Candice Marie Colbey Bhsc (Honsclass1)

Total Page:16

File Type:pdf, Size:1020Kb

Candice Marie Colbey Bhsc (Honsclass1) Transcriptional and translational networks linking the immune system to health and disease Author Colbey, Candice M Published 2019-12-16 Thesis Type Thesis (PhD Doctorate) School School of Medical Science DOI https://doi.org/10.25904/1912/1384 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/390022 Griffith Research Online https://research-repository.griffith.edu.au Transcriptional and translational networks linking the immune system to health and disease Title Page Candice Marie Colbey BHSc (HonsClass1) School of Medical Science Griffith Health Griffith University Submitted in fulfilment of the requirements of the degree of Doctor of Philosophy June 2019 Synopsis The contents of this thesis are organised into seven chapters and one appendix • Chapter 1 includes two literature reviews that discuss important factors associated with the development of upper respiratory symptoms (URS) in elite athletes. The first review discusses URS, its incidence and prevalence in elite athletes as well as the effects that exercise has on the immune system at the level of immune gene expression, immune cell phenotype and immunometabolism. The second review was published in Sports Medicine and is presented here in its published form. This review discusses the relationship between exercise, the gut microbiota, the common mucosal immune system and the risk, prevalence and incidence of URS. • Chapter 2 reports the incidence of URS in a cross-sectional study of elite Australian athletes, during a 30-day period, three months prior to a summer Olympic Games. Based on epidemiological data, the cohort was split into the two groups that are studied throughout this thesis; a group that did not present with URS (asymptomatic group) and a group that reported URS for a minimum of two days in the previous month (URS group). The chapter assessed the relationship between lifestyle factors and URS and used several questionnaires relating to the areas of psychology, illness, injury, training load, sleep, energy availability and travel. The assessment of lifestyle factors is a quick and non-invasive method of inquiry that can be used to highlight factors that were or were not linked with the incidence of URS in elite athletes. • Chapter 3 presents an in-depth comparison of peripheral blood mononuclear cell (PBMC) phenotypes between the URS and asymptomatic groups. Immune cell phenotyping was performed to characterise PBMC sub-populations. Circulatory PBMCs are a relatively accessible and representative tissue for analysing the phenotypic and functional aspects of immune competency. Differences in immune phenotype can represent differences in immune function, which involves the reactions and processes of many cell types that represent the innate and adaptive response (1). Differences in immune function may reflect an athletes potential for developing URS (2). Immune cell phenotype was measured using mass cytometry, 2 using the CyTOF2 mass cytometer (Fluidigm, CA, USA) and data was evaluated using a traditional gating strategy in FlowJo_V10 software (Oregon, USA) as well as using an advanced machine learning approach using the Cytobank platform (Santa Clara, USA). • Chapter 4 compared the results of immune gene expression analysis using peripheral blood between the URS and the asymptomatic groups. An essential link between the genome and immune cell phenotype is gene expression. The study of gene expression can reveal key differences associated with illness (3). To undertake this analysis, novel digital gene expression technology from NanoString Technologies (NanoString Technologies, WA, USA) was used. • Chapter 5 compared the metabolic profile and mitochondrial parameters of PBMCs between the URS group and the asymptomatic groups using the Cell Mito Stress Test Kit (Agilent Technologies, Santa Clara, USA). For optimal immune function, it is crucial that the metabolic requirements of immune cells are met. Exercise training is a significant physiological stress for elite athletes. Meeting the energy and nutrient requirements to maintain healthy immune function, in addition to the requirements posed by the energy demand of exercise, can be difficult to achieve for elite athletes (4). Nutritional deficiencies increase the risk of poor immune function and immune cell metabolism (5). Early evidence examining metabolic demands within immune cells has demonstrated metabolic shifts in response to various stimuli and fluctuations in substrate availability (5). • Chapter 6 contains a small pilot study that compared the gut microbial profiles of a subset of the original cohort, between six female soccer players reporting URS and six asymptomatic female soccer players. The link between the gut microbiota and health is of growing interest. The gut microbiota is involved in digestion, nutrient production, metabolism, priming of the immune system in infancy and immune defence (6, 7). Although diet is the main contributor to gut microbial composition, a recent study comparing 40 elite rugby players to healthy, non-athletes, demonstrated that exercise was positively correlated with the composition of the gut microbiota (8). 