Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: a Review Saleem Khan, Leandro Lorenzelli, Member, IEEE, and Ravinder S

Total Page:16

File Type:pdf, Size:1020Kb

Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: a Review Saleem Khan, Leandro Lorenzelli, Member, IEEE, and Ravinder S 3164 IEEE SENSORS JOURNAL, VOL. 15, NO. 6, JUNE 2015 Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review Saleem Khan, Leandro Lorenzelli, Member, IEEE, and Ravinder S. Dahiya, Senior Member, IEEE Abstract— Printing sensors and electronics over flexible substrates are an area of significant interest due to low-cost fab- rication and possibility of obtaining multifunctional electronics over large areas. Over the years, a number of printing technolo- gies have been developed to pattern a wide range of electronic materials on diverse substrates. As further expansion of printed technologies is expected in future for sensors and electronics, it is opportune to review the common features, the complementarities, and the challenges associated with various printing technologies. This paper presents a comprehensive review of various printing technologies, commonly used substrates and electronic materials. Various solution/dry printing and contact/noncontact printing technologies have been assessed on the basis of technological, materials, and process-related developments in the field. Fig. 1. The classification of common printing technologies. Critical challenges in various printing techniques and potential research directions have been highlighted. Possibilities of merging various printing methodologies have been explored to extend are difficult to realize with the conventional wafer-based the lab developed standalone systems to high-speed roll-to-roll fabrication techniques. The printed electronics on flexible production lines for system level integration. substrates will enable conformable sensitive electronic systems Index Terms— Printed sensors, printed electronics, flexible such as electronic skin that can be wrapped around the body electronics, large area electronics, roll-to-roll, dispersion solution. of a robot or prosthetic hands [20]–[25]. Printed electronics on polymer substrates has also opened new avenues for low-cost fabrication of electronics on areas larger than I. INTRODUCTION the standard wafers available commercially. In accordance RINTING technologies are aiding and revolutionizing with the electronics industry roadmap, the research in this Pthe burgeoning field of flexible/bendable sensors and field is slowly inching towards a merge of well-established electronics by providing cost-effective routes for processing microelectronics and the age-old printing technologies [26]. diverse electronic materials at temperatures that are compatible This is evidenced by development of devices such as, large with plastic substrates. Simplified processing steps, reduced area printed pressure sensors [5], [27]–[29], radio frequency materials wastage, low fabrication costs and simple patterning identification tags (RFID) [11], [12], solar cells [30], light techniques make printing technologies very attractive for emitting diodes (LED) [13] and transistors [14]. the cost-effective manufacturing [16]–[18]. These features Traditional approaches for printing electronics and sensors of printed electronics have allowed researchers to explore involve bringing pre-patterned parts of a module in contact new avenues for materials processing and to develop sensors with the flexible (or non-flexible) substrates and transferring and systems on even non-planar surfaces, which otherwise the functional inks or solutions onto them [6]–[9], [11], [13]. The two major approaches usually followed for development Manuscript received June 16, 2014; revised November 10, 2014; accepted November 11, 2014. Date of publication December 4, 2014; date of current of printing/coating system are contact and non-contact version April 16, 2015. This work was supported in part by the Engineering printing, as shown in Fig. 1 and described later in Section IV. and Physical Sciences Research Council (EPSRC) through the Fellowship In contact printing process, the patterned structures with inked for Growth-Printable Tactile Skin under Grant EP/M002527/1, in part by the European Commission under Grant PITN-GA-2012-317488-CONTEST, surfaces are brought in physical contact with the substrate. and in part by the EPSRC-Flexible Electronic Device Modelling under In a non-contact process, the solution is dispensed through Grant EP/M002519/1. The associate editor coordinating the review of this via openings or nozzles and structures are defined by moving paper and approving it for publication was Prof. Zheng Cui. S. Khan and L. Lorenzelli are with the University of Trento, Trento 38100, the stage (substrate holder) in a pre-programmed pattern. Italy, and also with the Centre of Materials and Microsystems, Microsystems The contact-based printing technologies comprise of gravure Technology Research Unit, Fondazione Bruno Kessler, Trento 38122, Italy printing, gravure-offset printing, flexographic printing and (e-mail: [email protected]; [email protected]). R. S. Dahiya is with the Electronics and Nanoscale Engineering Research R2R printing. The prominent non-contact printing techniques Division, School of Engineering, University of Glasgow, Glasgow G12 8QQ, include screen-printing, slot-die coating and inkjet printing. U.K. (e-mail: [email protected]). The non-contact printing techniques have received greater Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org. attractions due to their distinct capabilities such as simplicity, Digital Object Identifier 10.1109/JSEN.2014.2375203 