting and processing equipment; worked with the USDA Forest Service to plan for and put up biomass based timber sale opportunities in SE Alaska for small operators that need timber/biomass. G3-Forest Stewardship Plans: Obj3a, b, c: Collaborated with AK Div of Forestry contacting 27 private forest landowners to increase awareness and the practice of forest stewardship with three forest stewardship plans being developed and one new forest stewardship project being implemented. G4-Habitat for Fish & Wildlife: Obj4a, b: Collaborated with AK Div of Forestry and National Forestry Foundation for statewide coordination of 5 Project Learning Tree and educator workshops on topics including forest habitat reaching 135 teachers and school administrators; Collaborated with ADF&G on project Wild and Wildfire in Alaska Programs with regard to teacher training: assisted AK
Recommended publications
  • ANNUAL REPORT 2020 Plant Protection & Conservation Programs
    Oregon Department of Agriculture Plant Protection & Conservation Programs ANNUAL REPORT 2020 www.oregon.gov/ODA Plant Protection & Conservation Programs Phone: 503-986-4636 Website: www.oregon.gov/ODA Find this report online: https://oda.direct/PlantAnnualReport Publication date: March 2021 Table Tableof Contents of Contents ADMINISTRATION—4 Director’s View . 4 Retirements: . 6 Plant Protection and Conservation Programs Staff . 9 NURSERY AND CHRISTMAS TREE—10 What Do We Do? . 10 Christmas Tree Shipping Season Summary . 16 Personnel Updates . .11 Program Overview . 16 2020: A Year of Challenge . .11 New Rule . 16 Hawaii . 17 COVID Response . 12 Mexico . 17 Funding Sources . 13 Nursery Research Assessment Fund . 14 IPPM-Nursery Surveys . 17 Phytophthora ramorum Nursery Program . 14 National Traceback Investigation: Ralstonia in Oregon Nurseries . 18 Western Horticultural Inspection Society (WHIS) Annual Meeting . 19 HEMP—20 2020 Program Highlights . 20 2020 Hemp Inspection Annual Report . 21 2020 Hemp Rule-making . 21 Table 1: ODA Hemp Violations . 23 Hemp Testing . .24 INSECT PEST PREVENTION & MANAGEMENT—25 A Year of Personnel Changes-Retirements-Promotions High-Tech Sites Survey . .33 . 26 Early Detection and Rapid Response for Exotic Bark Retirements . 27 and Ambrosia Beetles . 33 My Unexpected Career With ODA . .28 Xyleborus monographus Early Detection and Rapid Response (EDRR) Trapping . 34 2020 Program Notes . .29 Outreach and Education . 29 Granulate Ambrosia Beetle and Other Wood Boring Insects Associated with Creosoting Plants . 34 New Detections . .29 Japanese Beetle Program . .29 Apple Maggot Program . .35 Exotic Fruit Fly Survey . .35 2018 Program Highlights . .29 Japanese Beetle Eradication . .30 Grasshopper and Mormon Cricket Program . .35 Grasshopper Outbreak Response – Harney County .
