Climate Change and Marine Benthos: a Review of Existing Research and Future Directions in the North Atlantic Silvana N.R

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change and Marine Benthos: a Review of Existing Research and Future Directions in the North Atlantic Silvana N.R Advanced Review Climate change and marine benthos: a review of existing research and future directions in the North Atlantic Silvana N.R. Birchenough,1,∗,† Henning Reiss,2,† Steven Degraer,3,† Nova Mieszkowska,4 Ángel Borja,5 Lene Buhl-Mortensen,6 Ulrike Braeckman,7 Johan Craeymeersch,8 IlseDeMesel,8 Francis Kerckhof,3 Ingrid Kröncke,9 Santiago Parra,10 Marijn Rabaut,7 Alexander Schröder,11 Carl Van Colen,7 Gert Van Hoey,12 Magda Vincx7 and Kai Wätjen13 There is growing evidence that climate change could affect marine benthic systems. This review provides information of climate change-related impacts on the marine benthos in the North Atlantic. We cover a number of related research aspects, mainly in connection to two key issues. First, is the relationship between different physical aspects of climate change and the marine benthos. This section covers: (a) the responses to changes in seawater temperature (biogeographic shifts and phenology); (b) altered Hydrodynamics; (c) ocean acidification (OA); and (d) sea-level rise-coastal squeeze. The second major issue addressed is the possible integrated impact of climate change on the benthos. This work is based on relationships between proxies for climate variability, notably the North Atlantic Oscillation (NAO) index, and the long-term marine benthos. The final section of our review provides a series of conclusions and future directions to support climate change research on marine benthic systems. © 2015 John Wiley & Sons, Ltd. Howtocitethisarticle: WIREs Clim Change 2015. doi: 10.1002/wcc.330 INTRODUCTION ∗Correspondence to: [email protected] he North Atlantic plays a major role in climate 1Lowestoft Laboratory, The Centre for Environment, Fisheries and Tchange as it is a key node in the thermohaline Aquaculture Science , Suffolk, UK circulation. The inflow of cold deep water into the 2 Faculty of Biosciences and Aquaculture, University of Nordland, northern North Atlantic and the consequent transport Bodø, Norway 3Royal Belgian Institute of Natural Sciences, Operational Direc- torate Natural Environment, Marine Ecology and Management, 10Centro Oceanográfico de A Coruña, Instituto Español de Brussels, Belgium Oceanografía, A Coruña, Spain 4Marine Biological Association of the United Kingdom, Plymouth, 11Lower Saxony Water Management Agency, NLWKN, Oldenburg, UK Germany 5Marine Research Division, Azti, Pasaia, Spain 12Research Institute for Agriculture and Fishery research, Depart- 6Institute of Marine Research, PB 1870 Nordnes, N-5817 Bergen, ment of Aquatic Environment and Quality, Bio-Environmental Norway Research Group, Ankerstraat 1, 8400 Oostende, Belgium 7Department of Biology, Research Group Marine Biology, Ghent 13Alfred Wegener Institute for Polar & Marine Research, University, Ghent, Belgium Bremerhaven, Germany 8Institute for Marine Resources and Ecosystem Studies, Wageningen, Netherlands †These authors wish to be considered as joint first authors. 9Department for Marine Research, Senckenberg Institute, Conflict of interest: The authors have declared no conflicts of interest Wilhelmshaven, Germany for this article. © 2015 John Wiley & Sons, Ltd. Advanced Review wires.wiley.com/climatechange of warm surface water to the north ensure that Europe and with wider effects for other ecosystem compo- is much warmer than comparative latitudes elsewhere. nents. This process allows the heat to be transferred to the Our synthesis also summarizes the current state Arctic and contributes to the melting sea ice and to of play with regard to OA, as evidence indicates that the potential release of methane. The North Atlantic the oceans are becoming more acidic. Some studies contains about a quarter of the anthropogenic carbon report that there will be some effects for dedicated stored in the oceans as a result of an inflow of depth groups, whereas there are other studies that do report water and the deep mixing that occurs in this system. limited effects and consequences for benthic systems. Climate change is having an effect in the marine This is an active research area, producing targeted environment. As these changes are being observed, research to understand organisms’ responses to pH it is imperative to understand how