affordability, speed, adaptability to the fabrication process, This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ KHAN et al.: TECHNOLOGIES FOR PRINTING SENSORS AND ELECTRONICS: A REVIEW 3165 reduced material wastage, high resolution of patterns and three categories: (a) conductors; (b) semiconductors; and easy control by adjusting few process parameters [17], [18], (c) dielectrics [19], [31], [35]–[37]. Beside these, some [31]–[34]. Recently, the newly emerging polymeric stamp composite materials, having dual nature as insulator, based printing methods such as nanoimprint, micro-contact ferroelectric, piezoelectric, piezoresistive, and photosensitive printing and transfer printing have also attracted properties are also used in thin film printed devices. Hybrid significant interest, especially for inorganic monocrystalline organic/inorganic materials have also been used to compensate semiconductors based flexible electronics [19], [30], [33]–[37]. for the slow speed organic based electronic devices [34], [37]. This paper presents a survey of various printed electronics Majority of printable materials are in the form of solutions, technologies. A few review articles reported in this field which require specific properties to allow proper printing on previously have reviewed some of the printing technologies variety of plastic or paper substrates. For example, proper individually [17]–[19], [30]–[37]. For example, the review dispersion of nanoparticles is essential to avoid agglomeration. paper by Singh et al. [38] focusses on inkjet printing, Further, an acceptable level of chemical and physical stabil- the one Schift et al. [39] focusses on nanoimprinting, itiesis needed to maintain a balance between Brownian and Carlson et al. [40] have discussed transfer printing, gravitational motion of the particles. In the following sections, Perl et al. [2] have presented review on microcontact we discuss the common organic/inorganic materials that are printing and Søndergaard et al. [41] have discussed R2R suitable and easily processable through printing technologies. fabrication. Differently from previous reviews, this survey paper brings together various printing techniques and provides a detailed discussion by also involving the key electronic A. Conducting Materials and substrate materials, and the systems. Critical limitations Conducting materials are the main structural blocks of all of each technology have been highlighted and potential electronic devices as they form the fundamental part of the solutions or alternatives have been explored. This paper device layers or interconnections. Deposition techniques for also evaluates printed electronics on the basis of electrical patterned metal structures and interconnects are now at mature characteristics of the resulting devices or sensors and materials stage with possibility of obtaining structures with controlled (organic/inorganic) they are made of. Often, the advantages of thickness and resolution. Various printing technologies require printing technologies eclipse the challenges associated with a different set of parameters such as viscosity, surface tension, them. As most of the printing technologies share common conductivity and compatibility of the solvents with the under- processing techniques, the development of a common platform lying materials (in multilayer structures) (see Table II) [30]. is also explored assuming that the limitations of one method Therefore, a careful selection of appropriate conductive could be overcome by the advantages of the others. material is needed by also taking into account the work func- This paper is organized as follows: The Section II presents tion of the neighboring materials. Some of these metals have various printable electronic materials and gives an overview of already secured their place in printing technologies by showing solution processable conductors, semiconductors and dielectric good dispersing properties in the form of colloidal solutions.
Recommended publications
  • Plasma Enhanced Chemical Vapor Deposition of Organic Polymers
    processes Review Plasma Enhanced Chemical Vapor Deposition of Organic Polymers Gerhard Franz Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences (MUAS), 34 Lothstrasse, Munich, D-80335 Bavaria, Germany; [email protected] Abstract: Chemical Vapor Deposition (CVD) with its plasma-enhanced variation (PECVD) is a mighty instrument in the toolbox of surface refinement to cover it with a layer with very even thickness. Remarkable the lateral and vertical conformity which is second to none. Originating from the evaporation of elements, this was soon applied to deposit compound layers by simultaneous evaporation of two or three elemental sources and today, CVD is rather applied for vaporous reactants, whereas the evaporation of solid sources has almost completely shifted to epitaxial processes with even lower deposition rates but growth which is adapted to the crystalline substrate. CVD means first breaking of chemical bonds which is followed by an atomic reorientation. As result, a new compound has been generated. Breaking of bonds requires energy, i.e., heat. Therefore, it was a giant step forward to use plasmas for this rate-limiting step. In most cases, the maximum temperature could be significantly reduced, and eventually, also organic compounds moved into the preparative focus. Even molecules with saturated bonds (CH4) were subjected to plasmas—and the result was diamond! In this article, some of these strategies are portrayed. One issue is the variety of reaction paths which can happen in a low-pressure plasma. It can act as a source for deposition and etching which turn out to be two sides of the same medal.