    [Show full text]
  • Colonization of Artificially Stressed Black Walnut Trees by Ambrosia Beetle, Bark Beetle, and Other Weevil Species (Coleoptera: Curculionidae) in Indiana and Missouri
    COMMUNITY AND ECOSYSTEM ECOLOGY Colonization of Artificially Stressed Black Walnut Trees by Ambrosia Beetle, Bark Beetle, and Other Weevil Species (Coleoptera: Curculionidae) in Indiana and Missouri 1,2 3 1 4 SHARON E. REED, JENNIFER JUZWIK, JAMES T. ENGLISH, AND MATTHEW D. GINZEL Environ. Entomol. 44(6): 1455–1464 (2015); DOI: 10.1093/ee/nvv126 ABSTRACT Thousand cankers disease (TCD) is a new disease of black walnut (Juglans nigra L.) in the eastern United States. The disease is caused by the interaction of the aggressive bark beetle Pityophthorus juglandis Blackman and the canker-forming fungus, Geosmithia morbida M. Kolarik, E. Freeland, C. Utley & Tisserat, carried by the beetle. Other insects also colonize TCD-symptomatic trees and may also carry pathogens. A trap tree survey was conducted in Indiana and Missouri to characterize the assemblage of ambrosia beetles, bark beetles, and other weevils attracted to the main stems and crowns of stressed black walnut. More than 100 trees were girdled and treated with glyphosate (Riverdale Razor Pro, Burr Ridge, Illinois) at 27 locations. Nearly 17,000 insects were collected from logs harvested from girdled walnut trees. These insects represented 15 ambrosia beetle, four bark beetle, and seven other weevil species. The most abundant species included Xyleborinus saxeseni Ratzburg, Xylosandrus crassiusculus Motschulsky, Xylosandrus germanus Blandford, Xyleborus affinis Eichhoff, and Stenomimus pallidus Boheman. These species differed in their association with the stems or crowns of stressed trees. Multiple species of insects were collected from individual trees and likely colonized tissues near each other. At least three of the abundant species found (S. pallidus, X.
    [Show full text]
  • A Synopsis of Hawaiian Xyleborini (Coleoptera: Scolytidae)1
    Pacific Insects Vol. 23, no. 1-2: 50-92 23 June 1981 © 1981 by the Bishop Museum A SYNOPSIS OF HAWAIIAN XYLEBORINI (COLEOPTERA: SCOLYTIDAE)1 By G. A. Samuelson2 Abstract. The first post Fauna Hawaiiensis synopsis of Hawaiian Xyleborini is presented, with all of the species of the tribe known from the islands keyed and treated in text. Most species are illustrated. Twenty-four species of Xyleborus are recognized and of these, 18 species are thought to be endemic to Hawaiian islands and 6 species adventive. Not counted are 3 names applied to male-described endemics which are likely to be associated with known females later. Five species of Xyleborus are described as new and lectotypes are designated for 11 additional species. Males are described for 7 species of Xyleborus hitherto known only from females. One adventive species of Xyleborinus and 3 adventive species of Xylosandrus are known to the islands, but 1 of the latter may not have established. The Xyleborini make up a large and interesting part of the Hawaiian scolytid fauna. This tribe contains both endemic and recently adventive species in the Hawai­ ian Is, with 3 genera represented. The endemic xyleborines all belong to Xyleborus Eichhoff and they seem to be the only members of the Scolytidae to have evolved to any extent in the islands, though not a great number of species has been produced. Presently treated are 18 species, of which most are certainly endemic, and 6 adventive species. Xyleborinus Reitter is represented by 1 adventive species in the Hawaiian Is. Xylosandrus Reitter is represented by 3 adventive species, but 1 appears not to have established in Hawaii.
    [Show full text]
  • Halona2021r.Pdf
    Terrestrial Arthropod Survey of Hālona Valley, Joint Base Pearl Harbor-Hickam, Naval Magazine Lualualei Annex, August 2020–November 2020 Neal L. Evenhuis, Keith T. Arakaki, Clyde T. Imada Hawaii Biological Survey Bernice Pauahi Bishop Museum Honolulu, Hawai‘i 96817, USA Final Report prepared for the U.S. Navy Contribution No. 2021-003 to the Hawaii Biological Survey EXECUTIVE SUMMARY The Bishop Museum was contracted by the U.S. Navy to conduct surveys of terrestrial arthropods in Hālona Valley, Naval Magazine Lualualei Annex, in order to assess the status of populations of three groups of insects, including species at risk in those groups: picture-winged Drosophila (Diptera; flies), Hylaeus spp. (Hymenoptera; bees), and Rhyncogonus welchii (Coleoptera; weevils). The first complete survey of Lualualei for terrestrial arthropods was made by Bishop Museum in 1997. Since then, the Bishop Museum has conducted surveys in Hālona Valley in 2015, 2016–2017, 2017, 2018, 2019, and 2020. The current survey was conducted from August 2020 through November 2020, comprising a total of 12 trips; using yellow water pan traps, pitfall traps, hand collecting, aerial net collecting, observations, vegetation beating, and a Malaise trap. The area chosen for study was a Sapindus oahuensis grove on a southeastern slope of mid-Hālona Valley. The area had potential for all three groups of arthropods to be present, especially the Rhyncogonus weevil, which has previously been found in association with Sapindus trees. Trapped and collected insects were taken back to the Bishop Museum for sorting, identification, data entry, and storage and preservation. The results of the surveys proved negative for any of the target groups.