3 However, it is difficult to discern the extent to which diet and exercise shape the gut microbiota independently and to what extent these factors overlap and contribute to health (8). This pilot study used 16S rRNA sequencing using the Illumina MiSeqTM II system from Macrogen Inc. (Seoul, South Korea). To the best knowledge of this candidate, this study is the first comparison of the gut microbial profile in association with the incidence of URS. • Chapter 7 discusses the general conclusions of each study presented in this thesis and how this body of research contributes to understanding the association between exercise, the immune system and upper respiratory symptoms in elite athletes. 4 Statement of Originality This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. Candice Marie Colbey 28th June 2019 5 Table of Contents Title Page 1 Synopsis 2 Statement of Originality 5 Table of Contents 6 Acknowledgements 10 Preface: The relationship of this thesis to the Stay Healthy Project 11 Chapter 1a 14 1.1 Introduction 15 1.2 The Immune System 17 1.3 The Evolution of Exercise Immunology 19 1.4 The Patterns and Prevalence of URS in Athletic Populations 19 1.5 The Aetiology of URS in Elite Athletes 25 1.6 Mechanisms of Exercise-Induced Modulation of Immune Cells 26 1.6.1 Mechanical Factors that Modulate Immune Cells 26 1.6.2 Endocrine Factors that Modulate Immune Cells 26 1.6.3 Metabolic factors that Modulate Immune Cells 27 1.7 Immune Profiling in Exercise Immunology 28 1.8 Changes to Immune Cells Following Acute Exercise 28 1.9 Habitual Exercise and Changes to Immune Cell Frequency 34 1.10 Changes in Immune Gene Expression Induced by Acute Exercise 37 1.11 Resting Immune Gene Expression in Athletes 39 1.12 Immunometabolism 40 Chapter 1b 43 Upper respiratory symptoms, gut health and mucosal immunity in athletes 43 1.13 The Research Gaps 59 1.14 The Thesis Objective 60 1.15 Thesis Aims 60 Chapter 2 61 2.1 Introduction 64 2.1.1 Rationale 65 2.2 Methods 66 2.2.1 Study Design 66 2.2.2 Determining the Incidence of URS in Australian Olympic athletes 66 2.2.3 Measuring Lifestyle Factors in Australian Olympic Athletes 67 2.2.4 Assessment of Clinical Measurements in Australian Olympic Athletes 69 2.2.4.1 Sample Collection 69 2.2.5 Measuring Serum Cytokines 69 2.2.5.1 General Method 69 6 2.2.5.2 Sample, control, blank and standard preparation 70 2.2.5.3 The bead and sample incubation 71 2.2.5.4 Secondary anti-body incubation and Streptavidin PE incubation 71 2.2.5.5 Measure fluorescence emissions and determination of analyte concentrations 71 2.2.6 Hormone Measurement 72 2.2.7 Measurement of CRP 73 2.2.8 Statistical Analysis 73 2.3 Results 75 2.3.1 Incidence of URS in Australian Olympic Athletes was over 50% 75 2.3.2 Group Characteristics: Sport was Associated with URS 75 2.3.3 Probiotic Supplementation, Low-energy Availability and Fatigue were Associated with a higher incidence of URS 76 2.3.4 No standard clinical markers were able to differentiate the groups 76 2.3.5 Determining the Likelihood that an Athlete would report URS 81 2.3.6 Determining the Likelihood that a Female Athlete would report URS 82 2.4 Discussion 85 2.4.1 Clinical Application 87 2.4.2 Limitations 88 2.4.3 Conclusion 89 Chapter 3 90 3.1 Introduction 92 3.1.1 Rationale 93 3.2 Methods 94 3.2.1 Participants 94 3.2.2 Blood Sample Collection 94 3.2.3 PBMC Isolation 94 3.2.4 Mass Cytometry 94 3.2.5 Marker Staining and Cell Preparation 97 3.2.6 Representative Gating Strategy used to identify PBMC populations 101 3.2.7 Hierarchical Gating and Statistical Analysis of PBMC frequency 104 3.2.8 The CITRUS analyses 104 3.2.8a Comparing PBMC frequency between the groups using CITRUS 105 3.2.8b Comparing the Expression of Functional Immune Markers between the groups 107 3.3 Results 108 3.3.1 Group Characteristics 108 3.3.2 The Frequency of PBMC subsets was Similar Between the Groups 108 3.3.3 Comparison of Immune Cell Frequency using CITRUS 109 3.3.4 The Frequency of PBMC subsets was similar using CITRUS 114 3.3.5 Comparing the Expression of Functional Markers using CITRUS 114 3.3.6 Functional Markers were Lower in Athletes
Recommended publications
  • WO 2018/064165 A2 (.Pdf)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea—A Systematic Review of the Literature
