Long-Term Outcomes of the Neoaorta After Arterial Switch Operation for Transposition of the Great Arteries Jennifer G

Total Page:16

File Type:pdf, Size:1020Kb

Long-Term Outcomes of the Neoaorta After Arterial Switch Operation for Transposition of the Great Arteries Jennifer G ORIGINAL ARTICLES: CONGENITAL HEART SURGERY CONGENITAL HEART SURGERY: The Annals of Thoracic Surgery CME Program is located online at http://cme.ctsnetjournals.org. To take the CME activity related to this article, you must have either an STS member or an individual non-member subscription to the journal. CONGENITAL HEART Long-Term Outcomes of the Neoaorta After Arterial Switch Operation for Transposition of the Great Arteries Jennifer G. Co-Vu, MD,* Salil Ginde, MD,* Peter J. Bartz, MD, Peter C. Frommelt, MD, James S. Tweddell, MD, and Michael G. Earing, MD Department of Pediatrics, Division of Pediatric Cardiology, and Department of Internal Medicine, Division of Cardiovascular Medicine, and Department of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin Background. After the arterial switch operation (ASO) score increased at an average rate of 0.08 per year over for transposition of the great arteries (TGA), the native time after ASO. Freedom from neoaortic root dilation at pulmonary root and valve function in the systemic posi- 1, 5, 10, and 15 years after ASO was 84%, 67%, 47%, and tion, and the long-term risk for neoaortic root dilation 32%, respectively. Risk factors for root dilation include -pre ,(0.003 ؍ and valve regurgitation is currently undefined. The aim history of double-outlet right ventricle (p and length of ,(0.01 ؍ of this study was to determine the prevalence and pro- vious pulmonary artery banding (p Neoaortic valve regurgitation of at .(0.04 ؍ gression of neoaortic root dilation and neoaortic valve follow-up (p regurgitation in patients with TGA repaired with the least moderate degree was present in 14%. Neoaortic root ASO. dilation was a significant risk factor for neoaortic valve Methods. Measurements of the neoaortic annulus, neo- regurgitation (p < 0.0001). No patient required reinter- aortic root at the level of the sinuses of Valsalva, and the vention on the neoaorta or neoaortic valve during degree of neoaortic regurgitation were assessed by serial follow-up. transthoracic echocardiograms on 124 patients with TGA Conclusions. Progressive neoaortic root dilation is com- at a median follow-up of 7.2 years (range, 1 to 23 years) mon in patients with TGA after the ASO. Continued after the ASO at our institution. surveillance of this population is required. Results. Neoaortic root dilation with z scores of 2.5 or (Ann Thorac Surg 2013;95:1654–9) greater was identified in 66%, and the root diameter z © 2013 by The Society of Thoracic Surgeons ince the arterial switch operation (ASO) was first Dilation of the neoaortic root has been reported in S described by Jatene and colleagues in 1975 [1],ithas more than two-thirds of patients after ASO [6, 7]. The become the surgical procedure of choice for repair of natural history of neoaortic root dilation in this setting is transposition of the great arteries (TGA). Perioperative unclear. Previous studies have demonstrated conflicting mortality has improved in the more recent eras, and data, with reports of the indexed neoaortic root dimen- several case series have described good long-term sur- sions progressively increasing [8, 9], decreasing [10],or vival in patients up to 30 years after the ASO [2–5]. remaining fixed [11] over time. Neoaortic valve regurgi- However, these long-term studies have also revealed tation may also be an important late complication, and important late complications that contribute to late mor- although uncommon, the need for aortic valve repair or bidity and the need for reoperation. These late compli- replacement has now been reported in several series late cations include coronary artery insufficiency, right ven- after ASO [12–14]. We sought to determine the preva- tricular outflow tract obstruction, and problems