    [Show full text]
  • AND Xyleborus Affinis (COL.: SCOLYTIDAE) in Pinus Sp
    Occurrence of Euplatypus parallelus, Euplatytus sp. ... 387 OCCURRENCE OF Euplatypus parallelus, Euplatypus sp. (COL.: EUPLATYPODIDAE) AND Xyleborus affinis (COL.: SCOLYTIDAE) IN Pinus sp. IN RIBAS DO RIO PARDO, MATO GROSSO DO SUL, BRAZIL1 José Cola Zanuncio2, Marcos Franklin Sossai2, Laércio Couto3 and Rosenilson Pinto2 ABSTRACT - Wood borer species of the families Euplatypodidae and Scolytidae were observed attacking trees of Pinus sp. in the Municipality of Ribas do Rio Pardo, state of Mato Grosso do Sul, Brazil, in March 2000. This plantation had been previously burned in an accidental fire in January 2000, causing the trees to become partially or totally unhealthy, rendering them more susceptible to attack of these pests. Galleries of these wood borers were opened with a chisel to observe parameters such as their direction and form of these galleries. Species observed as wood borers of Pinus sp. were Euplatypus parallelus, Euplatypus sp. (Coleoptera: Euplatypodidae) and Xyleborus affinis (Coleoptera: Scolytidae). Key words: Forest pest, ambrosia beetles, woodborers. OCORRÊNCIA DE Euplatypus parallelus, Euplatypus sp. (COL.: EUPLATYPODIDAE) E Xyleborus affinis (COL.: SCOLYTIDAE) EM Pinus sp. NO MUNICÍPIO DE RIBAS DO RIO PARDO, MATO GROSSO DO SUL RESUMO - Foi observada a presença de coleobrocas das famílias Euplatypodidae e Scolytidae atacando árvores de Pinus sp. no município de Ribas do Rio Pardo, Mato Grosso do Sul, em março de 2000. Este plantio havia sido queimado em incêndio acidental em janeiro daquele ano, o que tornou as árvores parcial ou totalmente estressadas e mais suscetíveis ao ataque dessas pragas. As galerias de ambas as espécies de coleobrocas foram abertas com formão, para observar parâmetros como o seu direcionamento e a sua forma.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION OEPP Service d'Information NO. 05 PARIS, 2014-05-01 SOMMAIRE __________________________________________________________________Ravageurs & Maladies 2014/081 - Éradication de Synchytrium endobioticum en Autriche 2014/082 - Dothistroma septosporum détecté en Baden-Württemberg, Allemagne 2014/083 - Dothistroma pini et Dothistroma septosporum sont présents en Slovénie 2014/084 - Situation de Phytophthora lateralis aux Pays-Bas 2014/085 - Dendroctonus valens: un ravageur forestier envahissant en Chine 2014/086 - Laurel wilt (Raffaelea lauricola) et son vecteur (Xyleborus glabratus): addition à la Liste d’Alerte de l’OEPP 2014/087 - Premier signalement