    microorganisms Review Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea—A Systematic Review of the Literature Klaudia Tutka, Magdalena Zychowska˙ and Adam Reich * Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland; [email protected] (K.T.); [email protected] (M.Z.)˙ * Correspondence: [email protected]; Tel.: +48-605076722 Received: 30 August 2020; Accepted: 6 November 2020; Published: 8 November 2020 Abstract: Rosacea is a chronic inflammatory skin disorder of a not fully understood pathophysiology. Microbial factors, although not precisely characterized, are speculated to contribute to the development of the condition. The aim of the current review was to summarize the rosacea-associated alterations in the skin, blood, and gut microbiome, investigated using culture-independent, metagenomic techniques. A systematic review of the PubMed, Web of Science, and Scopus databases was performed, according to PRISMA (preferred reporting items for systematic review and meta-analyses) guidelines. Nine out of 185 papers were eligible for analysis. Skin microbiome was investigated in six studies, and in a total number of 115 rosacea patients. Blood microbiome was the subject of one piece of research, conducted in 10 patients with rosacea, and gut microbiome was studied in two papers, and in a total of 23 rosacea subjects. Although all of the studies showed significant alterations in the composition of the skin, blood, or gut microbiome in rosacea, the results were highly inconsistent, or even, in some cases, contradictory. Major limitations included the low number of participants, and different study populations (mainly Asians). Further studies are needed in order to reliably analyze the composition of microbiota in rosacea, and the potential application of microbiome modifications for the treatment of this dermatosis.
    [Show full text]
  • Exploring the Interaction Network of a Synthetic Gut Bacterial Community
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432904; this version posted February 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exploring the interaction network of a synthetic gut bacterial 2 community 3 4 Anna S. Weiss 1, Anna G. Burrichter 1*, Abilash Chakravarthy Durai Raj 1*, Alexandra von 5 Strempel 1, Chen Meng 2, Karin Kleigrewe 2, Philipp C. Münch 1,3, Luis Rössler 4, Claudia 6 Huber 4, Wolfgang Eisenreich 4, Lara M. Jochum 5, Stephanie Göing 6, Kirsten Jung 6, Alvaro 7 Sanchez 7,8, Bärbel Stecher 1,9 8 9 * These authors contributed equally to this work. 10 11 1 Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, 12 LMU Munich, Germany 13 2 Bavarian Center for Biomolecular Mass Spectrometry, TU Munich, Freising, Germany 14 3 Department for Computational Biology of Infection Research, Helmholtz Center for 15 Infection Research, Brunswick, Germany 16 4 Department of Chemistry, Bavarian NMR Center – Structural Membrane Biochemistry, TU 17 Munich, Garching, Germany 18 5 Ramboll Deutschland GmbH, Munich, Germany 19 6 Department of Microbiology, LMU, Martinsried, Germany 20 7 Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA 21 8 Microbial Sciences Institute, Yale University, West Haven, CT, USA 22 9 German Center for Infection Research (DZIF), partner site LMU Munich, Germany 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432904; this version posted February 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Investigation of the Binding Profile and Specificity of Monoclonal Iga to Microbiota Communities Under Steady State and Inflammatory Conditions
    Investigation of the binding profile and specificity of monoclonal IgA to microbiota communities under steady state and inflammatory conditions Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Johanna Kabbert, M.Sc. aus Berlin, Deutschland Berichter: Univ.-Prof. Dr. rer. nat. Oliver Pabst Univ.-Prof. Dr.-Ing. Lars Blank Tag der mündlichen Prüfung: 01.06.2021 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. 0 Kabbert J, Benckert J, Rollenske T, Hitch C.A, Clavel T, Cerovic V, Wardemann H and Pabst O, High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J Exp Med (2020) 217 (11): e20200275. https://doi.org/10.1084/jem.20200275 D 82 (Diss. RWTH Aachen University, 2021) 1 Table of Contents Abstract................................................................................................................................ 1 Zusammenfassung .............................................................................................................. 3 1 Introduction .................................................................................................................. 5 1.1 “Guests” in the gut ................................................................................................... 5 1.2 Mucosal surfaces ...................................................................................................