marine systems changes in the laboratory and field studies. will be affected under changing climate conditions. We have included a specific emphasis on knowl- Our review concentrates on climate change effects edge gained from former benthic long-term series stud- observed in the benthic communities of the Atlantic ies on the effects of the North Atlantic Oscillation region over the last hundred years.1–9 Marine ben- (NAO) as a proxy for climate variability, as this infor- thic communities are especially suited for long-term mation can be related to similar studies over other comparative investigations as many of the constituent ecosystem components, providing useful insights on species are sessile or have low mobility, are relatively the changes observed in marine benthic communities long lived and so can integrate the effects of environ- over long-term assessments. mental change over time. The macrobenthos has an Finally, the conclusions section provides an important functional role in the reworking of sedi- overview of the current work and also a recommen- ments, provides nutrients and food to higher trophic dation list of gaps where further research is needed. groups and allows the provision of habitats through habitat engineering species, e.g., Refs 10–14. Given the important ecological role of benthic DIRECT AND CIRCUMSTANTIAL communities it is essential to understand and predict EVIDENCE OF CLIMATE how they are likely to respond to climate change. Cli- CHANGE EFFECTS mate change is considered to be a complex problem, as conceptually summarized by the ICES Benthos Ecol- Temperature Change-Driven Effects ogy Working Group (Ref 3; Figure 1). We acknowl- edge that the study of all of these processes is not trivial Distributional Shifts and there will be a need to undertake research with Biogeographic studies have been the focus of much multidisciplinary teams to answer some aspects high- ecological research that has identified a link between lighted in this conceptual framework. Figure 1 is used the distribution of marine species and mean sea surface to describe the main abiotic (e.g., storms and habi- isotherms.15,16 Oceanic changes in temperature due to tat loss) and biotic (e.g., latitudinal shifts of species, global climate change are causing poleward shifts in larval supply, and match/mismatch) effects that will the latitudinal distribution of species toward cooler be affecting benthic and directly interconnected (e.g., marine environmental regions throughout the North plankton) systems. It is clear that there are some wider Atlantic.17 Such distributional shifts have already been aspects (e.g., temperature, OA, and anthropogenic found for several components of the marine ecosys- interactions) will have a wider influence across all of tem: fish,18–21 phytoplankton,22,23 zooplankton,24–26 the components in the framework. Some knowledge and also benthos.27–29 is already available either through directly or circum- There is clear evidence of change in the distri- stantially evidenced effects of climate change onto the bution and abundance of benthic species in response benthos, but there are still aspects that require further to seawater temperature change, e.g., in the North research. The way this review is structured is look- Atlantic.5,7,29–31 Most changes are initially seen to ing at the (expected) ‘knowns’ and consequently also be occurring at the edge of ranges, where organ- the ‘unknowns’, for example looking at existing litera- isms are more likely to be physiologically stressed. ture on how species are changing their distributions in Intertidal organisms, for example, have shown some response of changes in environmental conditions (e.g., of the fastest responses to climate change as they temperature). Furthermore, the effects of sea level rise are living close to their physiological tolerance lim- in intertidal areas (known as ‘the coastal squeeze phe- its. Evidence of a strong climatic influence has been nomenon’) could severely affect benthic habitats with observed in the abundances of the co-occurring inter- direct repercussions for the loss of benthic function tidal Lusitanian barnacles Chthamalus montagui and © 2015 John Wiley & Sons, Ltd. WIREs Climate Change Climate change and marine benthos Abiotic effects Biotic effects Non benthos Benthos First-order effects n-order effects (l) Habitat loss (+) risk of local extinction/ population resilience level Sea- (n) (o) (m) (–) Salinity (intertidal) Increased osmotic stress (o) Pollution River (j) Phytobenthic production run-off (j) Eutrophication ) Cloudiness/ precipitation 2 (i) Irradiance (e,j) (g) (k) (q) Larval supply Changed currents Plankton production Changes in food-web (e,h,j) structure (m) (d,e,h) (t) (+) Stratification (f) Altered benthic and reallocation of fronts pelagic coupling Temperature regime (d) Sediment (i) Wind regime composition Altered community (k) (i) (i) (+) Storminess/ structure/habitat Green house gasses (e.g. CO Turbidity turbulence (i) (c) Match/mismatch (a) Latitudinal shift of species (b) (+) Southern invasive species (+) Secondary production (p) (–) Physiological impact on Acidification calcareous organisms Anthropogenic interactions: (r, s) | 196 FIGURE 1 Conceptual diagram of the effects of climate change and benthic interactions illustrating the influence
Recommended publications
  • Marine Snails of the Genus Phorcus: Biology and Ecology of Sentinel Species for Human Impacts on the Rocky Shores
    DOI: 10.5772/intechopen.71614 Provisional chapter Chapter 7 Marine Snails of the Genus Phorcus: Biology and MarineEcology Snails of Sentinel of the Species Genus Phorcusfor Human: Biology Impacts and on the EcologyRocky Shores of Sentinel Species for Human Impacts on the Rocky Shores Ricardo Sousa, João Delgado, José A. González, Mafalda Freitas and Paulo Henriques Ricardo Sousa, João Delgado, José A. González, MafaldaAdditional information Freitas and is available Paulo at Henriques the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.71614 Abstract In this review article, the authors explore a broad spectrum of subjects associated to marine snails of the genus Phorcus Risso, 1826, namely, distribution, habitat, behaviour and life history traits, and the consequences of anthropological impacts, such as fisheries, pollution, and climate changes, on these species. This work focuses on discussing the ecological importance of these sentinel species and their interactions in the rocky shores as well as the anthropogenic impacts to which they are subjected. One of the main anthro- pogenic stresses that affect Phorcus species is fisheries. Topshell harvesting is recognized as occurring since prehistoric times and has evolved through time from a subsistence to commercial exploitation level. However, there is a gap of information concerning these species that hinders stock assessment and management required for sustainable exploi- tation. Additionally, these keystone species are useful tools in assessing coastal habitat quality, due to their eco-biological features. Contamination of these species with heavy metals carries serious risk for animal and human health due to their potential of biomag- nification in the food chain.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • From the Cape Verde Islands
    © Sociedad Española de Malacología Iberus, 30 (2): 89-96, 2012 A new species of Phorcus (Vetigastropoda, Trochidae) from the Cape Verde Islands Una nueva especie de Phorcus (Vetigastropoda, Trochidae) del archi- piélago de Cabo Verde José TEMPLADO* and Emilio ROLÁN** Recibido el 13-III-2012. Aceptado el 24-V-2012 ABSTRACT A recent molecular study has shown that the well-known intertidal Cape Verde topshell, previ- ously identified as Osilinus punctulatus, O. tamsi or O. atratus, is a distinct undescribed species (DONALD,PRESTON,WILLIAMS,REID,WINNER,ALVAREZ,BUGE,HAWKINS,TEMPLADO &SPENCER, 2012). Therefore we describe it here as new for science and compare it to the closest species. RESUMEN Un estudio reciente basado en técnicas moleculares ha demostrado que la especie intermareal de las islas de Cabo Verde previamente identificada como Osilinus punctulatus, O. tamsi u O. atratus, es en realidad una especie diferente no descrita (DONALD,PRESTON,WILLIAMS, REID,WINNER,ALVAREZ,BUGE,HAWKINS,TEMPLADO &SPENCER, 2012). Por lo tanto, la des- cribimos aquí como nueva para la ciencia y la comparamos con las especies más próximas. INTRODUCTION The more important and common al- logically (HICKMAN &MCLEAN, 1990) gal grazers of intertidal rocky sea-shores and genetically (DONALD,KENNEDY AND of the northeastern Atlantic Ocean and SPENCER, 2005) distinct from Monodonta Mediterranean Sea are limpets (of the and, based on molecular evidence, Osili- genera Patella and Cymbula), winkles (of nus has recently been moved into the the genera Littorina, Melarhaphe and subfamily Cantharidinae, separate from Echinolittorina) and topshells (of the gen- the Monodontinae and Trochinae (WI- era Gibbula and Phorcus).
