Visceral Leishmaniasis (Kala-Azar): Caused by Leishmania Donovani

Total Page:16

File Type:pdf, Size:1020Kb

Visceral Leishmaniasis (Kala-Azar): Caused by Leishmania Donovani تابع 2 أ.د / فاطمة إبراهيم سنبل أستاذ الميكروبيولوجيا الصيدلية • (Plate 2) • Life cycle of Balantidium coli Mastigophora • General characters : • This subphylum includes those protozoa that move actively by means of a Flagellum (or several flagella) during all or part of their life. In addition, the body has a definite form (not irregular as in amoebae) maintained by a firm pellicle on its outer surface. Some flagellates are devoid of a mouth opening but some have an opening or Cytostome through which food is ingested. They reproduced by longitudinal binary fission (not transverse fission as in case of B. coli). • Some have undulating membrane which appear to consist of highly modified flagellum. Flagellates have vesicular type of nucleus . • The parasitic flagellated protozoa fall into two categories with respect to the type of disease produced in humans : • a) Intestinal and genital flagellates : these are found only in the intestinal or genital tracts and their transmission does not require a biological vector and so pass directly from man to man usually enclosed in a cyst. They include : • - Giardia intestinalis (lamblia) • - Enteromonas hominis • - Trichomonas hominis • - Trichomonas tenax • - Trichomonas vaginalis • - Dientamoeba fragilis (amoeba-like flagellate) • The parasites are nearly all harmless commensals but two species, Giardia intestinalis and Trichomonas vaginalis are associated with inflammatory lesions in heavy infections and for practical purposes may be regarded as pathogenic . • b) Blood and tissue flagellates (haemoflagellates) : these infect the vascular system and various tissues and their transmission requires a biological vector. usually an arthropod (insect) in which they undergo a fresh cycle of alteration and multiplication before they can again infect man. This class contains : • -Genus Leishmania . • -Genus Trypanosoma . • (A) Intestinal and genital flagellates • Giardia intestinalis • Geographical distribution: Universal • Morphology : The trophozoite is bilaterally symmetrical, pear shaped with a broad rounded anterior end and a tapering posterior end. The usual length is 12-15u. The dorsal surface is convex, the sucking disc appears as an ovoid concavity with raised margins and used for attachment. There are two nuclei (containing central karyosome but no chromatin), two axostyles, four pairs of flagella and two median (parabasal) bodis . There is no mouth . • The cyst is ovoid with highly refractile wall. It measures about 12μ in length. Two or four nuclei may be detected (according to the stage of maturity), 4 median bodies and also parts of flagella . • Life cycle : (Plate 3) • Man is infected by swallowing the cyst which pass safely through the stomach and hatches in the upper part of the small intestine liberating 2-4 trophozoites. The organism starts dividing into two by longitudinal division, and attach to the mucosa by their suckers. They become encysted in the lower part of the small intestine. Cysts are passed in the faeces and the cycle is repeated . • Plate (3) • Giardia intestinalis life cycle • Pathogenicity : • Giardiasis is transmitted through food and water containing cysts after contamination by sewage, flies or by food handlers. The parasite is weakly pathogenic but its attachment to the intestinal mucosa may cause • -Irritation and inflammation with consequent Epigastric pain and acute or chronic diarrhea and digestive disturbances. • -Steatorrhoea (fatty diarrhea- Stool is light-coloured and greasy due to malabsorption of vitamin A and fats, and • - Flatulence • - Occasionally, the parasites are found in the bile ducts and even in the • gall bladder leading to cholangitis and cholecystitis . • Predisposing Factors: that determine disease severity • 1- Hypogammaglobulinaemia. • 2- Achlorhydria. • Laboratory diagnosis : • Microscopical examination of faeces to find the characteristic cysts or more rarely the trophozoites Duodenal biopsy may be necessary for diagnosis by demonstrating trophozoites . • N.B. : In giardiasis the stools are usually greasy or fatty (steatorrhoea) due to malabsorption of fats and there is no blood or mucus . • Treatment : • -Metronidazole OR Tinidazole • -Recently Albendazole. • -Correction of the resulting nutritional deficiency from • malabsorption . • Giardiasis is often a family infection, (because it doesn't need intermediate host) so other members should be screened and treated as necessary . • Prevention & control : • Transmission depends on the swallowing of mature cysts (in feaces). Prevention therefore depends on a high level of sanitation • Trichomonas vaginalis • Geographical distribution : Cosmopolitan. • Habitat : • The genital tract of man, both in the male and in the female but particularly the latter . • Morphology : • It is the largest trichomonad found in human being. The parasite is fusiform or oval, 20 u x l0u and has 4 