    [Show full text]
  • Metabolome and Microbiota Analysis Reveals the Conducive Effect of Pediococcus Acidilactici BCC-1 and Xylan Oligosaccharides on Broiler Chickens
    fmicb-12-683905 May 23, 2021 Time: 14:38 # 1 ORIGINAL RESEARCH published: 28 May 2021 doi: 10.3389/fmicb.2021.683905 Metabolome and Microbiota Analysis Reveals the Conducive Effect of Pediococcus acidilactici BCC-1 and Xylan Oligosaccharides on Broiler Chickens Yuqin Wu1, Zhao Lei1, Youli Wang1, Dafei Yin1, Samuel E. Aggrey2, Yuming Guo1 and Jianmin Yuan1* 1 State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China, 2 NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States Xylan oligosaccharides (XOS) can promote proliferation of Pediococcus acidilactic BCC-1, which benefits gut health and growth performance of broilers. The study aimed to investigate the effect of Pediococcus acidilactic BCC-1 (referred to BBC) and XOS on the gut metabolome and microbiota of broilers. The feed conversion ratio of BBC group, XOS group and combined XOS and BBC groups was lower Edited by: than the control group (P < 0.05). Combined XOS and BBC supplementation (MIX Michael Gänzle, group) elevated butyrate content of the cecum (P 0.05) and improved ileum University of Alberta, Canada < morphology by enhancing the ratio of the villus to crypt depth (P 0.05). The 16S Reviewed by: < Richard Ducatelle, rDNA results indicated that both XOS and BBC induced high abundance of butyric Ghent University, Belgium acid bacteria. XOS treatment elevated Clostridium XIVa and the BBC group enriched Shiyu Tao, Huazhong Agricultural University, Anaerotruncus and Faecalibacterium. In contrast, MIX group induced higher relative China abundance of Clostridiaceae XIVa, Clostridiaceae XIVb and Lachnospiraceae. Besides, *Correspondence: MIX group showed lower abundance of pathogenic bacteria such as Campylobacter.
    [Show full text]
  • Complete Genome Sequence of Sutterella Sp. KGMB03119 Isolated from Healthy Korean Feces
    Korean Journal of Microbiology (2020) Vol. 56, No. 1, pp. 65-68 pISSN 0440-2413 DOI https://doi.org/10.7845/kjm.2020.9143 eISSN 2383-9902 Copyright ⓒ 2020, The Microbiological Society of Korea Complete genome sequence of Sutterella sp. KGMB03119 isolated from healthy Korean feces 1 1 1 1 1 1 1 Seoung Woo Ryu , Byeong Seob Oh , Seung Yeob Yu , Seung-Hwan Park , Se Won Kang , Ji-Sun Kim , Kook-Il Han , 1 1 1 1 1 1 2 Keun Chul Lee , Mi Kyung Eom , Jam-Eon Park , Seung-Hyeon Choi , Min Kuk Suh , Han Sol Kim , Dong Ho Lee , 2 3 3 1,4 1 Hyuk Yoon , Byung-Yong Kim , Je Hee Lee , Jung-Sook Lee , and Ju Huck Lee * 1Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea 2Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea 3ChunLab, Inc., Seoul 06725, Republic of Korea 4University of Science and Technology (UST), Daejeon 34113, Republic of Korea 건강한 한국인 분변으로부터 분리된 Sutterella sp. KGMB03119 균주의 유전체 염기서열 유승우1 ・ 오병섭1 ・ 유승엽1 ・ 박승환1 ・ 강세원1 ・ 김지선1 ・ 한국일1 ・ 이근철1 ・ 엄미경1 ・ 박잠언1 ・ 최승현1 ・ 서민국1 ・ 김한솔1 ・ 이동호2 ・ 윤혁2 ・ 김병용3 ・ 이제희3 ・ 이정숙1,4 ・ 이주혁1* 1한국생명공학연구원 생물자원센터, 2분당서울대학교병원, 3천랩, 4과학기술연합대학원대학교 (Received November 19, 2019; Revised December 16, 2019; Accepted December 17, 2019) The genus of Sutterella was isolated from human and dog feces, Gut microbiota affect human fitness in a variety of ways; one except Sutterella wadsworthensis was isolated from human way is that the production of metabolites by microbes contri- appendiceal and peritoneal fluid. Sutterella sp.