    [Show full text]
  • Anatomy of Zetela Alphonsi Vilvens, 2002 Casts Doubt on Its Original Placement Based on Conchological Characters
    SPIXIANA 40 2 161-170 München, Dezember 2017 ISSN 0341-8391 Anatomy of Zetela alphonsi Vilvens, 2002 casts doubt on its original placement based on conchological characters (Mollusca, Solariellidae) Enrico Schwabe, Martin Heß, Lauren Sumner-Rooney & Javier Sellanes Schwabe, E., Heß, M., Sumner-Rooney, L. H. & Sellanes, J. 2017. Anatomy of Zetela alphonsi Vilvens, 2002 casts doubt on its original placement based on con- chological characters (Mollusca, Solariellidae). Spixiana 40 (2): 161-170. Zetela is a genus of marine gastropods belonging to the family Solariellidae (Vetigastropoda, Trochoidea). The species Zetela alphonsi Vilvens, 2002 was origi- nally described using classical conchological characters from samples obtained from deep water off Chiloé, Chile, but no other features were recorded in the original description. In the present paper, taxonomically relevant characters such as the operculum, radula, and soft part anatomy are illustrated and described for the first time from a specimen of Zetela alphonsi from a new locality, a methane seep area off the coast of central Chile. We find that many features differ substantially from other members of the genus, including several which deviate from characters that are diagnostic for Zetela. Zetela alphonsi also lacks retinal screening pigment, giving the appearance of eyelessness from gross examination. Although pigmenta- tion loss has been reported in other deep sea genera, this feature has not been re- ported in any other members of Zetela. We reconstructed a tomographic model of the eye and eyestalk, and demonstrate that a vestigial eye is still present but exter- nally invisible due to the loss of pigmentation. Based on these new morphological characters, particularly observations of the radula, we suggest that the current placement of this species in the genus Zetela should be reconsidered.
    [Show full text]
  • Thick Top Shell (Phorcus Lineatus)
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Thick top shell (Phorcus lineatus) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Nova Mieszkowska 2008-04-17 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1324]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Mieszkowska, N. 2008. Phorcus lineatus Thick top shell. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1324.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2008-04-17 Thick top shell (Phorcus lineatus) - Marine Life Information Network See online review for distribution map Phorcus lineatus on intertidal rock.
    [Show full text]
  • Cambridge University Press 978-1-108-41608-5 — Interactions in the Marine Benthos Edited by Stephen J
    Cambridge University Press 978-1-108-41608-5 — Interactions in the Marine Benthos Edited by Stephen J. Hawkins , Katrin Bohn , Louise B. Firth , Gray A. Williams Index More Information Index abalone, 250–1, 340, 342, 421, 462 encrusting, 28, 54, 65, 99, 196–7, anthozoa, 112 abundant centre hypothesis, 239 200, 281, 339–40, 342, 372–4, antipatharia, 477, 481 abyssal Indian Ocean province, 475 376, 396, 456 Antipathes, 481 Acanella, 477 ephemeral, 16–17, 21, 28–9, 51–2, Antipathes robillardi, 477 Acanella arbuscula, 477 65–6, 69, 74, 76, 78, 140, 170, apex predator, 103–4, 218 Acanella eburnea, 477 315–16, 374, 376, 396, 400–1, Aplodactylus punctatus, 315, Acanthaster planci, 342–3 422, 462, 476, 493–4 318–19 Acanthinucella spirata, 245 spores, 53, 276, 278, 280, 314 aquaculture, 108–9, 196, 202, 282, Acanthocyclus gayi, 317 sweeping, 8, 17, 19, 449, 458 321, 379–80, 382, 499 Acanthocyclus hassleri, 328 turf, 14, 16–19, 28, 54, 56–7, 102, Arbacia lixula, 197, 225 Acanthogorgia, 479 115, 191, 193–6, 198–9, 204, 218, Arctic Ocean, 9 Acanthogorgiidae. See Acanthogorgia 224, 264, 396, 399, 402, 404–5, Arenicola marina, 146, 161 Acanthophora nayadiformis, 217, 408, 417, 421–4, 493 Argentine Province, 165–6 221, 228 understorey, 13, 17, 19, 193–5 artificial reef, 260 Acanthopleura echinata, 313 zygote, 53, 71–2, 194, 204 artificial structure, 1, 4, 9, 13, 20–1, Acanthopleura japonica, 373 alien. See non-indigenous species 24–5, 28, 47, 52–5, 76, 110–11, Actinia equina, 17 Allee effects, 12, 244 164, 174, 176–7, 198, 204, 260, Actinobacteria, 449 allopatric speciation, 10, 346 282, 321, 368, 379–80, 382, 449, Adna anglica, 50 alternative stable states, 54, 70–1, 454, 457, 465, 498 Aegean Sea, 216–17, 224–5 192, 220 Ascidiacea, 76–7, 109–10, 178, 200, Aequipecten opercularis, 52 Alvinella pompejana, 476 282, 321, 339, 342, 347, 440 Agarum, 265, 276 American lobster.