flagella. However, the number of flagella vary from 3-5. The nucleus is elongated. An axostyle originates near the nucleus and extends to the posterior end. An undulating membrane is also present which does not extend beyond two thirds of the body length. There is a well developed parabasal body lying close to the nucleus. Cysts are not known . • Transmission : (Plate 4 ) • T. vaginalis lives in the vagina and urethra of women and in the prostate, seminal vesicles and urethra of men. It is transmitted primarily by sexual intercourse. • Its presence occasionally in young children including virginal females suggests that the infection can be contracted from soiled washcloths, towels & clothing. • Pathogenicity : • The acidity of the normal vagina (pH4-5) ordinarily discourages infection, but once established, the organism itself cause a shift toward alkalinity (pH 5-6) which further encourages its growth. A few days after infection, there is a degeneration of the vaginal epithelium followed by an intense inflammation which lead to itching and a copious white discharge (characteristic) containing trophozoites. Infection of men is usually asymptomatic but there may be an irritating urethritis or prostitis . • Laboratory diagnosis : • Microscopical : depends on recognizing the trichomonad in secretions which may be vaginal, prostatic or urethral or sedimented urine . • The vaginal secretions are likely to be more alkaline than normal, we may use a strip of pH paper. The pH is likely to exceed 5.0. • Treatment : • - Systemic treatment using oral drugs such as Metronidazol cure infection in about 5 days. Treatment of both partners simultaneously is necessary to avoid reinfection . • - Local treatment by (a) promoting an acid pH of the vagina using lactic acid douche or douche containing 4 tablespoons of vinegar (b) Flagyl vaginal insert (c) Clotrimazole (canestine) vaginal cream or tablets . • Plate ( 4) • Trichomonas vaginalis • Prevention & control : • - Personal hygiene. • - Disinfection of W C. seats. • - Boiling of underwear . • - Treating cases and both partners simultaneously . • -Condom use • (B) The blood and tissue flagellates • (Haemoflagellates) • These parasites include two genera : Leishmania and Trypanosoma which belong to an order of protozoa called Kinetoplastida as they are characterized by the presence of a structure unique to the order, the kinetoplast, which contain the mitochondrial DNA . • General characters of order kinetoplastida : • 1- The flagellum of these flagellates arises from the kinetosome. The kinetoplast and kinetosome are always closely associated, sometimes so close that they appear as a single body under the light microscope. However, most electron micrographs show no physical connection between kinetosome and kinetoplast . • 2- These species are heteroxenous. Part of their life cycle is spent in the gut of a fly where they assume the form of a promastigote and the remainder of their life cycle is completed in vertebrate tissues (amastigate). • 3- The species of kinetoplastida usually pass through different morphological stages, depending on the phase of their life cycle and the host they are parasitizing. These stages include • Genus Trypanosoma • Members of this genus have been found parasitizing all types of vertebrates, both worm and cold - blooded and have a world-wide distribution (Cosmopolitan). • General characters • 1- A trypanosome (Tripomastigote form) is elongated, flattened organism having a single nucleus of the vesicular type and containing a large central karyosome near the kinetosome there is a round or rod-shaped organelle known as kinetoplast. There are a single flagellum and undulating membrane both serve to propel the trypanosome in the same way as a fin propel a fish. • 2- Multiplication of trypanosomes is asexually by longitudinal binary fission . • 3- All trypanosomes are divided into two broad categories or "Sections:" based on characteristics of their development in their invertebrate host. When a species develops in the front portions of the digestive tract it is said to undergo anterior station development and is placed under section salivaria. In this case transmission is inoculative through insect saliva. On the other hand when a species develops in the hind gut of its invertebrate host (insect), it is said to undergo posterior station development and is placed under section . Stercoraria In this case transmission of infection is contaminative through the insect faeces. • 4- Some trypanosomes e.g. those occurring in animals in temperate countries cause only unapparent infection and appear to cause little disturbances to their hosts. On the other
Recommended publications
  • Base J Originally Found in Kinetoplastida Is Also a Minor Constituent of Nuclear DNA of Euglena Gracilis
