Journal of Gastroenterology and Hepatology Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2018/064165 A2 (.Pdf)
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Exploring Bacteria Diversity in Commercialized Table Olive Biofilms
www.nature.com/scientificreports OPEN Exploring bacteria diversity in commercialized table olive bioflms by metataxonomic and compositional data analysis Antonio Benítez‑Cabello1, Verónica Romero‑Gil2, Eduardo Medina‑Pradas1, Antonio Garrido‑Fernández1 & Francisco Noé Arroyo‑López1* In this work, a total of 72 samples of non-thermally treated commercial table olives were obtained from diferent markets of the world. Then, prokaryotic diversity in olive bioflms was investigated by metataxonomic analysis. A total of 660 diferent OTUs were obtained, belonging to Archaea (2.12%) and Bacteria domains (97.88%). From these, 41 OTUs with a proportion of sequences ≥ 0.01% were studied by compositional data analysis. Only two genera were found in all samples, Lactobacillus, which was the predominant bacteria in the bioflm consortium (median 54.99%), and Pediococcus (26.09%). Celerinatantimonas, Leuconostoc, Alkalibacterium, Pseudomonas, Marinilactibacillus, Weissella, and the family Enterobacteriaceae were also present in at least 80% of samples. Regarding foodborne pathogens, only Enterobacteriaceae, Vibrio, and Staphylococcus were detected in at least 91.66%, 75.00%, and 54.10% of samples, respectively, but their median values were always below 0.15%. Compositional data analysis allowed discriminating between lye treated and natural olive samples, as well as between olives packaged in glass, PET and plastic bags. Leuconostoc, Celerinatantimonas, and Alkalibacterium were the bacteria genera with a higher discriminant power among samples. These results expand our knowledge of the bacteria diversity in olive bioflms, providing information about the sanitary and hygienic status of this ready‑to‑eat fermented vegetable. Te world’s olive grove consists of more than 10 million hectares, of which over 1 million are destined to table olives, which constitute the most important fermented vegetable in the Mediterranean countries, with also noticeable productions in South America, USA and Australia. -
Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea—A Systematic Review of the Literature
microorganisms Review Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea—A Systematic Review of the Literature Klaudia Tutka, Magdalena Zychowska˙ and Adam Reich * Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland; [email protected] (K.T.); [email protected] (M.Z.)˙ * Correspondence: [email protected]; Tel.: +48-605076722 Received: 30 August 2020; Accepted: 6 November 2020; Published: 8 November 2020 Abstract: Rosacea is a chronic inflammatory skin disorder of a not fully understood pathophysiology. Microbial factors, although not precisely characterized, are speculated to contribute to the development of the condition. The aim of the current review was to summarize the rosacea-associated alterations in the skin, blood, and gut microbiome, investigated using culture-independent, metagenomic techniques. A systematic review of the PubMed, Web of Science, and Scopus databases was performed, according to PRISMA (preferred reporting items for systematic review and meta-analyses) guidelines. Nine out of 185 papers were eligible for analysis. Skin microbiome was investigated in six studies, and in a total number of 115 rosacea patients. Blood microbiome was the subject of one piece of research, conducted in 10 patients with rosacea, and gut microbiome was studied in two papers, and in a total of 23 rosacea subjects. Although all of the studies showed significant alterations in the composition of the skin, blood, or gut microbiome in rosacea, the results were highly inconsistent, or even, in some cases, contradictory. Major limitations included the low number of participants, and different study populations (mainly Asians). Further studies are needed in order to reliably analyze the composition of microbiota in rosacea, and the potential application of microbiome modifications for the treatment of this dermatosis. -
Oral Microbiome Shifts from Caries-Free to Caries-Affected Status in 3-Year-Old Chinese Children: a Longitudinal Study