    [Show full text]
  • Holocene Climate Change in the Subtropical Eastern North Atlantic
    Holocene Climate Change in the Subtropical Eastern North Atlantic: Integrating High-resolution Sclerochronology and Shell Midden Archaeology in the Canary Islands, Spain A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in the Department of Geology of the College of Arts and Sciences by Wesley George Parker B.A., Geological Sciences, Ohio University, 2015 B.A., Global Studies – Latin America, Ohio University, 2015 Dissertation Committee Dr. Yurena Yanes, Chair Dr. Aaron Diefendorf Dr. Henry Spitz Dr. Donna Surge Dr. Amy Townsend-Small Dissertation Abstract High-resolution paleoclimate data are necessary to investigate climate mechanisms that operate at seasonal scale, like the North Atlantic Oscillation (NAO). The oxygen isotope (δ18O) composition of mollusk shells are a powerful paleoclimate proxy that records the highest (submonthly) resolution because: (1) shells are abundant and often well preserved in the geological and archeological record, (2) many shells grow almost continuously year-round, and 18 (3) the δ Oshell values of many mollusks record sea surface temperature (SST). The application of δ18O paleothermometry in new species and localities requires calibration studies to ensure that selected taxa reliably record SSTs. Additionally, anthropogenic and diagenetic alteration must be assessed to ensure the proper acquisition of paleotemperature data. Shells middens of the Canary Islands, located in the subtropical eastern Atlantic Ocean, provide a unique opportunity to generate novel high-resolution paleoclimate data over the last two millennia useful to assess variations in the NAO and its influence on coastal ecosystems and civilizations. Here I present four research projects that address the calibration and application of δ18O paleothermometry using two species of intertidal gastropods, Patella candei and Phorcus atratus.
    [Show full text]
  • The Northward Habitat Expansion of the Korean Top Shell Turbo Sazae
    Journal of Marine Science and Engineering Article The Northward Habitat Expansion of the Korean Top Shell Turbo sazae (Gastropoda: Vetigastropoda: Turbinidae) in the Korean Peninsula: Effects of Increasing Water Temperature Min Ho Son 1, Chung Il Lee 2, Joo Myun Park 3,* , Hyun Jung Kim 1, Ralf Riedel 4, Inseo Hwang 5, Young-Nam Kim 5 and Hae Kun Jung 6 1 Marine Eco-Technology Institute, 406 Sinsunro, Namgu, Busan 48520, Korea; [email protected] (M.H.S.); [email protected] (H.J.K.) 2 Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung 25457, Korea; [email protected] 3 Dokdo Research Center, East Sea Research Institute, Korea Institute of Ocean Science & Technology, Uljin 36315, Korea 4 S&R Consultancy, Ocean Springs, Mississippi, MS 39564, USA; [email protected] 5 Marine Ecosystem Management Team, Korea Marine Environment Management Corporation, Busan 49111, Korea; [email protected] (I.H.); [email protected] (Y.-N.K.) 6 Fisheries Resources and Environment Research Division, East Sea Fisheries Research Institute, National Institute of Fisheries Science, Gangeneung 25435, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-54-780-5344 Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: Recent global climate change often leads to poleward expansions of habitat range of marine organisms in response to increasing water temperature at high latitude. This study investigated latitudinal distribution patterns of Turbo sazae from 2009 to 2018 along the southern and eastern coasts of Korea to verify whether gradual increases in seawater temperature in the East Sea/Sea of Japan (hereafter East/Japan Sea) accelerate changes in the geographic distribution of T.