with the lence of neoaortic root dilation and neoaortic valve re- native pulmonary root and pulmonary valve in the sys- gurgitation in patients with TGA repaired with ASO at temic position functioning as the neoaortic root and the our institution and to determine risk factors for the neoaortic valve, respectively [4–9]. development of these late complications. Accepted for publication Oct 31, 2012. *Drs Ginde and Co-Vu contributed equally to this article. Patients and Methods Address correspondence to Dr Earing, 9000 W Wisconsin Ave, MS 713, This study was approved by the Children’s Hospital of Milwaukee, WI 53226; e-mail: [email protected]. Wisconsin Human Research Review Board and was con- © 2013 by The Society of Thoracic Surgeons 0003-4975/$36.00 Published by Elsevier Inc http://dx.doi.org/10.1016/j.athoracsur.2012.10.081 Ann Thorac Surg CO-VU ET AL 1655 2013;95:1654–9 NEOAORTA AFTER ARTERIAL SWITCH OPERATION Table 1. Potential Risk Factors for Neoaortic Annulus indicated trivial to mild regurgitation, 4 to 6 mm Dilation, Neoaortic Root Dilation, and Neoaortic indicated moderate regurgitation, and greater than 6 Regurgitation After Arterial Switch Operation mm indicated severe regurgitation. Moderate and se- Demographic variables vere regurgitation were also verified by left ventricular Age at ASO dilatation and presence of diastolic flow reversal in the aortic arch or descending aorta. Body surface area was Sex calculated by using the formula of Haycock and col- Weight leagues [17]. Height Coexisting anatomic lesions Data Outcomes and Risk Factors Ventricular septal defect Echocardiographic measurements of neoaortic root di- Double outlet right ventricle mensions and neoaortic valve regurgitation were ana- CONGENITAL HEART Coarctation of the aorta lyzed throughout the entire follow-up. Significant neo- Coronary artery anatomy aortic root dilation was defined as maximum systolic Left ventricular outflow tract obstruction dimension at sinuses of Valsalva (midsinus level) z score Bicommissural pulmonary valve of 2.5 or higher, and significant neoaortic annulus dila- Prior intervention to ASO tion was defined as a measurement z score of 2.5 or Balloon atrial septostomy higher. We chose 2.5 as the cutoff to exclude patients with Coarctation of the aorta repair borderline dilation (z scores of 1.5 to 2.5). Significant Pulmonary artery banding neoaortic valve regurgitation was defined as moderate or Arch reconstruction severe regurgitation. Placement of a Blalock-Taussig shunt Potential risk factors for the development of neoaortic Associated operation with ASO root dilation, annulus dilation, and neoaortic valve regur- Coarctation of the aorta repair gitation were also analyzed (Table 1). Variables that were Subaortic membrane resection evaluated included demographic data, coexisting ana- Left ventricular outflow tract obstruction repair tomic lesions, interventions before ASO, and additional Ventricular septal defect repair operations performed at the time of ASO. Need for reintervention for neoaortic root dilation or neoaortic ASO ϭ arterial switch operation. valve regurgitation, including valve repair or replace- ment, was also evaluated in the patient cohort. ducted in accordance with all human research regulatory Statistical Analysis requirements. Demographic data are described as mean Ϯ standard deviation or median with ranges. The Kaplan-Meier Patients method was used to assess freedom from neoaortic root A total of 247 patients with TGA who underwent ASO at the Children’s Hospital of Wisconsin were identified in the cardiovascular surgical database from January 1984 to Table 2. Patient Demographic and Clinical Characteristics December 2007. Of these patients, 124 had at least one Median available postoperative transthoracic echocardiogram at (range) least 1 year after ASO and were included in the study. Variables or No. (%) Hospital and outpatient records were reviewed to obtain ϭ demographics, describe preoperative anatomy, and iden- Patient characteristics (n 124) tify potential