    [Show full text]
  • A Flexible Solution-Processed Memristor
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE ELECTRON DEVICE LETTERS 1 A Flexible Solution-Processed Memristor Nadine Gergel-Hackett, Member, IEEE, Behrang Hamadani, Barbara Dunlap, John Suehle, Senior Member, IEEE, Curt Richter, Senior Member, IEEE, Christina Hacker, and David Gundlach, Member, IEEE Abstract—A rewriteable low-power operation nonvolatile physi- cally flexible memristor device is demonstrated. The active compo- nent of the device is inexpensively fabricated at room temperature by spinning a TiO2 sol gel on a commercially available polymer sheet. The device exhibits memory behavior consistent with a memristor, demonstrates an on/off ratio greater than 10 000 : 1, is nonvolatile for over 1.2 × 106 s, requires less than 10 V, and is still operational after being physically flexed more than 4000 times. Index Terms—Flexible electronics, flexible memory, memristor, sol gel, titanium dioxide. I. INTRODUCTION E HAVE fabricated a physically flexible solution- W processed device that exhibits electrical behavior con- Fig. 1. Flexible polymer sheet patterned with four rewriteable nonvolatile sistent with that of a memristor, a memory device recently flexible TiO2 sol gel memory devices with cross-bar aluminum contacts. The experimentally demonstrated and proposed to be the miss- inset is a side view cartoon of the flexible TiO2 device structure. ing fourth basic circuit element [1], [2]. Although electrical make our flexible memristor device a prime candidate for use switching behavior has been observed from organic mono- in inexpensive flexible lightweight portable electronics, such as layers and metal oxides from as early 1968 [3]–[11], the disposable sensors [13]–[17].
    [Show full text]
  • Glossary of Terms Common to the Spray Polyurethane Foam Industry
    Glossary of Terms Common to the Spray Polyurethane Foam Industry Spray Polyurethane Foam Alliance Copyright 1994 To order copies of this publication, call 800-523-6154 and request SPFA Stock Number AY-119 Revised6/04 The Building Envelope & Technical Committee’s of the Spray Polyurethane Foam Alliance offer this information as an industry service. TECHNICAL COMMITTEE Roger Morrison, Chairman Robert Smith North Caolina Foam Industries KoSa Jim Calkins John Stahl Dow Chemical Preferred Solutions, Inc. Brad Beauchamp Dennis Vandewater Stepan Co. Sadler Coatings Systems Mary Bogdan Laverne Dalgeish- Ad Hoc Honeywell CUCFA John Courier E quipment &Coatings John Ewell Dallas/Ft. Worth Urethane, Inc. John Hatfield Penta Engineering Group, Inc. Tim Leonard ERSystems Jack Moore West Roofing Systems, Inc. Bruce Schenke BASF Larry Smiley Poly-Tek. This brochure was developed to aid specifiers in choosing spray-applied polyurethane foam systems. The information provided herein, based on current customs and practices of the trade, is offered in good faith and believed to be true, but is made WITHOUT WARRANTY, EITHER EXPRESSED OR IMPLIED, AS TO FITNESS, MERCHANTABILITY, OR ANY OTHER MATTER. SPFA DISCLAIMS ALL LIABILITY FOR ANY LOSS OR DAMAGE ARISING OUT OF ITS USE. Individual manufacturers and contractors should be consulted for specific information. Nominal values which may be provided herein are believed to be representative, but are not to be used as specifications nor assumed to be identical to finished products. SPFA does not endorse the proprietary products or processes of any individual manufacturer, or the services of any individual contractor. GLOSSARY OF TERMS AGGREGATE: Any mineral surfacing material.