    [Show full text]
  • Includes Abstracts of the
    Number 65 (August 2015) The Malacologist Page 1 NUMBER 65 AUGUST 2015 Contents EDITORIAL …………………………….. ............................2 ANNUAL GENERAL MEETING—SPRING 2015 Annual Report of Council ...........................................................21 NOTICES ………………………………………………….2 Election of officers ………………………………………….....24 RESEARCH GRANT REPORTS Molecular phylogeny of Chaetodermomorpha (=Caudofoveata) EUROMOL CONFERENCE Programme in retrospect ……………………………………….….25 (Mollusca). Conference Abstracts - Oral presentations………………….....26 Nina Mikkelsen …………………………….………………..4 - Poster presentations ……………...…..53 The Caribbean shipworm Teredothyra dominicensis (Bivalvia, Teredinidae) has invaded and established breeding populations FORTHCOMING MEETINGS …………………………….…..... 72 in the Mediterranean Sea. Molluscan Forum .......................................................................72 J. Reuben Shipway, Luisa Borges, Johann Müller GRANTS AND AWARDS OF THE SOCIETY.............................76 & Simon Cragg ……………………………………………….7 MEMBERSHIP NOTICES ………………………………………....77 ANNUAL AWARD Evolution of chloroplast sequestration in Sacoglossa (Gastropoda, Heterobranchia) Gregor Christa ...……………………………………………....10 AGM CONFERENCE Programme in retrospect Planktic Gastropods ……………...….12 Conference Abstracts - Oral presentations………………….....13 - Poster presentations …………….....…18 Includes abstracts of the .. Images from The heart of a dragon: extraordinary circulatory system of the scaly-foot gastropod revealed Chong Chen, Jonathan Copley, Katrin Linse,
    [Show full text]
  • Phorcus Sauciatus) E (Ii) a Avaliação Dos Efeitos Da Regulamentação Da Apanha De Lapas Nas Populações Exploradas (Patella Aspera, Patella Candei)
    DMTD Key Exploited Species as Surrogates for Coastal Conservation in an Oceanic Archipelago: Insights from topshells and limpets from Madeira (NE Atlantic Ocean) DOCTORAL THESIS Ricardo Jorge Silva Sousa DOCTORATE IN BIOLOGICAL SCIENCES May | 2019 Key Exploited Species as Surrogates for Coastal Conservation in an Oceanic Archipelago: Insights from topshells and limpets from Madeira (NE Atlantic Ocean) DOCTORAL THESIS Ricardo Jorge Silva Sousa DOCTORATE IN BIOLOGICAL SCIENCES Note: The present thesis presents the results of work already published (chapters 2 to 11), in accordance with article 3 (2) and article 6 (2) of the Specific Regulation of the Third Cycle Course in Biological Sciences of the University of Madeira. Resumo As lapas e os caramujos estão entre os herbívoros mais bem adaptados ao intertidal do Atlântico Nordeste. Estas espécies-chave fornecem serviços ecossistémicos valiosos, desempenhando um papel fundamental no equilíbrio ecológico do intertidal e têm um elevado valor económico, estando sujeitas a altos níveis de exploração e representando uma das atividades económicas mais rentáveis na pesca de pequena escala no arquipélago da Madeira. Esta dissertação visa preencher as lacunas existentes na história de vida e dinâmica populacional destas espécies, e aferir os efeitos da regulamentação da apanha nos mananciais explorados. A abordagem conservacionista implícita ao longo desta tese pretende promover: (i) a regulamentação adequada da apanha de caramujos (Phorcus sauciatus) e (ii) a avaliação dos efeitos da regulamentação da apanha de lapas nas populações exploradas (Patella aspera, Patella candei). Atualmente, os mananciais de lapas e caramujos são explorados perto do rendimento máximo sustentável, e a monitorização e fiscalização são fundamentais para evitar a futura sobre-exploração.