de Scyphophorus acupunctatus à Chypre 2014/088 - Incursion du Potato spindle tuber viroid dans du matériel de propagation de pomme de terre aux Pays-Bas 2014/089 - Premier signalement de ‘Candidatus Phytoplasma ulmi’ au Royaume-Uni 2014/090 - PPV-CR: une nouvelle souche de Plum pox virus décrite sur griottier en Russie 2014/091 - Rapport de l’OEPP sur les notifications de non-conformité SOMMAIRE ____________________________________________________________________ Plantes envahissantes 2014/092 - Ailanthus altissima est présent en Turquie 2014/093 - Méthodes de lutte contre Acer negundo 2014/094 - La proportion d’espèces exotiques dans des habitats artificiels est-elle influencée par la taille de la ville? 2014/095 - Variation dans les caractéristiques des graines
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE ET MEDITERRANEENNE POUR LA PROTECTION DES PLANTES EUROPEAN AND MEDITERRANEAN PLANT PROTECTION ORGANIZATION OEPP Service d’Information NO. 3 PARIS, 2020-03 Général 2020/048 Nouvelles données sur les organismes de quarantaine et les organismes nuisibles de la Liste d’Alerte de l’OEPP 2020/049 Rapport de l’OEPP sur les notifications de non-conformité Ravageurs 2020/050 Orgyia leucostigma (Lepidoptera : Erebidae - chenille à houppes blanches) : addition à la Liste d’Alerte de l’OEPP 2020/051 Premier signalement de Callidiellum rufipenne en Suède 2020/052 Mise à jour sur la situation de Meloidogyne graminicola en Italie Maladies 2020/053 Répartition des espèces de Candidatus Liberibacter associées au huanglongbing en Afrique de l'Est et premier signalement de ‘Candidatus Liberibacter asiaticus’ au Kenya 2020/054 Premier signalement du huanglongbing au Salvador 2020/055 Premier signalement de Xanthomonas phaseoli pv. phaseoli et Xanthomonas citri pv. fuscans en Belgique 2020/056 Premiers signalements de Lecanosticta acicola au Bélarus et en Pologne 2020/057 Le Tomato ringspot virus est absent de Serbie 2020/058 Le Tobacco ringspot virus est absent de Serbie Plantes envahissantes 2020/059 Premier signalement de Gymnocoronis spilanthoides aux Pays-Bas 2020/060 Premier signalement de Cornus alternifolia et Cornus amomum en Lituanie 2020/061 Pistia stratiotes au Maroc 2020/062 Pistia stratiotes en Slovénie 2020/063 Impact de Phytolacca americana sur les arthropodes forestiers du sol 2020/064 Report du 16ème Symposium international sur les plantes aquatiques (Aarhus, Danemark) 21 Bld Richard Lenoir Tel: 33 1 45 20 77 94 Web: www.eppo.int 75011 Paris E-mail: [email protected] GD: gd.eppo.int OEPP Service d’Information 2020 no.