risk factors predictive of progressive neo- Age at time of ASO, months 0.2 (0.1–60) aortic root dilation or neoaortic root regurgitation. Age at last follow-up, years 7.2 (1–23) Female 36 (29) Echocardiographic Measurements Coexisting lesions (n ϭ 74) Retrospective measurements of the neoaortic annulus Ventricular septal defect 36 (49) and root were performed on all available postoperative Nonusual coronary artery pattern 20 (27) transthoracic echocardiograms. Maximum systolic di- Coarctation of the aorta 14 (19) mensions of the neoaortic annulus (measured at the level Double-outlet right ventricle morphology 11 (15) of valve hinge points of the leaflets) and sinuses of Bicommissural pulmonary valve 7 (10) Valsalva (at the midsinus level) were measured from Left ventricular outflow tract obstruction 2 (3) 2-dimensional parasternal long-axis views. Neoaortic an- Previous intervention before ASO (n ϭ 74) nulus and root (sinuses of Valsalva) diameter z scores Balloon atrial septostomy 40 (54) were derived using the data from Children’s Hospital of Coarctation of the aorta repair 12 (16) Boston [15]. The severity of neoaortic valve regurgitation Pulmonary artery banding 11 (15) was graded by assessing the width of the color Doppler Blalock-Taussig shunt 2 (3) jet of regurgitation measured at the level of the valve in parasternal long-axis view [16]. A jet width of 1 to 4 mm ASO ϭ arterial switch operation. 1656 CO-VU ET AL Ann Thorac Surg NEOAORTA AFTER ARTERIAL SWITCH OPERATION 2013;95:1654–9 dilation and neoaortic regurgitation after ASO. The ran- dom coefficient model with linear fit was used to assess neoaortic root dilation and neoaortic annulus dilation CONGENITAL HEART over time. The Cox proportional hazards model was used for multivariate analysis to identify predictors of out- comes. A p value of less than 0.05 was considered statistically significant. Results Table 2 summarizes the demographic and clinical char- acteristics of the patient cohort. Of the 124 patients included in the study, the median age at the time of ASO was 0.2 months (range, 0.1 to 60 months), and median follow-up was 7.2 years (range, 1 to 23 years). Coexisting anatomic lesions existed in 74 patients (60%). The most common coexisting lesion with TGA was a ventricular Fig 2. Neoaortic root measurement after arterial switch operation septal defect (VSD), occurring in 36 patients (49%).
Recommended publications
  • Severe Aortic Stenosis and the Valve Replacement Procedure
    Severe Aortic Stenosis and the Valve Replacement Procedure A Guide for Patients and their Families If you’ve been diagnosed with severe aortic stenosis, you probably have a lot of questions and concerns. The information in this booklet will help you learn more about your heart, severe aortic stenosis, and treatment options. Your heart team will recommend which treatment option is best for you. Please talk with them about any questions you have. Table of Contents 4 About Your Heart 5 What Is Severe Aortic Stenosis? 5 What Causes Severe Aortic Stenosis? 7 What Are the Symptoms of Severe Aortic Stenosis? 8 Treatment Options for Severe Aortic Stenosis 10 Before a TAVR Procedure 12 What Are the Risks of TAVR? 2 3 About Your Heart What Is Severe See the difference between healthy and The heart is a muscle about the size of your fist. It is a pump that works nonstop to Aortic Stenosis? diseased valves send oxygen-rich blood throughout your entire body. The heart is made up of four The aortic valve is made up of two or three chambers and four valves. The contractions (heartbeats) of the four chambers push Healthy Valve the blood through the valves and out to your body. tissue flaps, called leaflets. Healthy valves open at every heart contraction, allowing blood to flow forward to the next chamber, and then close tightly to prevent blood from backing Pulmonic controls the flow of Aortic controls the flow of blood up. Blood flows in one direction only. This is Valve blood to the lungs Valve out of your heart to the important for a healthy heart.
