July 7, 2008 Tribute to André Lichnerowicz
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1006.1489V2 [Math.GT] 8 Aug 2010 Ril.Ias Rfie Rmraigtesre Rils[14 Articles Survey the Reading from Profited Also I Article
Pure and Applied Mathematics Quarterly Volume 8, Number 1 (Special Issue: In honor of F. Thomas Farrell and Lowell E. Jones, Part 1 of 2 ) 1—14, 2012 The Work of Tom Farrell and Lowell Jones in Topology and Geometry James F. Davis∗ Tom Farrell and Lowell Jones caused a paradigm shift in high-dimensional topology, away from the view that high-dimensional topology was, at its core, an algebraic subject, to the current view that geometry, dynamics, and analysis, as well as algebra, are key for classifying manifolds whose fundamental group is infinite. Their collaboration produced about fifty papers over a twenty-five year period. In this tribute for the special issue of Pure and Applied Mathematics Quarterly in their honor, I will survey some of the impact of their joint work and mention briefly their individual contributions – they have written about one hundred non-joint papers. 1 Setting the stage arXiv:1006.1489v2 [math.GT] 8 Aug 2010 In order to indicate the Farrell–Jones shift, it is necessary to describe the situation before the onset of their collaboration. This is intimidating – during the period of twenty-five years starting in the early fifties, manifold theory was perhaps the most active and dynamic area of mathematics. Any narrative will have omissions and be non-linear. Manifold theory deals with the classification of ∗I thank Shmuel Weinberger and Tom Farrell for their helpful comments on a draft of this article. I also profited from reading the survey articles [14] and [4]. 2 James F. Davis manifolds. There is an existence question – when is there a closed manifold within a particular homotopy type, and a uniqueness question, what is the classification of manifolds within a homotopy type? The fifties were the foundational decade of manifold theory. -
Stable Real Cohomology of Arithmetic Groups
ANNALES SCIENTIFIQUES DE L’É.N.S. ARMAND BOREL Stable real cohomology of arithmetic groups Annales scientifiques de l’É.N.S. 4e série, tome 7, no 2 (1974), p. 235-272 <http://www.numdam.org/item?id=ASENS_1974_4_7_2_235_0> © Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1974, tous droits réservés. L’accès aux archives de la revue « Annales scientifiques de l’É.N.S. » (http://www. elsevier.com/locate/ansens) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé- matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. sclent. EC. Norm. Sup., 46 serie, t. 7, 1974, p. 235 a 272. STABLE REAL COHOMOLOGY OF ARITHMETIC GROUPS BY ARMAND BOREL A Henri Cartan, a Poccasion de son 70® anniversaire Let r be an arithmetic subgroup of a semi-simple group G defined over the field of rational numbers Q. The real cohomology H* (T) of F may be identified with the coho- mology of the complex Q^ of r-invariant smooth differential forms on the symmetric space X of maximal compact subgroups of the group G (R) of real points of G. Let 1^ be the space of differential forms on X which are invariant under the identity component G (R)° of G (R). It is well-known to consist of closed (in fact harmonic) forms, whence a natural homomorphism^* : 1^ —> H* (T). -
Algebraic D-Modules and Representation Theory Of
Contemporary Mathematics Volume 154, 1993 Algebraic -modules and Representation TheoryDof Semisimple Lie Groups Dragan Miliˇci´c Abstract. This expository paper represents an introduction to some aspects of the current research in representation theory of semisimple Lie groups. In particular, we discuss the theory of “localization” of modules over the envelop- ing algebra of a semisimple Lie algebra due to Alexander Beilinson and Joseph Bernstein [1], [2], and the work of Henryk Hecht, Wilfried Schmid, Joseph A. Wolf and the author on the localization of Harish-Chandra modules [7], [8], [13], [17], [18]. These results can be viewed as a vast generalization of the classical theorem of Armand Borel and Andr´e Weil on geometric realiza- tion of irreducible finite-dimensional representations of compact semisimple Lie groups [3]. 1. Introduction Let G0 be a connected semisimple Lie group with finite center. Fix a maximal compact subgroup K0 of G0. Let g be the complexified Lie algebra of G0 and k its subalgebra which is the complexified Lie algebra of K0. Denote by σ the corresponding Cartan involution, i.e., σ is the involution of g such that k is the set of its fixed points. Let K be the complexification of K0. The group K has a natural structure of a complex reductive algebraic group. Let π be an admissible representation of G0 of finite length. Then, the submod- ule V of all K0-finite vectors in this representation is a finitely generated module over the enveloping algebra (g) of g, and also a direct sum of finite-dimensional U irreducible representations of K0. -