    [Show full text]
  • EPPO Reporting Service
    ORGANISATION EUROPEENNE EUROPEAN AND MEDITERRANEAN ET MEDITERRANEENNE PLANT PROTECTION POUR LA PROTECTION DES PLANTES ORGANIZATION EPPO Reporting Service NO. 05 PARIS, 2014-05-01 CONTENTS _______________________________________________________________________ Pests & Diseases 2014/081 - Eradication of Synchytrium endobioticum from Austria 2014/082 - Dothistroma septosporum detected in Baden-Württemberg, Germany 2014/083 - Dothistroma pini and Dothistroma septosporum occur in Slovenia 2014/084 - Situation of Phytophthora lateralis in the Netherlands 2014/085 - Dendroctonus valens: an invasive forest pest in China 2014/086 - Laurel wilt (Raffaelea lauricola) and its vector (Xyleborus glabratus): addition to the EPPO Alert List 2014/087 - First report of Scyphophorus acupunctatus in Cyprus 2014/088 - Incursion of Potato spindle tuber viroid in potato breeding material in the Netherlands 2014/089 - First report of ‘Candidatus Phytoplasma ulmi’ in the United Kingdom 2014/090 - PPV-CR: a new strain of Plum pox virus described from sour cherry in Russia 2014/091 - EPPO report on notifications of non-compliance CONTENTS ___________________________________________________________________________ Invasive Plants 2014/092 - Ailanthus altissima occurs in Turkey 2014/093 - Control methods against Acer negundo 2014/094 - Is the proportion of alien species in man-made habitats influenced by city size? 2014/095 - Variation in seed traits and germination potential of Solanum elaeagnifolium in Greece 2014/096 - The response of Parthenium hysterophorus
    [Show full text]
  • Recent Advances Toward the Sustainable Management of Invasive Xylosandrus Ambrosia Beetles
    Journal of Pest Science https://doi.org/10.1007/s10340-021-01382-3 REVIEW Recent advances toward the sustainable management of invasive Xylosandrus ambrosia beetles Antonio Gugliuzzo1 · Peter H. W. Biedermann2 · Daniel Carrillo3 · Louela A. Castrillo4 · James P. Egonyu5 · Diego Gallego6 · Khalid Haddi7 · Jiri Hulcr8 · Hervé Jactel9 · Hisashi Kajimura10 · Naoto Kamata11 · Nicolas Meurisse12 · You Li8 · Jason B. Oliver13 · Christopher M. Ranger14 · Davide Rassati15 · Lukasz L. Stelinski16 · Roanne Sutherland12 · Giovanna Tropea Garzia1 · Mark G. Wright17 · Antonio Biondi1 Received: 24 January 2021 / Revised: 14 April 2021 / Accepted: 19 April 2021 © The Author(s) 2021 Abstract We provide an overview of both traditional and innovative control tools for management of three Xylosandrus ambrosia beetles (Coleoptera: Curculionidae: Scolytinae), invasive species with a history of damage in forests, nurseries, orchards and urban areas. Xylosandrus compactus, X. crassiusculus and X. germanus are native to Asia, and currently established in several countries around the globe. Adult females bore galleries into the plant xylem inoculating mutualistic ambrosia fungi that serve as food source for the developing progeny. Tunneling activity results in chewed wood extrusion from entry holes, sap outfow, foliage wilting followed by canopy dieback, and branch and trunk necrosis. Maintaining plant health by reducing physiological stress is the frst recommendation for long-term control. Baited traps, ethanol-treated bolts, trap logs and trap trees of selected species can be used to monitor Xylosandrus species. Conventional pest control methods are mostly inefective against Xylosandrus beetles because of the pests’ broad host range and rapid spread. Due to challenges with conventional control, more innovative control approaches are being tested, such as the optimization of the push–pull strategy based on specifc attractant and repellent combinations, or the use of insecticide-treated netting.
    [Show full text]
  • Curculionidae: Scolytinae: Xyleborini) to Mainland China
    BioInvasions Records (2021) Volume 10, Issue 1: 74–80 CORRECTED PROOF Rapid Communication New records of two invasive ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) to mainland China Wei Lin1, Miaofeng Xu1, Lei Gao2, Yongying Ruan3, Shengchang Lai4, Ye Xu4 and You Li5,* 1Technical Center of Gongbei Customs District P. R. China, Zhuhai, Guangdong 519001, China 2Shanghai Academy of Landscape Architecture Science and Planning, Key Laboratory of National Forestry and Grassland Administration on Ecological Landscaping of Challenging Urban Sites, Shanghai 200232, China 3School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, Guangdong 518055, China 4School of Agriculture Science, Jiangxi Agriculture University, Nanchang, Jiangxi 330045, China 5School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A. Author e-mails: [email protected] (WL), [email protected] (MX), [email protected] (LG), [email protected] (YR), [email protected] (SL), [email protected] (YX), [email protected] (YL) *Corresponding author Citation: Lin W, Xu M, Gao L, Ruan Y, Lai S, Xu Y, Li Y (2021) New records of Abstract two invasive ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) to mainland China. Here we report new records of two invasive ambrosia beetles, Xyleborus affinis and BioInvasions Records 10(1): 74–80, X. ferrugineus, in mainland China. For X. affinis, 89 specimens were collected at 12 https://doi.org/10.3391/bir.2021.10.1.09 locations from five hosts (Eucalyptus robusta, Eucalyptus sp., Hevea brasiliensis, Received: 28 April 2020 Schefflera octophylla and Sindora glabra) during 2014–2019. In 2019, there are Accepted: 21 September 2020 only two samples of X.