    [Show full text]
  • Surgery for Acquired Heart Disease
    View metadata, citation and similar papers at core.ac.uk brought to you byCORE provided by Elsevier - Publisher Connector SURGERY FOR ACQUIRED HEART DISEASE EARLY RESULTS WITH PARTIAL LEFT VENTRICULECTOMY Patrick M. McCarthy, MD a Objective: We sought to determine the role of partial left ventriculectomy in Randall C. Starling, MD b patients with dilated cardiomyopathy. Methods: Since May 1996 we have James Wong, MBBS, PhD b performed partial left ventriculectomy in 53 patients, primarily (94%) in Gregory M. Scalia, MBBS b heart transplant candidates. The mean age of the patients was 53 years Tiffany Buda, RN a Rita L. Vargo, MSN, RN a (range 17 to 72 years); 60% were in class IV and 40% in class III. Marlene Goormastic, MPH c Preoperatively, 51 patients were thought to have idiopathic dilated cardio- James D. Thomas, MD b myopathy, one familial cardiomyopathy, and one valvular cardiomyopathy. Nicholas G. Smedira, MD a As our experience accrued we increased the extent of left ventriculectomy James B. Young, MD b and more complex mitral valve repairs. For two patients mitral valve replacement was performed. For 51 patients the anterior and posterior mitral valve leaflets were approximated (Alfieri repair); 47 patients also had ring posterior annuloplasty. In 27 patients (5!%) one or both papillary muscles were divided, additional left ventricular wall was resected, and the papillary muscle heads were reimplanted. Results: Echocardiography showed a significant decrease in left ventricular dimensions after resection (8.3 cm to 5.8 cm), reduction in mitral regurgitation (2.8+ to 0), and increase in forward ejection fraction (15.7% to 32.7%).
    [Show full text]
  • Arterial Switch Operation Surgery Surgical Solutions to Complex Problems
    Pediatric Cardiovascular Arterial Switch Operation Surgery Surgical Solutions to Complex Problems Tom R. Karl, MS, MD The arterial switch operation is appropriate treatment for most forms of transposition of Andrew Cochrane, FRACS the great arteries. In this review we analyze indications, techniques, and outcome for Christian P.R. Brizard, MD various subsets of patients with transposition of the great arteries, including those with an intact septum beyond 21 days of age, intramural coronary arteries, aortic arch ob- struction, the Taussig-Bing anomaly, discordant (corrected) transposition, transposition of the great arteries with left ventricular outflow tract obstruction, and univentricular hearts with transposition of the great arteries and subaortic stenosis. (Tex Heart Inst J 1997;24:322-33) T ransposition of the great arteries (TGA) is a prototypical lesion for pediat- ric cardiac surgeons, a lethal malformation that can often be converted (with a single operation) to a nearly normal heart. The arterial switch operation (ASO) has evolved to become the treatment of choice for most forms of TGA, and success with this operation has become a standard by which pediatric cardiac surgical units are judged. This is appropriate, because without expertise in neonatal anesthetic management, perfusion, intensive care, cardiology, and surgery, consistently good results are impossible to achieve. Surgical Anatomy of TGA In the broad sense, the term "TGA" describes any heart with a discordant ven- triculoatrial (VA) connection (aorta from right ventricle, pulmonary artery from left ventricle). The anatomic diagnosis is further defined by the intracardiac fea- tures. Most frequently, TGA is used to describe the solitus/concordant/discordant heart.
    [Show full text]
  • Reduction Ventriculoplasty for Dilated Cardiomyopathy : the Batista Procedure Shahram Salemy Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1999 Reduction ventriculoplasty for dilated cardiomyopathy : the Batista procedure Shahram Salemy Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Salemy, Shahram, "Reduction ventriculoplasty for dilated cardiomyopathy : the Batista procedure" (1999). Yale Medicine Thesis Digital Library. 3123. http://elischolar.library.yale.edu/ymtdl/3123 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. SlDDCITOM VENTRICULOPIASTy FOR DILATED CARDIOMYOPATHY THE BATISTA PROCEDURE W«M * (e,yx»> ShaLramSalemy YALE DNIVERSriY YALE UNIVERSITY CUSHING/WHITNEY MEDICAL LIBRARY Permission to photocopy or microfilm processing of this thesis for the purpose of individual scholarly consultation or reference is hereby granted by the author. This permission is not to be interpreted as affecting publication of this work or otherwise placing it in the public domain, and the author reserves all rights of ownership guaranteed under common law protection of unpublished manuscripts. Signature of Author Date REDUCTION VENTRICULOPLASTY FOR DILATED CARDIOMYOPATHY: THE BATISTA PROCEDURE Shahram Salemy B.S., George Tellides M.D., Ph.D., and John A. Elefteriades M.D. February 5, 1999 r 113 f'Uh (e(e.cl 0 REDUCTION VENTRICULOPLASTY FOR DILATED CARDIOMYOPATHY: THE BATISTA PROCEDURE.