Contemporary Mathematics 442
CONTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors http://dx.doi.org/10.1090/conm/442 Lie Algebras, Vertex Operator Algebras and Their Applications In honor of James Lepowsky and Robert Wilson on their sixtieth birthdays CoNTEMPORARY MATHEMATICS 442 Lie Algebras, Vertex Operator Algebras and Their Applications International Conference in Honor of James Lepowsky and Robert Wilson on Their Sixtieth Birthdays May 17-21, 2005 North Carolina State University Raleigh, North Carolina Yi-Zhi Huang Kailash C. Misra Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Andreas Blass Abel Klein 2000 Mathematics Subject Classification. Primary 17810, 17837, 17850, 17865, 17867, 17868, 17869, 81T40, 82823. Photograph of James Lepowsky and Robert Wilson is courtesy of Yi-Zhi Huang. Library of Congress Cataloging-in-Publication Data Lie algebras, vertex operator algebras and their applications : an international conference in honor of James Lepowsky and Robert L. Wilson on their sixtieth birthdays, May 17-21, 2005, North Carolina State University, Raleigh, North Carolina / Yi-Zhi Huang, Kailash Misra, editors. p. em. ~(Contemporary mathematics, ISSN 0271-4132: v. 442) Includes bibliographical references. ISBN-13: 978-0-8218-3986-7 (alk. paper) ISBN-10: 0-8218-3986-1 (alk. paper) 1. Lie algebras~Congresses. 2. Vertex operator algebras. 3. Representations of algebras~ Congresses. I. Leposwky, J. (James). II. Wilson, Robert L., 1946- III. Huang, Yi-Zhi, 1959- IV. -
About Lie-Rinehart Superalgebras Claude Roger
About Lie-Rinehart superalgebras Claude Roger To cite this version: Claude Roger. About Lie-Rinehart superalgebras. 2019. hal-02071706 HAL Id: hal-02071706 https://hal.archives-ouvertes.fr/hal-02071706 Preprint submitted on 18 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. About Lie-Rinehart superalgebras Claude Rogera aInstitut Camille Jordan ,1 , Universit´ede Lyon, Universit´eLyon I, 43 boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France Keywords:Supermanifolds, Lie-Rinehart algebras, Fr¨olicher-Nijenhuis bracket, Nijenhuis-Richardson bracket, Schouten-Nijenhuis bracket. Mathematics Subject Classification (2010): .17B35, 17B66, 58A50 Abstract: We extend to the superalgebraic case the theory of Lie-Rinehart algebras and work out some examples concerning the most popular samples of supermanifolds. 1 Introduction The goal of this article is to discuss some properties of Lie-Rinehart structures in a superalgebraic context. Let's first sketch the classical case; a Lie-Rinehart algebra is a couple (A; L) where L is a Lie algebra on a base field k, A an associative and commutative k-algebra, with two operations 1. (A; L) ! L denoted by (a; X) ! aX, which induces a A-module structure on L, and 2. -
Mathematisches Forschungsinstitut Oberwolfach Enveloping Algebras
Mathematisches Forschungsinstitut Oberwolfach Report No. 13/2005 Enveloping Algebras and Geometric Representation Theory Organised by Shrawan Kumar (Chapel Hill) Peter Littelmann (Wuppertal) Wolfgang Soergel (Freiburg) March 13th – March 19th, 2005 Abstract. The study of Enveloping Algebras has undergone a significant and con- tinuous evolution and moreover has inspired a wide variety of developments in many areas of mathematics including Ring Theory, Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras. The aim of the workshop was to bring together researchers from diverse but highly interre- lated subjects to discuss new developments and bring forward the research in this whole area by fostering the scientific interaction. Mathematics Subject Classification (2000): 17xx, 22xx, 81xx. Introduction by the Organisers Since its inception in the early seventies, the study of Enveloping Algebras has undergone a significant and continuous evolution and moreover has inspired a wide variety of developments in many areas of mathematics including Ring Theory, Differential Operators, Invariant Theory, Quantum Groups and Hecke Algebras. As indicated above, one of the main goals behind this meeting was to bring together a group of participants with a wide range of interests in and around the geometric and the combinatorial side of the representation theory of Lie groups and algebras. We strongly believe that such an approach to representation theory, in particular interaction between geometry and representation theory, will open up new avenues of thought and lead to progress in a number of areas. This diversity was well reflected in the expertize represented by the conference participants, as well as in the wide range of topics covered. -
Irving Ezra Segal (1918–1998)