fmicb-09-02009 August 27, 2018 Time: 17:19 # 1 ORIGINAL RESEARCH published: 28 August 2018 doi: 10.3389/fmicb.2018.02009 Oral Microbiome Shifts From Caries-Free to Caries-Affected Status in 3-Year-Old Chinese Children: A Longitudinal Study He Xu1†, Jing Tian1†, Wenjing Hao1, Qian Zhang2, Qiong Zhou1, Weihua Shi1, Man Qin1*, Xuesong He3* and Feng Chen2* 1 Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China, 2 Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China, 3 The Forsyth Institute, Cambridge, MA, United States As one of the most prevalent human infectious diseases, dental caries results from dysbiosis of the oral microbiota driven by multiple factors. However, most of caries studies were cross-sectional and mainly focused on the differences in the oral microbiota Edited by: Giovanna Batoni, between caries-free (CF) and caries-affected (CA) populations, while little is known Università degli Studi di Pisa, Italy about the dynamic shift in microbial composition, and particularly the change in species Reviewed by: association pattern during disease transition. Here, we reported a longitudinal study Rainer Haak, of a 12-month follow-up of a cohort of 3-year-old children. Oral examinations and Leipzig University, Germany Xuedong Zhou, supragingival plaque collections were carried out at the beginning and every subsequent Sichuan University, China 6 months, for a total of three time points. All the children were CF at enrollment. Children *Correspondence: who developed caries at 6-month follow-up but had not received any dental treatment Man Qin [email protected]; until the end of the study were incorporated into the CA group. -
Neocallimastix Californiae G1 36,250,970 NA 29,649 95.52 85.2 SRX2598479 (3)
Supplementary material for: Horizontal gene transfer as an indispensable driver for Neocallimastigomycota evolution into a distinct gut-dwelling fungal lineage 1 1 1 2 Chelsea L. Murphy ¶, Noha H. Youssef ¶, Radwa A. Hanafy , MB Couger , Jason E. Stajich3, Y. Wang3, Kristina Baker1, Sumit S. Dagar4, Gareth W. Griffith5, Ibrahim F. Farag1, TM Callaghan6, and Mostafa S. Elshahed1* Table S1. Validation of HGT-identification pipeline using previously published datasets. The frequency of HGT occurrence in the genomes of a filamentous ascomycete and a microsporidian were determined using our pipeline. The results were compared to previously published results. Organism NCBI Assembly Reference Method used Value Value accession number to original in the original reported obtained study study in this study Colletotrichum GCA_000149035.1 (1) Blast and tree 11 11 graminicola building approaches Encephalitozoon GCA_000277815.3 (2) Blast against 12-22 4 hellem custom database, AI score calculation, and tree building Table S2. Results of transcriptomic sequencing. Accession number Genus Species Strain Number of Assembled Predicted peptides % genome Ref. reads transcriptsa (Longest Orfs)b completenessc coveraged (%) Anaeromyces contortus C3G 33,374,692 50,577 22,187 96.55 GGWR00000000 This study Anaeromyces contortus C3J 54,320,879 57,658 26,052 97.24 GGWO00000000 This study Anaeromyces contortus G3G 43,154,980 52,929 21,681 91.38 GGWP00000000 This study Anaeromyces contortus Na 42,857,287 47,378 19,386 93.45 GGWN00000000 This study Anaeromyces contortus O2 60,442,723 62,300 27,322 96.9 GGWQ00000000 This study Anaeromyces robustus S4 21,955,935 NA 17,127 92.41 88.7 SRX3329608 (3) Caecomyces sp. -
The Microbiome of the Footrot Lesion in Merino Sheep Is Characterized by a Persistent Bacterial Dysbiosis T ⁎ Andrew S
Veterinary Microbiology 236 (2019) 108378 Contents lists available at ScienceDirect Veterinary Microbiology journal homepage: www.elsevier.com/locate/vetmic The microbiome of the footrot lesion in Merino sheep is characterized by a persistent bacterial dysbiosis T ⁎ Andrew S. McPherson, Om P. Dhungyel, Richard J. Whittington Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden, New South Wales, 2570, Australia ARTICLE INFO ABSTRACT Keywords: Footrot is prevalent in most sheep-producing countries; the disease compromises sheep health and welfare and Footrot has a considerable economic impact. The disease is the result of interactions between the essential causative Merino agent, Dichelobacter nodosus, and the bacterial community of the foot, with the pasture environment and host Sheep resistance influencing disease expression. The Merino, which is the main wool sheep breed in Australia, is Microbiome particularly susceptible to footrot. We characterised the bacterial communities on the feet of healthy and footrot- Dichelobacter nodosus affected Merino sheep across a 10-month period via sequencing and analysis of the V3-V4 regions of the bacterial 16S ribosomal RNA gene. Distinct bacterial communities were associated with the feet of healthy and footrot- affected sheep. Infection with D. nodosus appeared to trigger a shift in the composition of the bacterial com- munity from predominantly Gram-positive, aerobic taxa to predominantly Gram-negative, anaerobic taxa. A total of 15 bacterial genera were preferentially abundant on the feet of footrot-affected sheep, several of which have previously been implicated in footrot and other mixed bacterial diseases of the epidermis of ruminants. -
Type of the Paper (Article
