Géométrie Et Quantification De Paires De Howe D'actions Symplectiques

Total Page:16

File Type:pdf, Size:1020Kb

Géométrie Et Quantification De Paires De Howe D'actions Symplectiques Géométrie et quantification de paires de Howe d’actions symplectiques Carsten Balleier To cite this version: Carsten Balleier. Géométrie et quantification de paires de Howe d’actions symplectiques. Mathéma- tiques générales [math.GM]. Université Paul Verlaine - Metz, 2009. Français. NNT : 2009METZ016S. tel-01752633 HAL Id: tel-01752633 https://hal.univ-lorraine.fr/tel-01752633 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm UNIVERSITE´ PAUL VERLAINE UNIVERSITAT¨ PADERBORN METZ Ecole´ Doctorale Fakult¨atf¨urElektrotechnik, IAEM Lorraine Informatik und Mathematik THESE` DE DOCTORAT DISSERTATION Discipline : Math´ematiques im Fach Mathematik pr´esent´eepar vorgelegt von Carsten Balleier pour obtenir le grade de zur Erlangung des Doktorgrades Docteur de l’Universit´ePaul Verlaine-Metz der Universit¨at Paderborn Geometry and Quantization of Howe Pairs of Symplectic Actions Soutenance publique Offentliche¨ Verteidigung le 1er Juillet 2009 am 1. Juli 2009 Rapporteurs: Gutachter: Prof. Alan T. Huckleberry, Ruhr-Universit¨at Bochum Juan-Pablo Ortega, Universit´ede Franche-Comt´e`aBesan¸con Jury: Promotionskommission: M. Helge Glockner¨ Professor, Universit¨atPaderborn Mme Simone Gutt Professeur, Universit´ede Metz M. S¨onke Hansen Professor, Universit¨atPaderborn M. Joachim Hilgert Professor, Universit¨atPaderborn M. Alan T. Huckleberry Professor, Ruhr-Universit¨atBochum M. Martin Olbrich Professor, Universit¨atLuxemburg M. Marcus Slupinski Maˆıtrede Conf´erences, Universit´ede Strasbourg M. Tilmann Wurzbacher Professeur, Universit´ede Metz Laboratoire de Math´ematiques et Applications de Metz, Ile du Saulcy, F-57045 Metz Cedex 1 Institut f¨urMathematik, Fakult¨atEIM, Universit¨atPaderborn, Warburger Str. 100, D-33098 Paderborn Abstract Motivated by the representation-theoretic notion of Howe duality, we seek an analo- gous construction in symplectic geometry in the sense that its geometric quantization decomposes in a Howe dual fashion. We find that in the symplectic context, the correct setting is given by two Lie groups acting on a symplectic manifold when these two actions commute and satisfy the symplectic Howe condition, i. e., these actions are Hamiltonian and their collective functions are their mutual centralizers in the Poisson algebra of smooth functions on the symplectic manifold. Once this condition is satisfied, we can describe the orbit structure in detail. In particular, there is a bijection between the coadjoint orbits in one moment image and those in the other moment image – this bijection is what we call the coadjoint orbit correspondence. We study the coadjoint orbit correspondence further and show, if the acting Lie groups are compact and the symplectic manifold is prequantizable, that it preserves integrality of the coadjoint orbits, so to both coadjoint orbits in the correspondence an irreducible representation can be associated. We thus have a bijection between certain parts of the unitary duals of both Lie groups acting on the symplectic manifold. Applying known results about the interchangeability of quantization and reduction, we see that for a K¨ahlermanifold, its quantization (as a representation of the product of both groups acting on the manifold) decomposes into a multiplicity-free direct sum of tensor products of irreducibles of the individual groups, the pairs being given by the bijection obtained before – as one would expect according to Howe duality. This main result is accompanied by a study of the local structure of a manifold carrying two commuting Hamiltonian action which proves a local version of the orbit correspondence and by a discussion about the relation of the coadjoint orbit correspon- dence to the generalized symplectic leaf correspondence