mem-segal.qxp 5/12/99 12:57 PM Page 659 Irving Ezra Segal (1918–1998) John C. Baez, Edwin F. Beschler, Leonard Gross, Bertram Kostant, Edward Nelson, Michèle Vergne, and Arthur S. Wightman Irving Segal died suddenly on August 30, 1998, After the war while taking an evening walk. He was seventy-nine Segal spent two and was vigorously engaged in research. years at the Insti- Born on September 13, 1918, in the Bronx, he tute for Advanced grew up in Trenton and received his A.B. from Study, where he Princeton in 1937. What must it have been like to held the first of the be a member of the Jewish quota at Princeton in three Guggenheim the 1930s? He told me once that a fellow under- Fellowships that he graduate offered him money to take an exam in his was to win. Other stead and was surprised when Irving turned him honors included down. election to the Na- He received his Ph.D. from Yale in 1940. His the- tional Academy of sis was written under the nominal direction of Sciences in 1973 Einar Hille, who suggested that Segal continue his and the Humboldt Award in 1981. At and Tamarkin’s investigation of the ideal theory the University of of the algebra of Laplace-Stieltjes transforms ab- Chicago from 1948 solutely convergent in a fixed half-plane. But, Segal to 1960, he had fif- wrote, “For conceptual clarification and for other teen doctoral stu- reasons, an investigation of the group algebra of dents, and at MIT, a general [locally compact] abelian group was of where he was pro- Irving Segal interest.” And the thesis was not restricted to fessor from 1960 abelian groups. -
NOTICES Was Sent to Press, the Meeting Dates Which Fall Rather Far in the Future Are Subject Tr Change
AMERICAN MATHEMATICAL SOCIETY Nottces Edited by GORDON L. WALKER Contents MEETINGS Calendar of Meetings • • • . • • • • • • • • . • • • • • . • • • • • • 4 Program of the February Meeting in Tucson • • • . • . • . • . 5 Abstracts for the Meeting, pp. 80-84 Program of the February Meeting in New York ••••••••• 10 Abstracts for the Meeting, pp. 85-94 PRELIMINARY ANNOUNCEMENTS OF MEETINGS ••••••.••• 15 ACTIVITIES OF OTHER ASSOCIATIONS ••••••••••••••••• 19 NEWS ITEMS AND ANNOUNCEMENTS •••••••••••••••••• 27 FOREIGN SCIENCE INFORMATION •••••••••.•••••••••• 38 PERSONAL ITEMS •••••••.•••••••••.••••••••••••• 47 NEW PUBLICATIONS ••••••••••••••••••••••••••••. 50 CATALOGUE OF LECTURE NOTES - Supplement No.1 . • • • • • 57 ABSTRACTS OF CONTRIBUTED PAPERS • • • • • • . • • • • • • • • 59 RESERVATION FORM . • . • • • • • • • • • • . • • • • • . • . • • • • • • 99 3 MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date at which this issue of the NOTICES was sent to press, The meeting dates which fall rather far in the future are subject tr change. This is particularly true of the meetings to which no numbers have yet been assigned, Meet Deadline ing Date Place for No, Abstracts* 567 April 14-16, 1960 New York, New York Mar. 1 568 April 22-23, 1960 Chicago, Illinois Mar, 1 569 April 22-23, 1960 Berkeley, California Mar, 570 June 18, 1960 Missoula, Montana May 5 571 August 29-September 3, 1960 East Lansing, Michigan July 15 (65th Summer Meeting) 572 October 22, 1960 Worcester, Massachusetts Sept. 8 January 24-27, 1961 Washington, D. C. (67th Annual Meeting) August, 1961 Stillwater, Oklahoma (66th Summer Meeting) January, 1962 Kansas City, Missouri (68th Annual Meeting) August, 1962 Vancouver, British Columbia (67th Summer Meeting) August, 1963 Boulder, Colorado (68th Summer Meeting) *The abstracts of papers to be presented at the meetings must be received i. -
Fedosov's Quantization of Semisimple Coadjoint Orbits
Fedosov's quantization of semisimple coadjoint orbits. by Alexander Astashkevich Submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 1996 @ Massachusetts Institute of Technology 1996. All rights reserved. Author .............................. ..... , ....................... Department of Mathematics May 1, 1996 Certified by. x.... Bertram Kostant Professor Thesis Supervisor Accepted by ........ .... .............. ...... ........ David Vogan Chairman, Departmental Committee on Graduate Students SCIENCE MA ;C t4 J :-:, t;,2 .'I•--_ B ~996 Fedosov's quantization of semisimple coadjoint orbits. by Alexander Astashkevich Submitted to the Department of Mathematics on May 1, 1996, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this thesis, we consider Fedosov's quantization (C"(0)[[h]], *) of the functions on a coadjoint orbit 0 of a Lie group G corresponding to the trivial cohomology class in H 2 (O, IR[[h]]) and G-invariant torsion free symplectic connection on 0 (when it exists). We show that the map g X -+ IX eC' (0)[[h]] is a homomorphism of Lie algebras, where we consider kC'(0) [[h]] as a Lie algebra with the bracket [f, g] = fg- gff,, g EC"C'(0)[[h]]. This map defines an algebra homomorphism A from U(g)((h)) to the algebra C~"(0)((h)). We construct a representation of Co((0)((h)). In case G is a simple Lie group and O is a semisimple coadjoint orbit, we show that p maps U(g)((h)) onto the algebra of polynomial functions on 0 endowed with a star product. -