Supplementary Materials S1 Clinical details recorded, Sampling, DNA Extraction of Microbial DNA, 16S rRNA gene sequencing, Bioinformatic pipeline, Quantitative Polymerase Chain Reaction Clinical details recorded In addition to the microbial specimen, the following clinical features were also recorded for each patient: age, gender, infection type (primary or secondary, meaning initial or revision treatment), pain, tenderness to percussion, sinus tract and size of the periapical radiolucency, to determine the correlation between these features and microbial findings (Table 1). Prevalence of all clinical signs and symptoms (except periapical lesion size) were recorded on a binary scale [0 = absent, 1 = present], while the size of the radiolucency was measured in millimetres by two endodontic specialists on two- dimensional periapical radiographs (Planmeca Romexis, Coventry, UK). Sampling After anaesthesia, the tooth to be treated was isolated with a rubber dam (UnoDent, Essex, UK), and field decontamination was carried out before and after access opening, according to an established protocol, and shown to eliminate contaminating DNA (Data not shown). An access cavity was cut with a sterile bur under sterile saline irrigation (0.9% NaCl, Mölnlycke Health Care, Göteborg, Sweden), with contamination control samples taken. Root canal patency was assessed with a sterile K-file (Dentsply-Sirona, Ballaigues, Switzerland). For non-culture-based analysis, clinical samples were collected by inserting two paper points size 15 (Dentsply Sirona, USA) into the root canal. Each paper point was retained in the canal for 1 min with careful agitation, then was transferred to −80ºC storage immediately before further analysis. Cases of secondary endodontic treatment were sampled using the same protocol, with the exception that specimens were collected after removal of the coronal gutta-percha with Gates Glidden drills (Dentsply-Sirona, Switzerland). -
Aquatic Microbial Ecology 80:15
The following supplement accompanies the article Isolates as models to study bacterial ecophysiology and biogeochemistry Åke Hagström*, Farooq Azam, Carlo Berg, Ulla Li Zweifel *Corresponding author: [email protected] Aquatic Microbial Ecology 80: 15–27 (2017) Supplementary Materials & Methods The bacteria characterized in this study were collected from sites at three different sea areas; the Northern Baltic Sea (63°30’N, 19°48’E), Northwest Mediterranean Sea (43°41'N, 7°19'E) and Southern California Bight (32°53'N, 117°15'W). Seawater was spread onto Zobell agar plates or marine agar plates (DIFCO) and incubated at in situ temperature. Colonies were picked and plate- purified before being frozen in liquid medium with 20% glycerol. The collection represents aerobic heterotrophic bacteria from pelagic waters. Bacteria were grown in media according to their physiological needs of salinity. Isolates from the Baltic Sea were grown on Zobell media (ZoBELL, 1941) (800 ml filtered seawater from the Baltic, 200 ml Milli-Q water, 5g Bacto-peptone, 1g Bacto-yeast extract). Isolates from the Mediterranean Sea and the Southern California Bight were grown on marine agar or marine broth (DIFCO laboratories). The optimal temperature for growth was determined by growing each isolate in 4ml of appropriate media at 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50o C with gentle shaking. Growth was measured by an increase in absorbance at 550nm. Statistical analyses The influence of temperature, geographical origin and taxonomic affiliation on growth rates was assessed by a two-way analysis of variance (ANOVA) in R (http://www.r-project.org/) and the “car” package. -
Rapid Identification of Cardiobacterium Hominis by MALDI-TOF Mass Spectrometry During Infective Endocarditis
Jpn. J. Infect. Dis., 64, 327-329, 2011 Short Communication Rapid Identification of Cardiobacterium hominis by MALDI-TOF Mass Spectrometry during Infective Endocarditis Fráedáeric Wallet1,2*, Caroline Loäƒez1,2, Christophe Decoene1,2, and Renáe Courcol1,2 1University of Lille Nord de France, Lille; and 2CHU Lille, Lille, France (Received April 8, 2011. Accepted May 11, 2011) SUMMARY:WereportanewcaseofCardiobacterium hominis endocarditis identified during an acute coronary syndrome. The positivity of the blood cultures was confirmed rapidly (50 h) as a result of im- provements to the automated detection system, whereby it is no longer necessary to incubate the vials for long periods of time when Aggregatibacter-Cardiobacterium-Eikenella-Kingella infections is sus- pected. The phenotype-based VITEK 2 NH identification system is not able to distinguish between the two species of Cardiobacterium, as it does not contain C. valvarum in its library. The method for 16S rRNA gene sequence analysis is able to separate the two species but is not available in all laboratories. We used MALDI-TOF mass spectrometry, as an alternative, to rapidly distinguish between C. hominis and C. valvarum, because both species are contained in the system library. A 60-year-old man, without coronary history, was this Gram-negative rod was pleiomorphic, and pairs, hospitalized in the cardiologic ward for an atypical chest short chains, and filaments could be seen. Some of these constrictive pain. Initial examination showed that his organisms retained a variable amount of Gram-positive pulse was regular at 80/min and that his blood pressure stain in the end or in central portions. -