    © 2000 Oxford University Press Nucleic Acids Research, 2000, Vol. 28, No. 16 3017–3021 Base J originally found in Kinetoplastida is also a minor constituent of nuclear DNA of Euglena gracilis Dennis Dooijes, Inês Chaves, Rudo Kieft, Anita Dirks-Mulder, William Martin1 and Piet Borst* Division of Molecular Biology and Centre for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands and 1Institute of Genetics, Technical University of Braunschweig, Spielmannstrasse 7, 38023 Braunschweig, Germany Received June 8, 2000; Accepted July 4, 2000 ABSTRACT DNA blots or by immunoprecipitation. The immunoprecipi- tated DNA can be analyzed by combined 32P-postlabeling and We have analyzed DNA of Euglena gracilis for the two-dimensional thin-layer chromatography (2D-TLC) experi- presence of the unusual minor base β-D-glucosyl- ments (6,7) to verify that J is present. Using these methods we hydroxymethyluracil or J, thus far only found in have shown that J is a conserved DNA modification in kineto- kinetoplastid flagellates and in Diplonema.Using plastid protozoans and is abundant in their telomeres (5). J was antibodies specific for J and post-labeling of DNA not detected in the animals, plants, or fungi tested, nor in a digests followed by two-dimensional thin-layer range of other simple eukaryotes, such as Plasmodium, chromatography of labeled nucleotides, we show Toxoplasma, Entamoeba, Trichomonas and Giardia (5). that ~0.2 mole percent of Euglena DNA consists of J, Outside the Kinetoplastida, J was only found in Diplonema,a an amount similar to that found in DNA of Trypano- small phagotrophic marine flagellate, in which we also soma brucei.
    [Show full text]
  • Download the Abstract Book
    1 Exploring the male-induced female reproduction of Schistosoma mansoni in a novel medium Jipeng Wang1, Rui Chen1, James Collins1 1) UT Southwestern Medical Center. Schistosomiasis is a neglected tropical disease caused by schistosome parasites that infect over 200 million people. The prodigious egg output of these parasites is the sole driver of pathology due to infection. Female schistosomes rely on continuous pairing with male worms to fuel the maturation of their reproductive organs, yet our understanding of their sexual reproduction is limited because egg production is not sustained for more than a few days in vitro. Here, we explore the process of male-stimulated female maturation in our newly developed ABC169 medium and demonstrate that physical contact with a male worm, and not insemination, is sufficient to induce female development and the production of viable parthenogenetic haploid embryos. By performing an RNAi screen for genes whose expression was enriched in the female reproductive organs, we identify a single nuclear hormone receptor that is required for differentiation and maturation of germ line stem cells in female gonad. Furthermore, we screen genes in non-reproductive tissues that maybe involved in mediating cell signaling during the male-female interplay and identify a transcription factor gli1 whose knockdown prevents male worms from inducing the female sexual maturation while having no effect on male:female pairing. Using RNA-seq, we characterize the gene expression changes of male worms after gli1 knockdown as well as the female transcriptomic changes after pairing with gli1-knockdown males. We are currently exploring the downstream genes of this transcription factor that may mediate the male stimulus associated with pairing.
    [Show full text]
  • The Intestinal Protozoa
    The Intestinal Protozoa A. Introduction 1. The Phylum Protozoa is classified into four major subdivisions according to the methods of locomotion and reproduction. a. The amoebae (Superclass Sarcodina, Class Rhizopodea move by means of pseudopodia and reproduce exclusively by asexual binary division. b. The flagellates (Superclass Mastigophora, Class Zoomasitgophorea) typically move by long, whiplike flagella and reproduce by binary fission. c. The ciliates (Subphylum Ciliophora, Class Ciliata) are propelled by rows of cilia that beat with a synchronized wavelike motion. d. The sporozoans (Subphylum Sporozoa) lack specialized organelles of motility but have a unique type of life cycle, alternating between sexual and asexual reproductive cycles (alternation of generations). e. Number of species - there are about 45,000 protozoan species; around 8000 are parasitic, and around 25 species are important to humans. 2. Diagnosis - must learn to differentiate between the harmless and the medically important. This is most often based upon the morphology of respective organisms. 3. Transmission - mostly person-to-person, via fecal-oral route; fecally contaminated food or water important (organisms remain viable for around 30 days in cool moist environment with few bacteria; other means of transmission include sexual, insects, animals (zoonoses). B. Structures 1. trophozoite - the motile vegetative stage; multiplies via binary fission; colonizes host. 2. cyst - the inactive, non-motile, infective stage; survives the environment due to the presence of a cyst wall. 3. nuclear structure - important in the identification of organisms and species differentiation. 4. diagnostic features a. size - helpful in identifying organisms; must have calibrated objectives on the microscope in order to measure accurately.