    [Show full text]
  • The Ambrosia Symbiosis Is Specific in Some Species and Promiscuous in Others: Evidence from Community Pyrosequencing
    The ISME Journal (2015) 9, 126–138 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 www.nature.com/ismej ORIGINAL ARTICLE The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing Martin Kostovcik1,2,3, Craig C Bateman4, Miroslav Kolarik3,5, Lukasz L Stelinski6, Bjarte H Jordal7 and Jiri Hulcr1,4 1School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA; 2Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Praha 2, Czech Republic; 3Institute of Microbiology AS CR, Praha 4, Czech Republic; 4Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA; 5Department of Botany, Faculty of Science, Charles University, Praha 2, Czech Republic; 6Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA and 7Natural History Museum, University Museum of Bergen, University of Bergen, Bergen, Norway Symbioses are increasingly seen as dynamic ecosystems with multiple associates and varying fidelity. Symbiont specificity remains elusive in one of the most ecologically successful and economically damaging eukaryotic symbioses: the ambrosia symbiosis of wood-boring beetles and fungi. We used multiplexed pyrosequencing of amplified internal transcribed spacer II (ITS2) ribosomal DNA (rDNA) libraries to document the communities of fungal associates and symbionts inside the mycangia (fungus transfer organ) of three ambrosia beetle species, Xyleborus affinis, Xyleborus ferrugineus and Xylosandrus crassiusculus. We processed 93 beetle samples from 5 locations across Florida, including reference communities. Fungal communities within mycangia included 14–20 fungus species, many more than reported by culture-based studies.
    [Show full text]
  • Bark and Ambrosia Beetles (Coleoptera: Curculionidae
    Songklanakarin J. Sci. Technol. 34 (2), 153-155, Mar. - Apr. 2012 http://www.sjst.psu.ac.th Short Communication Bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) infesting mango trees (Mangifera indica L.) in Southern Thailand, with two new species recorded for Thailand Wisut Sittichaya* Department of Pest Management, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla, 90112 Thailand. Received 25 August 2011; Accepted 5 January 2012 Abstract Fifteen species of ambrosia beetles and two bark beetle belonging to the curculionid subfamilies Scolytinae and Platypodinae (Coleoptera: Curculionidae) were collected from three infested mango trees (Mangifera indica L.) in the research orchards of the Faculty of Natural Resources, Prince of Songkla University, Songkhla Province. Two species, Arixyleborus grandis (Schedl) and Xyleborinus sculptilis (Schedl), are recorded for the first time in Thailand. Keywords: Ambrosia beetles, Scolytinae, Platypodinae, Mangifera indica 1. Introduction ferae, the specimens were collected from the trunk and main branches of infested mango trees. The mango bark beetle, Mango (Mangifera indica L.) is one of the most H. mangiferea was collected from newly died small mango economically important fruit trees and is widely grown in twigs as a result of the wilt disease or the main twigs were tropical and subtropical areas. More than 87 countries culti- killed by longhorn beetles. The infested trees were physio- vate numerous varieties of mango, and this makes up more logically weak with symptoms of decay at the base of the than 50% of the overall tropical fruit production (Stefan, trunk. The collected beetles were preserved in 95% ethanol 2003).
    [Show full text]