in singular dual pairs. Zusammenfassung Motiviert durch den darstellungstheoretischen Begriff der Howe-Dualit¨at, suchen wir eine analoge Konstruktion in der symplektischen Geometrie. Analog bedeutet hierbei, dass die geometrische Quantisierung eine Zerlegung mit Howe-Dualit¨at besitzen soll. Wir stellen fest, dass die im symplektischen Kontext korrekte Situation gegeben ist durch zwei Lie-Gruppen, die auf derselben symplektischen Mannigfaltigkeit wirken, wenn diese Wirkungen kommutieren und die symplektische Howe-Bedingung erfullen,¨ d. h. beide Wirkungen sind Hamiltonsch und die kollektiven Funktionen beider Wirkun- gen sind gegenseitig ihre Zentralisatoren in der Poisson-Algebra der glatten Funktionen auf der symplektischen Mannigfaltigkeit. Ist diese Bedingung erfullt,¨ dann sind wir in der Lage, die Bahnenstruktur detailliert zu beschreiben und zu zeigen, dass eine Bi- jektion zwischen den koadjungierten Bahnen im Bild der ersten Impulsabbildung und denen im Bild der zweiten Impulsabbildung existiert – es ist diese Bijektion, die wir im folgenden als Korrespondenz koadjungierter Bahnen bezeichnen. Wir setzen die Untersuchung der Korrespondenz koadjungierter Bahnen fort und zeigen, dass fur¨ Wirkungen kompakter Lie-Gruppen auf pr¨aquantisierbaren symplek- tischen Mannigfaltigkeiten die Integralit¨at der koadjungierten Bahnen erhalten bleibt, und daher beiden koadjungierten Bahnen gleichzeitig irreduzible Darstellungen zuge- ordnet werden k¨onnen. Somit besteht eine Bijektion zwischen bestimmten Teilmen- gen der unit¨aren Duale beider auf der symplektischen Mannigfaltigkeit wirkenden Lie- Gruppen. Wendet man nun bekannte Resultate uber¨ die Vertauschbarkeit von Quanti- sierung und symplektischer Reduktion an, dann erkennen wir, dass die Quantisierung einer K¨ahler-Mannigfaltigkeit (betrachtet als Darstellung des Produktes beider auf der Mannigfaltigkeit wirkender Gruppen) in eine multiplizit¨atenfreie direkte Summe von Tensorprodukten der irreduziblen Darstellungen beider Gruppen zerf¨allt, wobei die Paare durch die zuvor beschriebene Bijektion gegeben sind – wie man es im Sinne der Howe-Dualit¨at erwartet. Dieses Hauptresultat wird begleitet von der Untersuchung der lokalen Struktur einer Mannigfaltigkeit, auf der zwei Hamiltonsche Wirkungen gegeben sind, die eine lokale Version der Bahnenkorrespondenz liefert, sowie von einer Betrachtung der Bezie- hung der Korrespondenz koadjungierter Bahnen zur Korrespondenz verallgemeinerter symplektischer Bl¨atter in singul¨aren dualen Paaren. R´esum´e Motiv´epar la dualit´ede Howe dans la th´eoriedes repr´esentations de groupes de Lie, on cherche une construction analogue en g´eom´etriesymplectique, c’est-`a-direon souhaite que sa quantification g´eom´etrique d´ecompose de mani`ereHowe-duale. On trouve que dans le contexte symplectique, le cadre correct est donn´epar deux groupes de Lie agissant sur la mˆemevari´et´esymplectique si ces actions commutent et satisfont la condition de Howe symplectique, i. e., ces actions sont hamiltoniennes et leurs fonctions collectives sont leurs centralisateurs mutuelles dans l’alg`ebre de Poisson des fonctions lisses sur la vari´et´esymplectique. Une fois cette condition est remplie, nous pouvons d´ecrirela structure d’orbites en d´etail. En particulier, il y a une bijec- tion entre les orbites coadjointes dans une image d’application moment et celles dans l’image de l’autre application moment – or, il est cette bijection que nous appelerons la correspondance d’orbites coadjointes. On poursuit l’´etudede la correspondance d’orbites coadjointes et on montre que, si les groupes de Lie qui agissent sont compacts et la vari´et´esymplectique est pr´equanti- fiable, l’integralit´eest pr´eserv´eepar la correspondance. Ainsi, il est possible d’associer en mˆemetemps des repr´esentations irr´eductibles aux deux orbites de la correspondance. Donc, nous avons une bijection entre certaines