    [Show full text]
  • Protozoan Parasites
    Welcome to “PARA-SITE: an interactive multimedia electronic resource dedicated to parasitology”, developed as an educational initiative of the ASP (Australian Society of Parasitology Inc.) and the ARC/NHMRC (Australian Research Council/National Health and Medical Research Council) Research Network for Parasitology. PARA-SITE was designed to provide basic information about parasites causing disease in animals and people. It covers information on: parasite morphology (fundamental to taxonomy); host range (species specificity); site of infection (tissue/organ tropism); parasite pathogenicity (disease potential); modes of transmission (spread of infections); differential diagnosis (detection of infections); and treatment and control (cure and prevention). This website uses the following devices to access information in an interactive multimedia format: PARA-SIGHT life-cycle diagrams and photographs illustrating: > developmental stages > host range > sites of infection > modes of transmission > clinical consequences PARA-CITE textual description presenting: > general overviews for each parasite assemblage > detailed summaries for specific parasite taxa > host-parasite checklists Developed by Professor Peter O’Donoghue, Artwork & design by Lynn Pryor School of Chemistry & Molecular Biosciences The School of Biological Sciences Published by: Faculty of Science, The University of Queensland, Brisbane 4072 Australia [July, 2010] ISBN 978-1-8649999-1-4 http://parasite.org.au/ 1 Foreword In developing this resource, we considered it essential that
    [Show full text]
  • Plants As Sources of Anti-Protozoal Compounds
    PLANTS AS SOURCES OF ANTI- PROTOZOAL COMPOUNDS Thesis presented by Angela Paine for the degree of Doctor of Philosophy in the Faculty of Medicine of the University of London Department of Pharmacognosy The School of Pharmacy University of London 1995 ProQuest Number: 10104878 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10104878 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 dedicated to my late father Abstract The majority of the world's population relies on traditional medicine, mainly plant-based, for the treatment of disease. This study focuses on plant remedies used to treat tropical diseases caused by protozoan parasites. The following protozoal diseases: African trypanosomiasis, leishmaniasis. South American trypanosomiasis and malaria, and the traditional use of plant remedies in their treatment, are reviewed in a world wide context. In the present work, vector and mammalian forms of Trypanosoma b. brucei, the vector forms of Leishmania donovani and Trypanosoma cruzi and the mammalian forms of Plasmodium falciparum were maintained in culture in vitro in order to evaluate the activity of a series of plant extracts, pure natural products and synthetic analogues against these protozoan parasites in vitro.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Common Intestinal Protozoa of Humans
    Common Intestinal Protozoa of Humans* Life Cycle Charts M.M. Brooke1, Dorothy M. Melvin1, and 2 G.R. Healy 1 Division of Laboratory Training and Consultation Laboratory Program Office and 2Division of Parasitic Diseases Center for Infectious Diseases Second Edition* 1983 U .S. Department of Health and Human Services Public Health Service Centers for Disease Control Atlanta, Georgia 30333 *Updated from the original printed version in 2001. ii Contents Page I. INTRODUCTION 1 II. AMEBAE 3 Entamoeba histolytica 6 Entamoeba hartmanni 7 Entamoeba coli 8 Endolimax nana 9 Iodamoeba buetschlii 10 III. FLAGELLATES 11 Dientamoeba fragilis 14 Pentatrichomonas (Trichomonas) hominis 15 Trichomonas vaginalis 16 Giardia lamblia (syn. Giardia intestinalis) 17 Chilomastix mesnili 18 IV. CILIATE 19 Balantidium coli 20 V. COCCIDIA** 21 Isospora belli 26 Sarcocystis hominis 27 Cryptosporidium sp. 28 VI. MANUALS 29 **At the time of this publication the coccidian parasite Cyclospora cayetanensis had not been classified. iii Introduction The intestinal protozoa of humans belong to four groups: amebae, flagellates, ciliates, and coccidia. All of the protozoa are microscopic forms ranging in size from about 5 to 100 micrometers, depending on species. Size variations between different groups may be considerable. The life cycles of these single- cell organisms are simple compared to those of the helminths. With the exception of the coccidia, there are two important growth stages, trophozoite and cyst, and only asexual development occurs. The coccidia, on the other hand, have a more complicated life cycle involving asexual and sexual generations and several growth stages. Intestinal protozoan infections are primarily transmitted from human to human. Except for Sarcocystis, intermediate hosts are not required, and, with the possible exception of Balantidium coli, reservoir hosts are unimportant.
