Evaluation of Brachial Plexus Fascicles Involvement on Infraclavicular Block
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Anatomical Variants in the Termination of the Cephalic Vein Stoyan Novakov1*, Elena Krasteva2
Institute of Experimental Morphology, Pathology and Anthropology with Museum Bulgarian Anatomical Society Acta morphologica et anthropologica, 25 (3-4) Sofia • 2018 Anatomical Variants in the Termination of the Cephalic Vein Stoyan Novakov1*, Elena Krasteva2 1 Department of Anatomy, Histology and Embryology, 2Department of Propaedeutics of Surgical Di- seases, Medical Faculty, Medical University of Plovdiv * Corresponding author e-mail: [email protected] Jugulocephalic vein is atavistic structure which is very rare. The low incidence of the variations of the cephalic vein in deltopectoral triangle and its position on the anterior surface of the clavicle and the neck doesn’t make it less important for the clinical practice. Phylo- and ontogenesis explain the formation of the above mentioned variations. We followed the pattern of the cephalic vein in its proximal part and termination to describe possible variations. In this long term study on 140 upper limbs of 70 cadavers, 4 or 2,9% of the cephalic veins were variable. The direct empting of the cephalic vein into internal jugular is an exception with few descriptions at the moment. The rareness of this anatomical variation doesn’t make it less important for clinical practice. It is described as a possible obstacle in catheter implantation, clavicle fractures and creation of arteriovenous fistula in patients on hemodialysis. Key words:cadavers, human anatomy variation, cephalic vein, external jugular vein, jugulocephalic vein Introduction Cephalic vein (CV) belongs to the group of superficial veins of the upper limb. It usually forms over the anatomical snuff-box on the radial side of the wrist from the radial end of the dorsal venous plexus. -
Infraclavicular Topography of the Brachial Plexus Fascicles in Different Upper Limb Positions
Int. J. Morphol., 34(3):1063-1068, 2016. Infraclavicular Topography of the Brachial Plexus Fascicles in Different Upper Limb Positions Topografía Infraclavicular de los Fascículos del Plexo Braquial en Diferentes Posiciones del Miembro Superior Daniel Alves dos Santos*; Amilton Iatecola*; Cesar Adriano Dias Vecina*; Eduardo Jose Caldeira**; Ricardo Noboro Isayama**; Erivelto Luis Chacon**; Marianna Carla Alves**; Evanisi Teresa Palomari***; Maria Jose Salete Viotto**** & Marcelo Rodrigues da Cunha*,** ALVES DOS SANTOS, D.; IATECOLA, A.; DIAS VECINA, C. A.; CALDEIRA, E. J.; NOBORO ISAYAMA, R.; CHACON, E. L.; ALVES, M. C.; PALOMARI, E. T.; SALETE VIOTTO, M. J. & RODRIGUES DA CUNHA, M. Infraclavicular topography of the brachial plexus fascicles in different upper limb positions. Int. J. Morphol., 34 (3):1063-1068, 2016. SUMMARY: Brachial plexus neuropathies are common complaints among patients seen at orthopedic clinics. The causes range from traumatic to occupational factors and symptoms include paresthesia, paresis, and functional disability of the upper limb. Treatment can be surgical or conservative, but detailed knowledge of the brachial plexus is required in both cases to avoid iatrogenic injuries and to facilitate anesthetic block, preventing possible vascular punctures. Therefore, the objective of this study was to evaluate the topography of the infraclavicular brachial plexus fascicles in different upper limb positions adopted during some clinical procedures. A formalin- preserved, adult, male cadaver was used. The infraclavicular and axillary regions were dissected and the distance of the brachial plexus fascicles from adjacent bone structures was measured. No anatomical variation in the formation of the brachial plexus was observed. The metric relationships between the brachial plexus and adjacent bone prominences differed depending on the degree of shoulder abduction. -
Neurology of the Upper Limb