parties des duaux unitaires des deux groupes de Lie qui agissent sur la vari´et´esymplectique. En appliquant des r´esultats connus qui assurent que la quantification et la r´eduction commutent, nous consta- tons que la quantification d’une vari´et´ek¨ahlerienne(vue comme une repr´esentation du produit des deux groupes qui agissent sur la vari´et´e)admet une d´ecomposition en somme direct sans multiplicit´esde produits tensoriels des repr´esentations irr´eductibles des deux groupes, les paires ´etant donn´eespar la bijection obtenue pr´ec´edemment – parfaitement en accord avec la dualit´ede Howe. Ce r´esultatprincipal est accompagn´epar l’´etude de la structure locale d’une vari´et´e avec deux
Recommended publications
  • Contemporary Mathematics 442
    CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV.
    [Show full text]
  • About Lie-Rinehart Superalgebras Claude Roger
    About Lie-Rinehart superalgebras Claude Roger To cite this version: Claude Roger. About Lie-Rinehart superalgebras. 2019. hal-02071706 HAL Id: hal-02071706 https://hal.archives-ouvertes.fr/hal-02071706 Preprint submitted on 18 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. About Lie-Rinehart superalgebras Claude Rogera aInstitut Camille Jordan ,1 , Universit´ede Lyon, Universit´eLyon I, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France Keywords:Supermanifolds, Lie-Rinehart algebras, Fr¨olicher-Nijenhuis bracket, Nijenhuis-Richardson bracket, Schouten-Nijenhuis bracket. Mathematics Subject Classification (2010): .17B35, 17B66, 58A50 Abstract: We extend to the superalgebraic case the theory of Lie-Rinehart algebras and work out some examples concerning the most popular samples of supermanifolds. 1 Introduction The goal of this article is to discuss some properties of Lie-Rinehart structures in a superalgebraic context. Let's first sketch the classical case; a Lie-Rinehart algebra is a couple (A; L) where L is a Lie algebra on a base field k, A an associative and commutative k-algebra, with two operations 1. (A; L) ! L denoted by (a; X) ! aX, which induces a A-module structure on L, and 2.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Enveloping Algebras
    Mathematisches Forschungsinstitut Oberwolfach Report No. 13/2005 Enveloping Algebras and Geometric Representation Theory Organised by Shrawan Kumar (Chapel Hill) Peter Littelmann (Wuppertal) Wolfgang Soergel (Freiburg) March 13th – March 19th, 2005 Abstract. The study of Enveloping Algebras has undergone a significant and con- tinuous evolution and moreover has inspired a wide variety of developments in many areas of mathematics including Ring Theory, Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras. The aim of the workshop was to bring together researchers from diverse but highly interre- lated subjects to discuss new developments and bring forward the research in this whole area by fostering the scientific interaction. Mathematics Subject Classification (2000): 17xx, 22xx, 81xx. Introduction by the Organisers Since its inception in the early seventies, the study of Enveloping Algebras has undergone a significant and continuous evolution and moreover has inspired a wide variety of developments in many areas of mathematics including Ring Theory, Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras. As indicated above, one of the main goals behind this meeting was to bring together a group of participants with a wide range of interests in and around the geometric and the combinatorial side of the representation theory of Lie groups and algebras. We strongly believe that such an approach to representation theory, in particular interaction between geometry and representation theory, will open up new avenues of thought and lead to progress in a number of areas. This diversity was well reflected in the expertize represented by the conference participants, as well as in the wide range of topics covered.