    [Show full text]
  • Parasitic Infections I
    5/10/2021 What proportion of species are parasites? Parasitic infections I. RNDr. et M.Res Lenka Richterová Ph.D. NRL for diagnosis of tropical parasitological infections S What proportion of species are 2017 parasites? 12/20 Parasites as seen by medicine Parasites as seen by medicine S S 1 5/10/2021 Parasites as seen by medicine Tropical tissue parasites protozoans Plasmodium Leishmania sp. falciparum P. falciparum T. cruzi Trypanosoma brucei Babesis sp. P. malariae P. ovale S https://www.cdc.gov/dpdx/ Intestinal parasites Tissue helmints Cyclospora Echinococcus Trichuris spp. Microsporidia cayetanensis Entamoeba Toxocara sp. multilocularis Taenia solium O. volvulus Enterobius Fasciola Taenia saginata vermicularis Cryptosporidium G. intestinalis Trichinella sp. hepatica Schistosoma sp. Paragonimu ssp. https://www.cdc.gov/dpdx/ https://www.cdc.gov/dpdx/ Tropical tissue parasites protozoans Plasmodium Leishmania sp. falciparum P. falciparum T. cruzi Trypanosoma brucei Babesis sp. P. malariae P. ovale https://www.cdc.gov/dpdx/ 2 5/10/2021 World malaria report 2018 Plasmodium falciparum - life cycle 2016 for the first time in 20 years number of cases increased!!! Venezuela Burundi 1mil 2018 7,2 mil 2019 S 219mil cases S 200,5mil in Africa S 7,51mil P. vivax S 435 000 deths (403 000 Afrika) http://magazine.jhsph.edu/2011/malaria/online_extras/galleries/malaria_life_cycle/ https://www.who.int/malaria/publications/world-malaria-report-2018/en/ Malaria Clinical presentation S symptoms of uncomplicated malaria can be rather non-specific S untreated malaria can progress to severe forms that may be rapidly (<24 hours) fatal S most frequent symptoms include fever and chills, which can be accompanied by headache, myalgias, arthralgias, weakness, vomiting, and diarrhoea S Other clinical features include splenomegaly, anemia, thrombocytopenia, hypoglycemia, pulmonary or renal dysfunction, and neurologic changes Malaria Malaria RDT S HRP – 2 S RDT antigen – P.
    [Show full text]
  • Hemoparasites of the Genus Trypanosoma (Kinetoplastida: Trypanosomatidae) and Hemogregarines in Anurans of the São Paulo and Mato Grosso Do Sul States – Brazil
    “main” — 2009/5/4 — 11:00 — page 199 — #1 Anais da Academia Brasileira de Ciências (2009) 81(2): 199-206 (Annals of the Brazilian Academy of Sciences) ISSN 0001-3765 www.scielo.br/aabc Hemoparasites of the genus Trypanosoma (Kinetoplastida: Trypanosomatidae) and hemogregarines in Anurans of the São Paulo and Mato Grosso do Sul States – Brazil DENISE D.M. LEAL1, LUCIA H. O’DWYER1, VITOR C. RIBEIRO2, REINALDO J. SILVA1, VANDA L. FERREIRA3 and ROZANGELA B. RODRIGUES3 1Departamento de Parasitologia, Instituto de Biociências, Unesp, Distrito Rubião Júnior s/n 18618-000 Botucatu, SP, Brasil 2Instituto de Biotecnologia Aplicada a Agricultura, UFV, Campus Universitário, Avenida Peter Henry Rolfs s/n 36570-000 Viçosa, MG, Brasil 3Departamento de Biologia-Ecologia, Centro de Ciências Biológicas e da Saúde (CCBS), UFMS, Cidade Universitária 79070-900 Campo Grande, MS, Brasil Manuscript received on March 11, 2008; accepted for publication on October 8, 2008; presented by LUIZ R. TRAVASSOS ABSTRACT Wild animals are exposed to numerous pathogens, including hemoparasites. The Trypanosoma and hemogregarine group are frequently reported as parasites in anurans (frogs, tree frogs and toads). The identification of these hemopar- asites is usually made through stage observation of their morphology in the peripheral blood of the host. There are no studies, however, based on the biological cycle of these hemoparasites. The objective of the present study was to evaluate the presence of hemogregarines and Trypanosoma spp. in anurans captured in the States of São Paulo and Mato Grosso do Sul – Brazil and to perform the morphological and morphometric characterization of these hemopar- asites. The species of anurans examined were: Dendropsophus nanus, D.