    [Show full text]
  • Coating Products for Sheetfed
    Coating Products for Sheetfed nyloflex® Coating Plates│Novaset® Coatings│CURA Lac Varnishes│Novacoat® Varnishes│DAY Blankets Global Reach – Wide Portfolio – All Needs Covered! Flint Group is a global organisation, with locations in over 140 countries. This allows us to reach out to our print customers wherever they are, with extraordinary levels of service and dedication, making our customers glad that Flint Group is their partner. When you combine this global footprint with the widest portfolio of print consumables brought to you by any manufacturer, anywhere, it’s clear to see why Flint Group is regarded as the supplier of choice by so many international, as well as small independent printers around the world. For example, the crucial area of varnishes and coatings, which are becoming increasingly more important – not just as an aid to sophisticated design, creating gloss and matt effects or for spot coating, but first and foremost for protecting the printed product. We in Flint Group are unique, in that we can supply not only the product to enhance and protect, but also the medium to transfer that coating onto the chosen substrate, no matter where you are. The products showcased in this publication are all manufactured in Flint Group production facilities in Europe and shipped around the world…. offering unrivalled quality, consistency and service, and what’s more, regardless of your location, you can be confident that when you buy a coating product from Flint Group, it will be the same quality in Peru, Pakistan or Portugal! That’s how global we are and how wide our portfolio offering is.
    [Show full text]
  • Bitumen Coating and Polyethylene Sheeting on Concrete Piles
    SECTION 459 BITUMEN COATING AND POLYETHYLENE SHEETING ON CONCRETE PILES 459-1 Description. Furnish and apply bituminous coating and primer, or install polyethylene sheeting and lubricant to prestressed concrete piles. 459-2 Materials. 459-2.1 Bituminous Coating: Use an asphalt type bituminous coating meeting the requirements of Section 916, with a minimum viscosity (at 140ºF) of 3,000 poises and a maximum of 1,000 poises. Apply bituminous coating uniformly over an asphalt primer. 459-2.2 Primer: Meet the requirements of ASTM-D 41. 459-2.3 Polyethylene Sheeting: Use polyethylene sheeting that is 6 mils thick and is clean, new and has a smooth surface. 459-2.4 Lubricant: Use a lubricant between the two layers of sheeting that is either a vegetable oil or other approved environmentally and functionally acceptable lubricant. 459-3 Construction Requirements. Before surfaces are coated with bitumen, dry and thoroughly clean them of dust and loose materials. Do not apply primer or bitumen in wet weather or when the temperature is below 65ºF. Apply the primer to the surfaces and allow it to dry completely before applying the bituminous coating. Apply primer uniformly at the quantity of 1 gal/100 ft2 of surface. Apply bitumen uniformly at a temperature of not less than 300ºF, or more than 350ºF, and apply either by mopping, brushing, or spraying at the project site. Completely fill all holes or depressions in the concrete surface with bitumen. Apply the bituminous coating to a minimum dry thickness of 1/8 inch, but not less than 8 gal/100 ft2.
    [Show full text]
  • Amorphous Metal Oxide Semiconductor Thin Film Transistors for Printed Electronics
    New Jersey Institute of Technology Digital Commons @ NJIT Theses Electronic Theses and Dissertations Fall 12-31-2018 Amorphous metal oxide semiconductor thin film transistors for printed electronics Mustafa Mohammad Yousef New Jersey Institute of Technology Follow this and additional works at: https://digitalcommons.njit.edu/theses Part of the Electrical and Electronics Commons Recommended Citation Yousef, Mustafa Mohammad, "Amorphous metal oxide semiconductor thin film transistors for printed electronics" (2018). Theses. 1637. https://digitalcommons.njit.edu/theses/1637 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact [email protected]. Copyright Warning & Restrictions The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material. Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement, This institution reserves the right to refuse to accept
    [Show full text]
  • Printed Electronics Inks and Coatings Introduction