    [Show full text]
  • Irving Ezra Segal (1918–1998)
    mem-segal.qxp 5/12/99 12:57 PM Page 659 Irving Ezra Segal (1918–1998) John C. Baez, Edwin F. Beschler, Leonard Gross, Bertram Kostant, Edward Nelson, Michèle Vergne, and Arthur S. Wightman Irving Segal died suddenly on August 30, 1998, After the war while taking an evening walk. He was seventy-nine Segal spent two and was vigorously engaged in research. years at the Insti- Born on September 13, 1918, in the Bronx, he tute for Advanced grew up in Trenton and received his A.B. from Study, where he Princeton in 1937. What must it have been like to held the first of the be a member of the Jewish quota at Princeton in three Guggenheim the 1930s? He told me once that a fellow under- Fellowships that he graduate offered him money to take an exam in his was to win. Other stead and was surprised when Irving turned him honors included down. election to the Na- He received his Ph.D. from Yale in 1940. His the- tional Academy of sis was written under the nominal direction of Sciences in 1973 Einar Hille, who suggested that Segal continue his and the Humboldt Award in 1981. At and Tamarkin’s investigation of the ideal theory the University of of the algebra of Laplace-Stieltjes transforms ab- Chicago from 1948 solutely convergent in a fixed half-plane. But, Segal to 1960, he had fif- wrote, “For conceptual clarification and for other teen doctoral stu- reasons, an investigation of the group algebra of dents, and at MIT, a general [locally compact] abelian group was of where he was pro- Irving Segal interest.” And the thesis was not restricted to fessor from 1960 abelian groups.
    [Show full text]
  • NOTICES Was Sent to Press, the Meeting Dates Which Fall Rather Far in the Future Are Subject Tr Change
    AMERICAN MATHEMATICAL SOCIETY Nottces Edited by GORDON L. WALKER Contents MEETINGS Calendar of Meetings • • • . • • • • • • • • . • • • • • . • • • • • • 4 Program of the February Meeting in Tucson • • • . • . • . • . 5 Abstracts for the Meeting, pp. 80-84 Program of the February Meeting in New York ••••••••• 10 Abstracts for the Meeting, pp. 85-94 PRELIMINARY ANNOUNCEMENTS OF MEETINGS ••••••.••• 15 ACTIVITIES OF OTHER ASSOCIATIONS ••••••••••••••••• 19 NEWS ITEMS AND ANNOUNCEMENTS •••••••••••••••••• 27 FOREIGN SCIENCE INFORMATION •••••••••.•••••••••• 38 PERSONAL ITEMS •••••••.•••••••••.••••••••••••• 47 NEW PUBLICATIONS ••••••••••••••••••••••••••••. 50 CATALOGUE OF LECTURE NOTES - Supplement No.1 . • • • • • 57 ABSTRACTS OF CONTRIBUTED PAPERS • • • • • • . • • • • • • • • 59 RESERVATION FORM . • . • • • • • • • • • • . • • • • • . • . • • • • • • 99 3 MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date at which this issue of the NOTICES was sent to press, The meeting dates which fall rather far in the future are subject tr change. This is particularly true of the meetings to which no numbers have yet been assigned, Meet­ Deadline ing Date Place for No, Abstracts* 567 April 14-16, 1960 New York, New York Mar. 1 568 April 22-23, 1960 Chicago, Illinois Mar, 1 569 April 22-23, 1960 Berkeley, California Mar, 570 June 18, 1960 Missoula, Montana May 5 571 August 29-September 3, 1960 East Lansing, Michigan July 15 (65th Summer Meeting) 572 October 22, 1960 Worcester, Massachusetts Sept. 8 January 24-27, 1961 Washington, D. C. (67th Annual Meeting) August, 1961 Stillwater, Oklahoma (66th Summer Meeting) January, 1962 Kansas City, Missouri (68th Annual Meeting) August, 1962 Vancouver, British Columbia (67th Summer Meeting) August, 1963 Boulder, Colorado (68th Summer Meeting) *The abstracts of papers to be presented at the meetings must be received i.