Council Congratulates Exxon Education Foundation
from.qxp 4/27/98 3:17 PM Page 1315 From the AMS ics. The Exxon Education Foundation funds programs in mathematics education, elementary and secondary school improvement, undergraduate general education, and un- dergraduate developmental education. —Timothy Goggins, AMS Development Officer AMS Task Force Receives Two Grants The AMS recently received two new grants in support of its Task Force on Excellence in Mathematical Scholarship. The Task Force is carrying out a program of focus groups, site visits, and information gathering aimed at developing (left to right) Edward Ahnert, president of the Exxon ways for mathematical sciences departments in doctoral Education Foundation, AMS President Cathleen institutions to work more effectively. With an initial grant Morawetz, and Robert Witte, senior program officer for of $50,000 from the Exxon Education Foundation, the Task Exxon. Force began its work by organizing a number of focus groups. The AMS has now received a second grant of Council Congratulates Exxon $50,000 from the Exxon Education Foundation, as well as a grant of $165,000 from the National Science Foundation. Education Foundation For further information about the work of the Task Force, see “Building Excellence in Doctoral Mathematics De- At the Summer Mathfest in Burlington in August, the AMS partments”, Notices, November/December 1995, pages Council passed a resolution congratulating the Exxon Ed- 1170–1171. ucation Foundation on its fortieth anniversary. AMS Pres- ident Cathleen Morawetz presented the resolution during —Timothy Goggins, AMS Development Officer the awards banquet to Edward Ahnert, president of the Exxon Education Foundation, and to Robert Witte, senior program officer with Exxon. -
Issue 118 ISSN 1027-488X
NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY S E European M M Mathematical E S Society December 2020 Issue 118 ISSN 1027-488X Obituary Sir Vaughan Jones Interviews Hillel Furstenberg Gregory Margulis Discussion Women in Editorial Boards Books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Recent books in the EMS Monographs in Mathematics series Massimiliano Berti (SISSA, Trieste, Italy) and Philippe Bolle (Avignon Université, France) Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus 978-3-03719-211-5. 2020. 374 pages. Hardcover. 16.5 x 23.5 cm. 69.00 Euro Many partial differential equations (PDEs) arising in physics, such as the nonlinear wave equation and the Schrödinger equation, can be viewed as infinite-dimensional Hamiltonian systems. In the last thirty years, several existence results of time quasi-periodic solutions have been proved adopting a “dynamical systems” point of view. Most of them deal with equations in one space dimension, whereas for multidimensional PDEs a satisfactory picture is still under construction. An updated introduction to the now rich subject of KAM theory for PDEs is provided in the first part of this research monograph. We then focus on the nonlinear wave equation, endowed with periodic boundary conditions. The main result of the monograph proves the bifurcation of small amplitude finite-dimensional invariant tori for this equation, in any space dimension. -
Armand Borel (1923–2003), Volume 51, Number 5
Armand Borel (1923–2003) James Arthur, Enrico Bombieri, Komaravolu Chandrasekharan, Friedrich Hirzebruch, Gopal Prasad, Jean-Pierre Serre, Tonny A. Springer, and Jacques Tits Citations within this article. Borel’s Collected Papers are [Œ], and his 17 books are referred to as [1] through [17]. These are all listed in a sidebar on page 501. An item like [Œ 23] is Borel paper number 23 in [Œ]. Ci- tations of work by people other than Borel are by letter combinations such as [Che], and the de- tails appear at the end of the article. their root systems. He spent the year 1949–50 in 1 Institute for Advanced Study, 1999. Paris, with a grant from the CNRS . A good choice Armand Borel (for us, as well as for him), Paris being the very spot where what Americans have called “French Topol- Jean-Pierre Serre ogy” was being created, with the courses from The Swiss mathematician Armand Borel died Leray at the Collège de France and the Cartan sem- August 11, 2003, in Princeton from a rapidly evolv- inar at the École Normale Supérieure. Borel was an ing cancer. Few foreign mathematicians had as active participant in the Cartan seminar while many connections with France. He was a student closely following Leray’s courses. He managed to of Leray, he took part in the Cartan seminar, and understand the famous “spectral sequence”, not an he published more than twenty papers in collabo- easy task, and he explained it to me so well that I ration with our colleagues Lichnerowicz and Tits, have not stopped using it since.