    [Show full text]
  • Parasitic Organisms Chart
    Parasitic organisms: Pathogen (P), Potential pathogen (PP), Non-pathogen (NP) Parasitic Organisms NEMATODESNematodes – roundworms – ROUNDWORMS Organism Description Epidemiology/Transmission Pathogenicity Symptoms Ancylostoma -Necator Hookworms Found in tropical and subtropical Necator can only be transmitted through penetration of the Some are asymptomatic, though a heavy burden is climates, as well as in areas where skin, whereas Ancylostoma can be transmitted through the associated with anemia, fever, diarrhea, nausea, Ancylostoma duodenale Soil-transmitted sanitation and hygiene are poor.1 skin and orally. vomiting, rash, and abdominal pain.2 nematodes Necator americanus Infection occurs when individuals come Necator attaches to the intestinal mucosa and feeds on host During the invasion stages, local skin irritation, elevated into contact with soil containing fecal mucosa and blood.2 ridges due to tunneling, and rash lesions are seen.3 matter of infected hosts.2 (P) Ancylostoma eggs pass from the host’s stool to soil. Larvae Ancylostoma and Necator are associated with iron can penetrate the skin, enter the lymphatics, and migrate to deficiency anemia.1,2 heart and lungs.3 Ascaris lumbricoides Soil-transmitted Common in Sub-Saharan Africa, South Ascaris eggs attach to the small intestinal mucosa. Larvae Most patients are asymptomatic or have only mild nematode America, Asia, and the Western Pacific. In migrate via the portal circulation into the pulmonary circuit, abdominal discomfort, nausea, dyspepsia, or loss of non-endemic areas, infection occurs in to the alveoli, causing a pneumonitis-like illness. They are appetite. Most common human immigrants and travelers. coughed up and enter back into the GI tract, causing worm infection obstructive symptoms.5 Complications include obstruction, appendicitis, right It is associated with poor personal upper quadrant pain, and biliary colic.4 (P) hygiene, crowding, poor sanitation, and places where human feces are used as Intestinal ascariasis can mimic intestinal obstruction, fertilizer.
    [Show full text]
  • INFECTIOUS DISEASES of HAITI Free
    INFECTIOUS DISEASES OF HAITI Free. Promotional use only - not for resale. Infectious Diseases of Haiti - 2010 edition Infectious Diseases of Haiti - 2010 edition Copyright © 2010 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN-13: 978-1-61755-090-4 ISBN-10: 1-61755-090-6 Visit http://www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER: Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. © 2010 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 2 of 314 Free. Promotional use only - not for resale. Infectious Diseases of Haiti - 2010 edition Introduction: The GIDEON e-book series Infectious Diseases of Haiti is one in a series of GIDEON ebooks which summarize the status of individual infectious diseases, in every country of the world.
    [Show full text]
  • Evolutionary Analyses of Myosin Genes in Trypanosomatids Show A
    www.nature.com/scientificreports OPEN Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary Received: 15 September 2017 Accepted: 18 December 2017 losses and neofunctionalization Published: xx xx xxxx Denise Andréa Silva de Souza1,2, Daniela Parada Pavoni1,2, Marco Aurélio Krieger1,2,3 & Adriana Ludwig1,3 Myosins are motor proteins that comprise a large and diversifed family important for a broad range of functions. Two myosin classes, I and XIII, were previously assigned in Trypanosomatids, based mainly on the studies of Trypanosoma cruzi, T. brucei and Leishmania major, and important human pathogenic species; seven orphan myosins were identifed in T. cruzi. Our results show that the great variety of T. cruzi myosins is also present in some closely related species and in Bodo saltans, a member of an early divergent branch of Kinetoplastida. Therefore, these myosins should no longer be considered “orphans”. We proposed the classifcation of a kinetoplastid-specifc myosin group into a new class, XXXVI. Moreover, our phylogenetic data suggest that a great repertoire of myosin genes was present in the last common ancestor of trypanosomatids and B. saltans, mainly resulting from several gene duplications. These genes have since been predominantly maintained in synteny in some species, and secondary losses explain the current distribution. We also found two interesting genes that were clearly derived from myosin genes, demonstrating that possible redundant or useless genes, instead of simply being lost, can serve as raw material for the evolution of new genes and functions. Myosins are important eukaryotic molecular motor proteins that bind actin flaments and are dependent of ATP hydrolysis1.
    [Show full text]