    [Show full text]
  • Fedosov's Quantization of Semisimple Coadjoint Orbits
    Fedosov's quantization of semisimple coadjoint orbits. by Alexander Astashkevich Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1996 @ Massachusetts Institute of Technology 1996. All rights reserved. Author .............................. ..... , ....................... Department of Mathematics May 1, 1996 Certified by. x.... Bertram Kostant Professor Thesis Supervisor Accepted by ........ .... .............. ...... ........ David Vogan Chairman, Departmental Committee on Graduate Students SCIENCE MA ;C t4 J :-:, t;,2 .'I•--_ B ~996 Fedosov's quantization of semisimple coadjoint orbits. by Alexander Astashkevich Submitted to the Department of Mathematics on May 1, 1996, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis, we consider Fedosov's quantization (C"(0)[[h]], *) of the functions on a coadjoint orbit 0 of a Lie group G corresponding to the trivial cohomology class in H 2 (O, IR[[h]]) and G-invariant torsion free symplectic connection on 0 (when it exists). We show that the map g X -+ IX eC' (0)[[h]] is a homomorphism of Lie algebras, where we consider kC'(0) [[h]] as a Lie algebra with the bracket [f, g] = fg- gff,, g EC"C'(0)[[h]]. This map defines an algebra homomorphism A from U(g)((h)) to the algebra C~"(0)((h)). We construct a representation of Co((0)((h)). In case G is a simple Lie group and O is a semisimple coadjoint orbit, we show that p maps U(g)((h)) onto the algebra of polynomial functions on 0 endowed with a star product.
    [Show full text]
  • Council Congratulates Exxon Education Foundation
    from.qxp 4/27/98 3:17 PM Page 1315 From the AMS ics. The Exxon Education Foundation funds programs in mathematics education, elementary and secondary school improvement, undergraduate general education, and un- dergraduate developmental education. —Timothy Goggins, AMS Development Officer AMS Task Force Receives Two Grants The AMS recently received two new grants in support of its Task Force on Excellence in Mathematical Scholarship. The Task Force is carrying out a program of focus groups, site visits, and information gathering aimed at developing (left to right) Edward Ahnert, president of the Exxon ways for mathematical sciences departments in doctoral Education Foundation, AMS President Cathleen institutions to work more effectively. With an initial grant Morawetz, and Robert Witte, senior program officer for of $50,000 from the Exxon Education Foundation, the Task Exxon. Force began its work by organizing a number of focus groups. The AMS has now received a second grant of Council Congratulates Exxon $50,000 from the Exxon Education Foundation, as well as a grant of $165,000 from the National Science Foundation. Education Foundation For further information about the work of the Task Force, see “Building Excellence in Doctoral Mathematics De- At the Summer Mathfest in Burlington in August, the AMS partments”, Notices, November/December 1995, pages Council passed a resolution congratulating the Exxon Ed- 1170–1171. ucation Foundation on its fortieth anniversary. AMS Pres- ident Cathleen Morawetz presented the resolution during —Timothy Goggins, AMS Development Officer the awards banquet to Edward Ahnert, president of the Exxon Education Foundation, and to Robert Witte, senior program officer with Exxon.