    [Show full text]
  • Parasutterella, in Association with Irritable Bowel Syndrome And
    Parasutterella, in associated with Irritable Bowel Syndrome and intestinal chronic inflammation Running head: Parasutterella may be related with IBS Authors: Yan-Jie Chen1, Hao Wu1, Sheng-Di Wu1, Nan Lu, Yi-Ting Wang, Hai-Ning Liu, Ling Dong, Tao-Tao Liu, Xi-Zhong Shen* Author address: Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai 200032, China; Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, China *Correspondences: Xi-Zhong Shen, MD, PhD, Department of Gastroenterology, Zhongshan Hospital of Fudan University, 180 Fenglin Rd., Shanghai 200032, China, Tel: +86-21-64041990-2070; Fax: +86-21-64038038. E-mail: [email protected] / [email protected] 1These authors contributed equally to this work. Acknowledgments The authors would like to express gratitude to the staff of Prof. Xi- Zhong Shen's laboratory for their critical discussion and reading of the manuscript. This study was supported by Youth Foundation of Zhongshan Hospital (No. 2015ZSQN08), Shanghai Sailing Program (No. 16YF1401500), Foundation of Shanghai Institute of Liver Diseases, and National Natural Science Foundation of China (No. 81101540; No. 81101637; No. 81172273; No. 81272388). Conflict of interest statement The authors declare that there are no conflicts of interest. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jgh.14281 This article is protected by copyright. All rights reserved. Abstract Background and Aim: Irritable bowel syndrome (IBS) is a highly prevalent chronic functional gastrointestinal disorder.
    [Show full text]
  • The Journal of Toxicological Sciences (J
    The Journal of Toxicological Sciences (J. Toxicol. Sci.) 717 Vol.43, No.12, 717-725, 2018 Original Article Monomethylmercury degradation by the human gut microbiota is stimulated by protein amendments Galen Guo, Emmanuel Yumvihoze, Alexandre J. Poulain and Hing Man Chan Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Canada K1N 9B4 [Recommended by Akira Naganuma] (Received September 8, 2018; Accepted September 10, 2018) ABSTRACT — Monomethylmercury (MMHg) is a potent neurotoxicant that can be bioaccumulated and biomagnified through trophic levels. Human populations whose diets contain MMHg are at risk of MMHg toxicity. The gut microbiota was identified as a potential factor causing variation in MMHg absorption and body burden. However, little is known about the role of gut microbiota on Hg transformations. We conducted a series of in vitro experiments to study the effects of dietary nutrient change on Hg metab- olism and the human gut microbiota using anoxic fecal slurry incubations. We used stable Hg isotope tracers to track MMHg production and degradation and characterized the microbiota using high through- put sequencing of the 16S rRNA gene. We show that the magnitude of MMHg degradation is individu- al dependent and rapidly responds to changes in nutrient amendments, leading to complete degradation of the MMHg present. Although the mechanism involved remains unknown, it does not appear to involve the well-known mer operon. Our data are the first to show a nutrient dependency on the ability of the sim- ulated human gut microbiota to demethylate MMHg. This work provides much-needed insights into indi- vidual variations in Hg absorption and potential toxicity.