Neurology of the Upper limb Donald Sammut Hand Surgeon Kings Upper Limb Anatomy plus lecture notes The$Neck$ The$Nerve$roots$which$supply$the$Upper$Limb$are$C5$to$T1$ Pre<fixed$(C4$to$C8)$and$Post<fixed$(C6$to$T2)$plexus$not$uncommon.$ Also$common$contributions$from$C4$and$from$T2$in$a$normally$rooted$plexus.$ $ The$anterior$nerve$roots$emerge$between$the$vertebrae$and$immediately$pass$ $through$the$first$area$of$possible$compression:$ The$root$nerve$canal$is$bounded$$ Anteriorly$by$the$posterior$margin$of$the$intervertebral$disc$and$$ Posteriorly,$by$the$facet$joint$between$vertebrae.$ $ Pathology$of$the$disc,$or$joint,$or$both,$can$narrow$this$channel$and$compress$ $the$nerve$root$ The$roots$emerge$from$the$cervical$spine$into$the$plane$between$$ Scalenius$Anterior$and$Scalenius$Medius.$$ $ Scalenius*Anterior:** Origin:$Anterior$tubercles$of$Cervical$vertebae$C3$to$6$(C6$tubercle$is$the$Carotid$tubercle)$ Insertion:$The$scalene$tubercle$on$inner$border/upper$surface$1st$rib$ $ Scalenius*Medius:* Origin:$Posterior$tubercles$of$all$cervical$vertebrae$ Insertion:$Quadrangular$area$between$the$neck$and$subclavian$groove$1st$rib$ $ Exiting$from$the$Scalenes,$the$trunks$lie$in$the$posterior$triangle$of$the$neck.$ The$posterior$triangle$is$bounded$anteriorly$by$SternoCleidoMastoid$and$$ posteriorly$by$the$Trapezius.$ The$inferior$border$is$the$clavicle$.$ The$apex$of$the$triangle$superiorly$is$at$the$back$of$the$skull$on$the$superior$nuchal$line$ $ $ The$Posterior$Triangle$ SternoCleidoMastoid$ Trapezius$ Scalenius$Medius$ Scalenius$Anterior$ -
Brachial Plexus and Branches Axillary A
Regional Anatomy of the Upper Limb 1 Wu Genghua Medical College Yangzhou University Anterior surface of the •Incisions: Upper Limb Make the skin incisions indicated in figure and reflect the skin flaps. Be careful not to cut too deep. As you remove the skin, look for the cephalic v., basilic v. and median cubital v. Superficial veins and nerves Mamma Structures Contains skin, mammary glands and adipose tissue Consists of 15 to 20 Lobes of mammary gland that radiate outward from the nipple lactiferous duct lactiferous sinuse Suspensory ligaments of breast (cooper’s ligaments): connective tissue septa that extend from the skin to the deep fascia Pectoral Region Superficial structures Superficial n. Supraclavicular n. Anterior cutaneous branches of intercostal n. lateral cutaneous branches of intercostal n. Muscles connecting the upper limb to the thoracic wall Pectoralis major 胸大肌 Subclevius 锁骨下肌 Pectoralis minor 胸小肌 Serratus anterior 前锯肌 Pectoral Region Deep structures clavipectoral fascia The deep fascia which extends between subclavius, coracoid process and pectoralis minor muscles The structures pass through the clavipectoral fascia . Cephalic v. Thoracoacromial a. Lateral pectoral n. Axillary region 腋区 Boundaries of the axillary fossa Apex is bounded by Middle 1/3 of clavicle Lateral border of first rib Upper border of the scapula Base is formed by the skin stretching between the anterior and posterior walls Anterior wall Formed by pectoralis major, pectoralis minor and subclavius muscles Boundaries of the axillary fossa The posterior wall latissimus dorsi teres major subscapularis and scapula Trilateral and quadrilateral space The posterior humeral circumflex a. and axillary n. pass through the quadrilateral foramen. -
Pectoral Region and Axilla Doctors Notes Notes/Extra Explanation Editing File Objectives