    [Show full text]
  • Chern Flyer 1-3-12.Pub
    TAKING THE LONG VIEW The Life of Shiing-shen Chern A film by George Csicsery “He created a branch of mathematics which now unites all the major branches of mathematics with rich structure— which is still developing today.” —C. N. Yang Shiing-shen Che rn (1911–2004) Taking the Long View examines the life of a remarkable mathematician whose classical Chinese philosophical ideas helped him build bridges between China and the West. Shiing-shen Chern (1911-2004) is one of the fathers of modern differential geometry. His work at the Institute for Advanced Study and in China during and after World War II led to his teaching at the University of Chicago in 1949. Next came Berkeley, where he created a world-renowned center of geometry, and in 1981 cofounded the Mathematical Sciences Research Institute. During the 1980s he brought talented Chinese scholars to the United States and Europe. By 1986, with Chinese government support, he established a math institute at Nankai University in Tianjin. Today it is called the Chern Institute of Mathematics. Taking the Long View was produced by the Mathematical Sciences Research Institute with support from Simons Foundation. Directed by George Csicsery. With the participation of (in order of appearance) C.N. Yang, Hung-Hsi Wu, Bertram Kostant, James H. Simons, Shiing-shen Chern, Calvin Moore, Phillip Griffiths, Robert L. Bryant, May Chu, Yiming Long, Molin Ge, Udo Simon, Karin Reich, Wentsun Wu, Robert Osserman, Isadore M. Singer, Chuu-Lian Terng, Alan Weinstein, Guoding Hu, Paul Chern, Rob Kirby, Weiping Zhang, Robert Uomini, Friedrich Hirzebruch, Zixin Hou, Gang Tian, Lei Fu, Deling Hu and others.
    [Show full text]
  • Publications of Irving Segal Papers
    Publications of Irving Segal Papers [1] Fiducial distribution of several parameters with application to a normal system, Proc. Camb. Philos. Soc. , 34 (1938), 41–47. Zbl 018.15703 [2] The automorphisms of the symmetric group, Bull. Amer. Math. Soc. 46 (1940), 565. MR 2 #1c Zbl 061.03301 [3] The group ring of a locally compact group. I, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 348–352. MR 3 #36b Zbl 063.06858 [4] The span of the translations of a function in a Lebesgue space, Proc. Nat. Acad. Sci. U. S. A. 30 (1944), 165–169. MR 6 #49c Zbl 063.06859 [5] Topological groups in which multiplication of one side is differen- tiable, Bull. Amer. Math. Soc. 52 (1946), 481–487. MR 8 #132d Zbl 061.04411 [6] Semi-groups of operators and the Weierstrass theorem, Bull. Amer. Math. Soc. 52 (1946), 911–914. (with Nelson Dunford) MR 8 #386e Zbl 061.25307 [7] The group algebra of a locally compact group, Trans. Amer. Math. Soc. 61 (1947), 69–105. MR 8 #438c Zbl 032.02901 [8] Irreducible representations of operator algebras, Bull. Amer. Math. Soc. 53 (1947), 73–88. MR 8 #520b Zbl 031.36001 [9] The non-existence of a relation which is valid for all finite groups, Bol. Soc. Mat. S˜aoPaulo 2 (1947), no. 2, 3–5 (1949). MR 13 #316b [10] Postulates for general quantum mechanics, Ann. of Math. (2) 48 (1947), 930–948. MR 9 #241b Zbl 034.06602 [11] Invariant measures on locally compact spaces, J. Indian Math. Soc.
    [Show full text]
  • The Gelfand–Zeitlin Integrable System and K-Orbits on the Flag Variety
    The Gelfand–Zeitlin integrable system and K-orbits on the flag variety Mark Colarusso and Sam Evens∗ To Nolan Wallach, on the occasion of his 70th birthday, with gratitude and admiration Abstract In this paper, we provide an overview of the Gelfand–Zeitlin in- tegrable system on the Lie algebra of n n complex matrices gl(n, C) in- troduced by Kostant and Wallach in 2006.× We discuss results concerning the geometry of the set of strongly regular elements, which consists of the points where the Gelfand–Zeitlin flow is Lagrangian. We use the theory of Kn = GL(n 1, C) GL(1, C)-orbits on the flag variety n of GL(n, C) to describe the− strongly× regular elements in the nilfiber of theB moment map of the system. We give an overview of the general theory of orbits of a sym- metric subgroup of a reductive algebraic group acting on its flag variety, and illustrate how the general theory can be applied to understand the specific example of Kn and GL(n, C). Key words: Flag variety • Symmetric subgroup • Nilpotent matrices • Integrable systems • Gelfand–Zeitlin theory Mathematics Subject Classification 2010: 20G20, 14M15, 14L30, 70H06, 17B08, 37J35 Mark Colarusso (B) Department Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, WI 53201-0413, e-mail: [email protected] Sam Evens (B) Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, e-mail: [email protected] ∗ The work by the second author was partially supported by NSA grants H98230-08-0023 and H98230-11-1-0151. 1 2 Mark Colarusso and Sam Evens 1 Introduction In a series of papers [24, 25], Kostant and Wallach study the action of an n(n−1) C 2 C abelian Lie group A ∼= on g = gl(n, ).