    [Show full text]
  • The Mouse Intestinal Bacterial Collection (Mibc) Provides Host-Specific Insight Into Cultured Diversity and Functional Potential of the Gut Microbiota
    Downloaded from orbit.dtu.dk on: Oct 02, 2021 The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota Lagkouvardos, Ilias; Pukall, Rüdiger; Abt, Birte; Foesel, Bärbel U.; Meier-Kolthoff, Jan P.; Kumar, Neeraj; Bresciani, Anne Gøther; Martínez, Inés; Just, Sarah; Ziegler, Caroline Total number of authors: 28 Published in: Nature Microbiology Link to article, DOI: 10.1038/nmicrobiol.2016.131 Publication date: 2016 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Lagkouvardos, I., Pukall, R., Abt, B., Foesel, B. U., Meier-Kolthoff, J. P., Kumar, N., Bresciani, A. G., Martínez, I., Just, S., Ziegler, C., Brugiroux, S., Garzetti, D., Wenning, M., Bui, T. P. N., Wang, J., Hugenholtz, F., Plugge, C. M., Peterson, D. A., Hornef, M. W., ... Clavel, T. (2016). The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nature Microbiology, 1(10), [16131]. https://doi.org/10.1038/nmicrobiol.2016.131 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Exploring the Breadth and Depth of Diversity Within the Canine Gut Microbiome
    EXPLORING THE BREADTH AND DEPTH OF DIVERSITY WITHIN THE CANINE GUT MICROBIOME by DANIEL HAND A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham September 2010 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The mammalian gut microbiota is an essential factor in intestinal function and thus overall health. In the post genomic era, culture independent studies into the gut microbiota, particularly that of humans have allowed great leaps forward in knowledge of this ecosystem. Furthermore, recent advances in sequencing technologies have allowed acceleration and broadening of work in this research field. Despite this, the canine gut microbiome has remained relatively uncharacterised. This work investigates the faecal microbiota of a diverse multi-breed and multi-location group of 79 dogs, by amplifying and sequencing the 16S rRNA gene from these dogs using both Sanger sequencing of clone libraries and high throughput pyrosequencing. A robust census of the canine faecal microbiota was undertaken. The most abundant genera were the Bacteroides, Prevotella, Cetobacterium, Fusobacterium, Sutterella and Megamonas.
    [Show full text]
  • Burkholderiales
    Genomic Evidence Reveals the Extreme Diversity and Wide Distribution of the Arsenic-Related Genes in Burkholderiales Xiangyang Li, Linshuang Zhang, Gejiao Wang* State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, P. R. China Abstract So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as ‘‘arsenic-related genes’’). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms.
    [Show full text]
  • The Mouse Intestinal Bacterial Collection (Mibc)
    ARTICLES PUBLISHED: 8 AUGUST 2016 | ARTICLE NUMBER: 16131 | DOI: 10.1038/NMICROBIOL.2016.131 OPEN The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota Ilias Lagkouvardos1, Rüdiger Pukall2, Birte Abt2,3,BärbelU.Foesel2,3, Jan P. Meier-Kolthoff2, Neeraj Kumar1, Anne Bresciani4, Inés Martínez5, Sarah Just1, Caroline Ziegler1, Sandrine Brugiroux6, Debora Garzetti6, Mareike Wenning7,ThiP.N.Bui8,JunWang9, Floor Hugenholtz8, Caroline M. Plugge8,DanielA.Peterson10,MathiasW.Hornef11,JohnF.Baines9,12,HaukeSmidt8, Jens Walter5, Karsten Kristiansen13,HenrikB.Nielsen4,DirkHaller1,14,JörgOvermann2,3, Bärbel Stecher3,6 and Thomas Clavel1* Intestinal bacteria influence mammalian physiology, but many types of bacteria are still uncharacterized. Moreover, reference strains of mouse gut bacteria are not easily available, although mouse models are extensively used in medical research. These are major limitations for the investigation of intestinal microbiomes and their interactions with diet and host. It is thus important to study in detail the diversity and functions of gut microbiota members, including those colonizing the mouse intestine. To address these issues, we aimed at establishing the Mouse Intestinal Bacterial Collection (miBC), a public repository of bacterial strains and associated genomes from the mouse gut, and studied host-specificity of colonization and sequence-based relevance of the resource. The collection includes several strains representing novel species, genera and even one family. Genomic analyses showed that certain species are specific to the mouse intestine and that a minimal consortium of 18 strains covered 50–75% of the known functional potential of metagenomes. The present work will sustain future research on microbiota–host interactions in health and disease, as it will facilitate targeted colonization and molecular studies.
    [Show full text]