    PRINTED ELECTRONICS INKS AND COATINGS INTRODUCTION Countless devices rely on printed electronic technologies • Antennas for contactless SmartCards and RFID labels for function, form and flexibility. One of the most efficient • Touch screens production methods, printed electronics, allows for high- • Lighting volume, high-throughput, cost-effective manufacturing for • Printed circuit boards and potentiometers many of the products we rely on every day. Henkel is a leader • Household appliances in specialized and cross-functional ink formulations for Like most things in electronics, the majority of applications printed electronics and its line of LOCTITE® brand electronic that incorporate printed electronics are getting finer in inks has been enabling leading-edge printed electronics for dimension and more complex in functionality. Henkel’s well over three decades. ability to formulate inks that address the demands of fine- line printing, while maintaining robust conductive and other With a broad portfolio of silver, carbon, dielectric and functional properties, sets us apart from the competition, and clear conductive inks, Henkel is making today’s medical has led to technology leadership within our comprehensive solutions, in-home conveniences, handheld connectivity and portfolio of inks for printed electronics. automotive advances reliable and effective. Our inks serve multiple markets including consumer, displays, medical and automotive and RFID. They are also used in the manufacture of: • Flexible circuits for membrane touch switches
    [Show full text]
  • Conservation of Coated and Specialty Papers
    RELACT HISTORY, TECHNOLOGY, AND TREATMENT OF SPECIALTY PAPERS FOUND IN ARCHIVES, LIBRARIES AND MUSEUMS: TRACING AND PIGMENT-COATED PAPERS By Dianne van der Reyden (Revised from the following publications: Pigment-coated papers I & II: history and technology / van der Reyden, Dianne; Mosier, Erika; Baker, Mary , In: Triennial meeting (10th), Washington, DC, 22-27 August 1993: preprints / Paris: ICOM , 1993, and Effects of aging and solvent treatments on some properties of contemporary tracing papers / van der Reyden, Dianne; Hofmann, Christa; Baker, Mary, In: Journal of the American Institute for Conservation, 1993) ABSTRACT Museums, libraries, and archives contain large collections of pigment-coated and tracing papers. These papers are produced by specially formulated compositions and manufacturing procedures that make them particularly vulnerable to damage as well as reactive to solvents used in conservation treatments. In order to evaluate the effects of solvents on such papers, several research projects were designed to consider the variables of paper composition, properties, and aging, as well as type of solvent and technique of solvent application. This paper summarizes findings for materials characterization, degradative effects of aging, and some effects of solvents used for stain reduction, and humidification and flattening, of pigment-coated and modern tracing papers. Pigment-coated papers have been used, virtually since the beginning of papermaking history, for their special properties of gloss and brightness. These properties, however, may render coated papers more susceptible to certain types of damage (surface marring, embedded grime, and stains) and more reactive to certain conservation treatments. Several research projects have been undertaken to characterize paper coating compositions (by SEM/EDS and FTIR) and appearance properties (by SEM imaging of surface structure and quantitative measurements of color and gloss) in order to evaluate changes that might occur following application of solvents used in conservation treatments.
    [Show full text]
  • Development of Digital Application Specific Printed Electronics Circuits: from Specification to Final Prototypes
    View metadata,This is the citation author's and version similar of an papers article atthat core.ac.uk has been published in the Journal of Display Technology. Changes were made to this version by the publisherbrought to youprior by to CORE publication. The final version of record is available at http://dx.doi.org/10.1109/JDT.2015.2404974 provided by Diposit Digital de Documents de la UAB Development of Digital Application Specific Printed Electronics Circuits: From Specification to Final Prototypes Manuel Llamas, Mohammad Mashayekhi, Ana Jofre Pallarès, Francesc Vila, Adrià Conde and Lluís Alcalde and Jordi Carrabina Terés CAIAC Group ICAS Group Universitat Autònoma de Barcelona IMB-CNM (CSIC) Campus UAB, Bellaterra 08193, Spain Campus UAB, Bellaterra 08193, Spain E-mail: [email protected] E-mail: [email protected] Abstract— This paper presents a global proposal and characterized cell libraries allow a high degree of automation, methodology for developing digital Printed Electronics (PE) increase design productivity and helps bridging the gap prototypes, circuits and Application Specific Printed Electronics between applications and technology. Circuits (ASPECs). We start from a circuit specification using standard Hardware Description Languages (HDL) and executing Our ASPEC (Application Specific Printed Electronics its functional simulation. Then we perform logic synthesis that Circuits) approach is intended to reuse the ASIC models used includes logic gate minimization by applying state-of-the-art in industry in terms of designs flows and towards industrial algorithms embedded in our proposed Electronic Design manufacturing foundries. This methodology applied to digital Automation (EDA) tools to minimize the number of transistors is complementary to the use of existing design methodologies required to implement the circuit.