Exploring the Interaction Network of a Synthetic Gut Bacterial Community
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432904; this version posted February 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exploring the interaction network of a synthetic gut bacterial 2 community 3 4 Anna S. Weiss 1, Anna G. Burrichter 1*, Abilash Chakravarthy Durai Raj 1*, Alexandra von 5 Strempel 1, Chen Meng 2, Karin Kleigrewe 2, Philipp C. Münch 1,3, Luis Rössler 4, Claudia 6 Huber 4, Wolfgang Eisenreich 4, Lara M. Jochum 5, Stephanie Göing 6, Kirsten Jung 6, Alvaro 7 Sanchez 7,8, Bärbel Stecher 1,9 8 9 * These authors contributed equally to this work. 10 11 1 Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, 12 LMU Munich, Germany 13 2 Bavarian Center for Biomolecular Mass Spectrometry, TU Munich, Freising, Germany 14 3 Department for Computational Biology of Infection Research, Helmholtz Center for 15 Infection Research, Brunswick, Germany 16 4 Department of Chemistry, Bavarian NMR Center – Structural Membrane Biochemistry, TU 17 Munich, Garching, Germany 18 5 Ramboll Deutschland GmbH, Munich, Germany 19 6 Department of Microbiology, LMU, Martinsried, Germany 20 7 Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA 21 8 Microbial Sciences Institute, Yale University, West Haven, CT, USA 22 9 German Center for Infection Research (DZIF), partner site LMU Munich, Germany 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432904; this version posted February 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Investigation of the Binding Profile and Specificity of Monoclonal Iga to Microbiota Communities Under Steady State and Inflammatory Conditions
Investigation of the binding profile and specificity of monoclonal IgA to microbiota communities under steady state and inflammatory conditions Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von Johanna Kabbert, M.Sc. aus Berlin, Deutschland Berichter: Univ.-Prof. Dr. rer. nat. Oliver Pabst Univ.-Prof. Dr.-Ing. Lars Blank Tag der mündlichen Prüfung: 01.06.2021 Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek verfügbar. 0 Kabbert J, Benckert J, Rollenske T, Hitch C.A, Clavel T, Cerovic V, Wardemann H and Pabst O, High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J Exp Med (2020) 217 (11): e20200275. https://doi.org/10.1084/jem.20200275 D 82 (Diss. RWTH Aachen University, 2021) 1 Table of Contents Abstract................................................................................................................................ 1 Zusammenfassung .............................................................................................................. 3 1 Introduction .................................................................................................................. 5 1.1 “Guests” in the gut ................................................................................................... 5 1.2 Mucosal surfaces ................................................................................................... -
Metabolome and Microbiota Analysis Reveals the Conducive Effect of Pediococcus Acidilactici BCC-1 and Xylan Oligosaccharides on Broiler Chickens
fmicb-12-683905 May 23, 2021 Time: 14:38 # 1 ORIGINAL RESEARCH published: 28 May 2021 doi: 10.3389/fmicb.2021.683905 Metabolome and Microbiota Analysis Reveals the Conducive Effect of Pediococcus acidilactici BCC-1 and Xylan Oligosaccharides on Broiler Chickens Yuqin Wu1, Zhao Lei1, Youli Wang1, Dafei Yin1, Samuel E. Aggrey2, Yuming Guo1 and Jianmin Yuan1* 1 State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China, 2 NutriGenomics Laboratory, Department of Poultry Science, University of Georgia, Athens, GA, United States Xylan oligosaccharides (XOS) can promote proliferation of Pediococcus acidilactic BCC-1, which benefits gut health and growth performance of broilers. The study aimed to investigate the effect of Pediococcus acidilactic BCC-1 (referred to BBC) and XOS on the gut metabolome and microbiota of broilers. The feed conversion ratio of BBC group, XOS group and combined XOS and BBC groups was lower Edited by: than the control group (P < 0.05). Combined XOS and BBC supplementation (MIX Michael Gänzle, group) elevated butyrate content of the cecum (P 0.05) and improved ileum University of Alberta, Canada < morphology by enhancing the ratio of the villus to crypt depth (P 0.05). The 16S Reviewed by: < Richard Ducatelle, rDNA results indicated that both XOS and BBC induced high abundance of butyric Ghent University, Belgium acid bacteria. XOS treatment elevated Clostridium XIVa and the BBC group enriched Shiyu Tao, Huazhong Agricultural University, Anaerotruncus and Faecalibacterium. In contrast, MIX group induced higher relative China abundance of Clostridiaceae XIVa, Clostridiaceae XIVb and Lachnospiraceae. Besides, *Correspondence: MIX group showed lower abundance of pathogenic bacteria such as Campylobacter.