Color Code Important Pectoral Region and Axilla Doctors Notes Notes/Extra explanation Editing File Objectives By the end of the lecture the students should be able to : Identify and describe the muscles of the pectoral region. I. Pectoralis major. II. Pectoralis minor. III. Subclavius. IV. Serratus anterior. Describe and demonstrate the boundaries and contents of the axilla. Describe the formation of the brachial plexus and its branches. The movements of the upper limb Note: differentiate between the different regions Flexion & extension of Flexion & extension of Flexion & extension of wrist = hand elbow = forearm shoulder = arm = humerus I. Pectoralis Major Origin 2 heads Clavicular head: From Medial ½ of the front of the clavicle. Sternocostal head: From; Sternum. Upper 6 costal cartilages. Aponeurosis of the external oblique muscle. Insertion Lateral lip of bicipital groove (humerus)* Costal cartilage (hyaline Nerve Supply Medial & lateral pectoral nerves. cartilage that connects the ribs to the sternum) Action Adduction and medial rotation of the arm. Recall what we took in foundation: Only the clavicular head helps in flexion of arm Muscles are attached to bones / (shoulder). ligaments / cartilage by 1) tendons * 3 muscles are attached at the bicipital groove: 2) aponeurosis Latissimus dorsi, pectoral major, teres major 3) raphe Extra Extra picture for understanding II. Pectoralis Minor Origin From 3rd ,4th, & 5th ribs close to their costal cartilages. Insertion Coracoid process (scapula)* 3 Nerve Supply Medial pectoral nerve. 4 Action 1. Depression of the shoulder. 5 2. Draw the ribs upward and outwards during deep inspiration. *Don’t confuse the coracoid process on the scapula with the coronoid process on the ulna Extra III. -
Hypofractionated Irradiation of Infra
Guenzi et al. Radiation Oncology (2015) 10:177 DOI 10.1186/s13014-015-0480-y RESEARCH Open Access Hypofractionated irradiation of infra-supraclavicular lymph nodes after axillary dissection in patients with breast cancer post-conservative surgery: impact on late toxicity Marina Guenzi1, Gladys Blandino1*, Maria Giuseppina Vidili3, Deborah Aloi1, Elena Configliacco1, Elisa Verzanini1, Elena Tornari1, Francesca Cavagnetto2 and Renzo Corvò1 Abstract Background: The aim of the present work was to analyse the impact of mild hypofractionated radiotherapy (RT) of infra-supraclavicular lymph nodes after axillary dissection on late toxicity. Methods: From 2007 to 2012, 100 females affected by breast cancer (pT1- T4, pN1-3, pMx) were treated with conservative surgery, Axillary Node Dissection (AND) and loco-regional radiotherapy (whole breast plus infra-supraclavicular fossa). Axillary lymph nodes metastases were confirmed in all women. The median age at diagnosis was 60 years (range 34–83). Tumors were classified according to molecular characteristics: luminal-A 59pts(59%),luminal-B24pts(24%),basal-like10pts(10%),Her-2like7pts(7%).82pts(82%)received hormonal therapy, 9 pts (9 %) neo-adjuvant chemotherapy, 81pts (81 %) adjuvant chemotherapy. All patients received a mild hypofractionated RT: 46 Gy in 20 fractions 4 times a week to whole breast and infra- supraclavicular fossa plus an additional weekly dose of 1,2 Gy to the lumpectomy area. The disease control and treatment related toxicity were analysed in follow-up visits. The extent of lymphedema was analysed by experts in Oncological Rehabilitation. Results: Within a median follow-up of 50 months (range 19–82), 6 (6 %) pts died, 1 pt (1 %) had local progression disease, 2 pts (2 %) developed distant metastasis and 1 subject (1 %) presented both. -
Section 1 Upper Limb Anatomy 1) with Regard to the Pectoral Girdle
Section 1 Upper Limb Anatomy 1) With regard to the pectoral girdle: a) contains three joints, the sternoclavicular, the acromioclavicular and the glenohumeral b) serratus anterior, the rhomboids and subclavius attach the scapula to the axial skeleton c) pectoralis major and deltoid are the only muscular attachments between the clavicle and the upper limb d) teres major provides attachment between the axial skeleton and the girdle 2) Choose the odd muscle out as regards insertion/origin: a) supraspinatus b) subscapularis c) biceps d) teres minor e) deltoid 3) Which muscle does not insert in or next to the intertubecular groove of the upper humerus? a) pectoralis major b) pectoralis minor c) latissimus dorsi d) teres major 4) Identify the incorrect pairing for testing muscles: a) latissimus dorsi – abduct to 60° and adduct against