    [Show full text]
  • High Performance Thin Film Optical Coatings Technical Capabilities 06/20
    High Performance Thin Film Optical Coatings Technical Capabilities 06/20 ZC&R Coatings for Optics 1401 Abalone Avenue • Torrance, CA 90501 • Phone: (800) 426-2864 E-mail: [email protected] • Web: www.abrisatechnologies.com High Performance Thin Film Optical Coatings Page 2 Technical Reference Document 06/20 ZC&R Coatings for Optics, an Abrisa Technologies Company provides high-efficiency coatings for industrial, commercial, and opto-electronic applications. The broad selection of coatings is applied via electron beam and ion-assisted electron beam deposition to influence and control reflectance, transmittance, absorbance and resistance. From high performance Indium Tin Oxide (ITO) and Index-Matched Indium Tin Oxide (IMITO) coatings to patterned optics as well as Anti-Reflective (AR) and anti-glare glass, ZC&R’s expert engineering team can deliver coatings to your detailed specifications. We provide coatings and components from 200nm to 20 microns, from the ultraviolet (UV) to the far infrared (IR). Additional thin film optical coating products include front and back surface mirrors, dichroic filters, band pass color filters, Anti-Reflective (AR), beam splitters, metal coatings, precision hot mirrors, cold mirrors, neutral density filters, and IR and UV filters. Capabilities Overview Custom Design and Engineering - (Page 3) Coating Chamber - (Page 3) Substrate Size and Shape Specifications - (Page 3) Measurement and Inspection - (Page 3) Patterning - (Page 4) Coatings Capabilities CleanVue™ PRO - (Pages 5-7) PRO-AR399 UV Outdoor Version
    [Show full text]
  • Advance Deposition Techniques for Thin Film and Coating 139
    ProvisionalChapter chapter 8 Advance Deposition Techniques forfor ThinThin FilmFilm andand Coating Coating Asim Jilani, Mohamed Shaaban Abdel-wahab and Asim Jilani , Mohamed Shaaban Abdel-wahab and Ahmed Hosny Hammad Ahmed Hosny Hammad Additional information is available at the end of the chapter Additional information is available at the end of the chapter http://dx.doi.org/10.5772/65702 Abstract Thin films have a great impact on the modern era of technology. Thin films are considered as backbone for advanced applications in the various fields such as optical devices, environmental applications, telecommunications devices, energy storage devices, and so on . The crucial issue for all applications of thin films depends on their morphology and the stability. The morphology of the thin films strongly hinges on deposition techniques. Thin films can be deposited by the physical and chemical routes. In this chapter, we discuss some advance techniques and principles of thin-film depositions. The vacuum thermal evaporation technique, electron beam evaporation, pulsed-layer deposition, direct current/radio frequency magnetron sputtering, and chemical route deposition systems will be discussed in detail. Keywords: thin films, coatings, physical deposition, sol-gel, chemical bath deposition, chemical route 1. Introduction Nowadays, most of the technologies are used for minimizing the materials into nano-size as well as nano-thickness leading to the emergence of new and unique behaviors of such materials in optical, electrical, optoelectronic, dielectric applications, and so on. Hence, a new branch of science/materials science is called thin films or coatings. Thin film can be defined as a thin layer of material, where the thickness is varied from several nanometers to few micrometers.
    [Show full text]
  • Controlling Nanostructure in Inkjet Printed Organic Transistors for Pressure Sensing Applications
    nanomaterials Article Controlling Nanostructure in Inkjet Printed Organic Transistors for Pressure Sensing Applications Matthew J. Griffith 1,2,* , Nathan A. Cooling 1, Daniel C. Elkington 1, Michael Wasson 1 , Xiaojing Zhou 1, Warwick J. Belcher 1 and Paul C. Dastoor 1 1 Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; [email protected] (N.A.C.); [email protected] (D.C.E.); [email protected] (M.W.); [email protected] (X.Z.); [email protected] (W.J.B.); [email protected] (P.C.D.) 2 School of Aeronautical, Mechanical and Mechatronic Engineering, University of Sydney, Camperdown, NSW 2006, Australia * Correspondence: matthew.griffi[email protected] Abstract: This work reports the development of a highly sensitive pressure detector prepared by inkjet printing of electroactive organic semiconducting materials. The pressure sensing is achieved by incorporating a quantum tunnelling composite material composed of graphite nanoparticles in a rubber matrix into the multilayer nanostructure of a printed organic thin film transistor. This printed device was able to convert shock wave inputs rapidly and reproducibly into an inherently amplified electronic output signal. Variation of the organic ink material, solvents, and printing speeds were shown to modulate the multilayer nanostructure of the organic semiconducting and dielectric layers, enabling tuneable optimisation of the transistor response. The optimised printed device exhibits Citation: Griffith, M.J.; Cooling, rapid switching from a non-conductive to a conductive state upon application of low pressures whilst N.A.; Elkington, D.C.; Wasson, M.; operating at very low source-drain voltages (0–5 V), a feature that is often required in applications Zhou, X.; Belcher, W.J.; Dastoor, P.C.
    [Show full text]