    [Show full text]
  • PROBUR Viabilidade Técnico/Económica Da
    PROBUR Viabilidade técnico/económica da produção do Burrié, Littorina littorea (Linneaus, 1758) NOVEMBRO 2015 Relatório Final CON-AQUA, Lda. PROBUR Índice Introdução ...................................................................................................................................................... 3 Tarefa nº1: Avaliação do estado atual de conhecimento da biologia e produção de burrié. ......................... 3 Tarefa nº 2: Captura por meios próprios ou aquisição de exemplares de burrié. .......................................... 4 Tarefa 3: Montagem e manutenção de sistemas com condições apropriadas para reprodutores, larvas e juvenis. .......................................................................................................................................................... 4 Tarefa 4: Montar sistemas de engorda experimentais em aquário, piscicultura e moluscicultura............... 28 Tarefa n.º 5: Patologia, Contaminação e Sanidade ...................................................................................... 34 Tarefa n.º 6: Estudos de Mercado ................................................................................................................ 36 Tarefa n.º 7: Avaliação dos Custos de Produção ......................................................................................... 36 Tarefa n.º 8: Realização de relatório final e conclusões obtidas ................................................................. 36 Anexo 1- Bibliografia .................................................................................................................................
    [Show full text]
  • Vetigastropoda, Neritimorpha Y Conoidea)
    Mitogenómica y filogenia de linajes de gasterópodos altamente diversificados (Vetigastropoda, Neritimorpha y Conoidea) Juan Esteban Uribe Arboleda 2016 MITOGENÓMICA Y FILOGENIA DE LINAJES DE GASTERÓPODOS ALTAMENTE DIVERSIFICADOS (VETIGASTROPODA, NERITIMORPHA Y CONOIDEA) Juan Esteban Uribe Arboleda Tesis doctoral 2016 Mitogenómica y filogenia de linajes de gasterópodos altamente diversificados (Vetigastropoda, Neritimorpha y Conoidea) PROGRAMA DE DOCTORADO EN BIOLOGÍA Y CIENCIAS DE LA ALIMENTACIÓN MEMORIA PRESENTADA POR JUAN ESTEBAN URIBE ARBOLEDA PARA OPTAR AL GRADO DE DOCTOR POR LA UNIVERSIDAD AUTÓNOMA DE MADRID DIRECTORES: RAFAEL ZARDOYA SAN SEBASTIÁN JOSÉ TEMPLADO GONZÁLEZ TUTOR: ÁNGEL ANTONIO LUQUE DEL VILLAR ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Para mi madre y mis abuelos ! 3! AGRADECIMIENTOS Muchas personas e instituciones han contribuido a esta tesis doctoral, en un sentido u otro, y quiero en estas líneas agradecerles: Inicialmente agradezco a mis directores de tesis, que además de grandes personas son excelentes profesionales con un gran don para enseñar. Gracias de verdad, esto ha sido un experiencia enriquecedora, que seguro, recordaré toda mi vida. A mi tutor de la Universidad Autónoma de Madrid Ángel Luque, que siempre estuvo dispuesto a ayudarme y a corregirme. Al Museo Nacional de Ciencias Naturales de Madrid, por facilitar todo para que nosotros los becarios hagamos lo que hacemos. Incluyendo a todo el personal humano: investigadores, directivos, técnicos, servicios generales, a todos, gracias. Al Ministerio de España por la financiación de esta tesis doctoral a partir de los proyectos (CGL2010-18216;! CGL2013- 45211-C2-2-P) y la beca FPI (BES-2011-051469). Como también, al Muséum National d'Histoire Naturelle de París, institución que me ha recibido en tres ocasiones para hacer mis estancias de investigación que tanto han enriquecido mi formación.
    [Show full text]