resistance b) trapezius – shrug shoulders against resistance c) rhomboids – place hands on hips and draw elbows back and scapulae together d) serratus anterior – push with arms outstretched against a wall 5) Identify the incorrect innervation: a) subclavius – own nerve from the brachial plexus b) serratus anterior – long thoracic nerve c) clavicular head of pectoralis major – medial pectoral nerve d) latissimus dorsi – dorsal scapular nerve e) trapezius – accessory nerve 6) Which muscle does not extend from the posterior surface of the scapula to the greater tubercle of the humerus? a) teres major b) infraspinatus c) supraspinatus d) teres minor 7) With regard to action, which muscle is the odd one out? a) teres -
Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades
HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO, MARTÍN O. PEREYRA, TARAN GRANT, AND JULIÁN FAIVOVICH BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina MARTÍN O. PEREYRA División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina TARAN GRANT Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History JULIÁN FAIVOVICH División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Research Associate, Herpetology, Division of Vertebrate Zoology, American -
GALEN on Anatomical Procedures
GALEN On Anatomical Procedures TRANSLATION WITH INTRODUCTION AND NOTES BY CHARLES SINGER Until recent years the works of Galen, the greatest and most prolific medical writer of antiquity, were closed books to the modern reader. Professor Singer has now added another to the very few works of Galen which have been translated from the Greek into English. Galen's work entitled De anatomicis administrationihus is the text of lectures on anatomy delivered in Rome about a.d. 177. The Greek text was translated into Latin in 153 1, and in this form the work had a profound influence on Vesalius and other great Renaissance anatomists. Although Galen had some knowledge ofhuman anatomy, especially of the bones, most of his dis^ section was done on the Rhesus monkey and the Barbary ape, in which many parts show marked differences from their human counterparts. Professor Singer has not only provided a scholarly translation of Galen's text, but he has also identic fied wherever possible the structures men^ tioned, and has attached to them their modern anatomical names. The book provides a basis for the study ofthe sources available for the foundation of modern anatomy. The dissection scene on the front of this jacket illustrates Galen demonstrating on a pig. Itjirst appeared on the title page of the Giunta edition of Galen s Works, Venice 1541-2. ^js. 6d. net Digitized by tlie Internet Arcliive in 2014 Iittps://arcliive.org/details/b20457194 PUBLICATIONS OF THE WELLCOME HISTORICAL MEDICAL MUSEUM NEW SERIES, NO. 7 GALEN ON ANATOMICAL PROCEDURES PUBLICATIONS OF THE WELLCOME HISTORICAL MEDICAL MUSEUM NEW SERIES {General Editor: Dr. -
Originalarticle the Patterns of the Cephalic Veins Termination
OriginalArticle The Patterns of the Cephalic Veins Termination Vasana Plakornkul, DVM., M.Sc., Chayanit Manoonpol, M.Sc. Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand. ABSTRACT Objective: To study and classify the types of the terminations of the cephalic veins in the Thais and compare the percent count of each type between male and female, right and left sides. Methods: The ending part of the cephalic veins were dissected and classified in Thai cadavers. Each type was shown by photograph, diagram, number and percent count. Results: The cephalic vein, studied from 208 upper extremities, had three types of termination. Type I, cephalic vein terminated in axillary vein; type II termination was external jugular vein; type III termination was axillary vein and external jugular vein. Conclusion: The termination of cephalic veins were shown and classified into three types and sex had no influence on the patterns of cephalic vein termination. Keywords: Cephalic vein; termination Siriraj Med J 2006; 58: 1204-1207 E-journal: http://www.sirirajmedj.com ephalic vein is a large superficial vein of the triangle and the lower part of occipital triangle, the termi- upper extremities. It originates over the anatomi- nations of the cephalic vein were classified and shown in cal snuffbox at the base of the thumb and drains photographs (Fig 3,4) and diagrams (Fig 1,2). Besides, the Cblood from the dorsal venous plexus.1 At forearm, the number and percent count of each type also were shown cephalic vein ascends in the anterolateral part to the in Table 1,2 and Fig 5. -