    [Show full text]
  • In Honor of Bertram Kostant
    Progress in Mathematics Volume 123 Series Editors J. Oesterle A. Weinstein Lie Theory and Geometry In Honor of Bertram Kostant Jean-Luc Brylinski Ranee Brylinski Victor Guillemin Victor Kac Editors Springer Science+Business Media, LLC Jean-Luc Brylinski Ranee Brylinski Department of Mathematics Department of Mathematics Penn State University Penn State University University Park, PA 16802 University Park, PA 16802 Victor Guillemin Victor Kac Department of Mathematics Department of Mathematics MIT MIT Cambridge, MA 02139 Cambridge, MA 02139 Library of Congress Cataloging In-Publication Data Lie theory and geometry : in honor of Bertram Kostant / Jean-Luc Brylinski... [et al.], editors. p. cm. - (Progress in mathematics ; v. 123) Invited papers, some originated at a symposium held at MIT in May 1993. Includes bibliographical references. ISBN 978-1-4612-6685-3 ISBN 978-1-4612-0261-5 (eBook) DOI 10.1007/978-1-4612-0261-5 1. Lie groups. 2. Geometry. I. Kostant, Bertram. II. Brylinski, J.-L. (Jean-Luc) III. Series: Progress in mathematics : vol. 123. QA387.L54 1994 94-32297 512'55~dc20 CIP Printed on acid-free paper © Springer Science+Business Media New York 1994 Originally published by Birkhäuser Boston in 1994 Softcover reprint of the hardcover 1st edition 1994 Copyright is not claimed for works of U.S. Government employees. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopy• ing, recording, or otherwise, without prior permission of the copyright owner. Permission to photocopy for internal or personal use of specific clients is granted by Springer Science+Business Media, LLC, for libraries and other users registered with the Copyright Clearance Center (CCC), provided that the base fee of $6.00 per copy, plus $0.20 per page is paid directly to CCC, 21 Congress Street, Salem, MA 01970, U.S.A.
    [Show full text]
  • 1082-1084 Books and Arts MH AB.Indd
    Vol 460|27 August 2009 BOOKS & ARTS Bridging the gender gap in Indian science A set of biographies reveals the trials and triumphs of India’s women researchers, says Asha Gopinathan. Lilavati was the clever daughter of the twelfth- century Indian mathematician Bhaskara II. A well-known mathematician in her own right, she inspired generations of Indian women. Bhaskara’s famous book on mathematics was R. RAMASWAMY named after her, and he addressed many of its verses to her. Lilavati’s Daughters spotlights women based in India who have pursued research in science, engineering and mathemat- ics from the late nineteenth century to today. A collection of 98 short biographies, the book stems from a project initiated by the Women in Science panel of the Indian Acad- emy of Sciences, Bangalore, to provide young girls with inspiring role models (see www.ias. ac.in/womeninscience). The diverse personal stories span many disciplines and regions of India — and are inspiring. The earliest chronological entry is for Anandibai Joshi, the first Indian woman to go abroad and study to become a doctor. From 1883 to 1886 she attended the Women’s Medical Attending a science summer school encouraged geneticist Sudha Bhattacharya to become a researcher. College in Philadelphia and was awarded an MD degree for her thesis Obstetrics Among Aryan scientists came from ordinary middle-class across the country during summer camps. Hindoos. Unfortunately, she contracted tuber- families. Most grew up not in the nation’s big The road to the top is never smooth. Many culosis and had to return to India.
    [Show full text]