Axillary Brachial Plexus Block: Landmark Techniques
AXILLARY BRACHIAL PLEXUS BLOCK LANDMARK TECHNIQUES TUTORIAL OF THE WEEK 165 11TH JANUARY 2010 Dr Z Harclerode, Dr S Michael Northern General Hospital, Sheffield, UK Correspondence to [email protected] QUESTIONS Before continuing, try to answer the following questions. The answers can be found at the end of the article, together with an explanation. 1. Which of the following statements is correct? a. The median nerve is outside the axillary sheath and is easily missed b. The brachial plexus is formed from the nerve roots of C3-T1 c. The cords are named according to their arrangement around the axillary artery d. The ulnar nerve supplies the extensor muscles of the hand and forearm 2. Name three absolute contraindications to performing an axillary plexus block 3. Which of the following statements is false? a. When using a peripheral nerve stimulator, intraneural injection is reduced by lack of motor response at 0.3mA b. A multiple stimulation technique has a higher success rate for axillary blocks than a single stimulation technique c. Blocking the intercostobrachial nerve can decrease upper limb tourniquet pain d. 0.375% Bupivacaine can give analgesia for up to 14-16 hours. INTRODUCTION The axillary brachial plexus block is a popular nerve block for forearm, wrist and hand surgery. It can be used to provide regional anaesthesia or as an analgesic technique to be used in combination with general anaesthesia. It has the advantage of being performed away from the pleura and neuraxial structures. The block was first described in New York in 1884 by Halstead, being performed using cocaine under direct vision of the plexus. -
165 Axillary Brachial Plexus Block. Landmark Techniques
AXILLARY BRACHIAL PLEXUS BLOCK LANDMARK TECHNIQUES TUTORIAL OF THE WEEK 165 11TH JANUARY 2010 Dr Z Harclerode, Dr S Michael Northern General Hospital, Sheffield, UK Correspondence to [email protected] QUESTIONS Before continuing, try to answer the following questions. The answers can be found at the end of the article, together with an explanation. 1. Which of the following statements is correct? a. The median nerve is outside the axillary sheath and is easily missed b. The brachial plexus is formed from the nerve roots of C3-T1 c. The cords are named according to their arrangement around the axillary artery d. The ulnar nerve supplies the extensor muscles of the hand and forearm 2. Name three absolute contraindications to performing an axillary plexus block 3. Which of the following statements is false? a. When using a peripheral nerve stimulator, intraneural injection is reduced by lack of motor response at 0.3mA b. A multiple stimulation technique has a higher success rate for axillary blocks than a single stimulation technique c. Blocking the intercostobrachial nerve can decrease upper limb tourniquet pain d. 0.375% Bupivacaine can give analgesia for up to 14-16 hours. INTRODUCTION The axillary brachial plexus block is a popular nerve block for forearm, wrist and hand surgery. It can be used to provide regional anaesthesia or as an analgesic technique to be used in combination with general anaesthesia. It has the advantage of being performed away from the pleura and neuraxial structures. The block was first described in New York in 1884 by Halstead, being performed using cocaine under direct vision of the plexus.