    [Show full text]
  • Evaluation of ECG Criteria for Left Ventricular Hypertrophy Before and After Aortic Valve Replacement Using Magnetic Resonance Imaging
    MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016 ©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc. JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCEw Vol. 5, No. 3, pp. 465–474, 2003 STRUCTURE AND FUNCTION Evaluation of ECG Criteria for Left Ventricular Hypertrophy Before and After Aortic Valve Replacement Using Magnetic Resonance Imaging Hugo P. Beyerbacht,1 Jeroen J. Bax,1,* Hildo J. Lamb,2 Arnoud van der Laarse,1 Hubert W. Vliegen,1 Albert de Roos,2 Aeilko H. Zwinderman,3 and Ernst E. van der Wall1 1Department of Cardiology, 2Department of Radiology, and 3Department of Medical Statistics, Leiden University Medical Centre, Leiden, The Netherlands ABSTRACT Purpose. Evaluation of different electrocardiographic criteria for left ventricular hypertrophy (ECG–LVH criteria) using left ventricular mass index (LVMI) determined by magnetic resonance imaging (MRI). In addition, the relation between LVMI regression after aortic valve replacement and corresponding ECG changes regarding LVH was studied. Methods. A group of 31 patients with severe aortic valve disease was studied to assess the presence of ECG–LVH and to measure LVMI and LV end-diastolic volume index (LVEDVI); 13 patients were restudied at 9.8 ^ 2.7 months after aortic valve replacement. Results. Three criteria had a sensitivity of 100% (SV1 þ RV5 or RV6 . 3.0 mV; SV1 or SV2 þ RV5 $ 3.5 mV; SV1 or SV2 þ RV5 or RV6 . 3.5 mV), at the cost of specificity (50%, 44.4% and 44.4%, respectively).
    [Show full text]
  • Transcatheter Heart Valve Replacement
    TRANSCATHETER ALI MASSUMI MD HEART VALVE NEIL E STRICKMAN MD REPLACEMENT 0 | P a g e Hall Garcia Cardiology Associates 6624 Fannin #2480 Houston, TX, USA 77030; +1-713-529-5530 ranscatheter Aortic Valve Replacement INTRODUCTION T The heart is a muscular organ located in your chest between your lungs which is designed to pump blood throughout the entire body. The right side of your heart pumps blood through the lungs, where the blood picks up oxygen. The left side of the heart receives this blood and pumps it to the rest of your body out through the AORTIC VALVE and into the circulation of the body. HEART CHAMBERS AND VALVES The heart is divided into four main areas, or chambers – two upper chambers (the left and right atrium) and two lower chambers (the left and right ventricle). These are the 4 valves which regulate the flow of blood through the heart, lungs and subsequently into the body’s circulation. They are called the aortic, mitral, pulmonary and tricuspid valves, whereas each is made of flaps of tissue called leaflets. See Figure 1 Figure 1 Hall Garcia Cardiology Associates 6624 Fannin #2480 Houston, TX, USA 77030; +1-713-529-5530 As the heart muscle contracts (squeezes), the valves open in one direction which allows the blood to circulate forward. When these valves close, the blood is prevented from flowing backward. There are 2 common problems that can develop in heart valves: VALVE STENOSIS This occurs when the valve is narrowed and does not completely open secondary to: o a build-up of calcium (mineral deposits) o high cholesterol (a waxy fat) o aging o genetics (such as a birth defect) VALVE INSUFFICIENCY / REGURGITATION This occurs when the valve does not fully close allowing blood to leak backward through the valve o Torn tendoniae (string-like architecture) o Ring dilation (degeneration like an automobile ring) AORTIC STENOSIS-(AS) Severe Aortic Valve Stenosis occurs when the narrowing of your aortic valve leaflets do not allow normal blood flow outward.
    [Show full text]
  • Curriculum Vitae Takahiro Shiota, MD, Phd, FACC, FESC, FASE, FAHA
    1 Curriculum Vitae Takahiro Shiota, MD, PhD, FACC, FESC, FASE, FAHA Office Address: Cedars-Sinai Medical Center Heart Institute 127 S. San Vicente Blvd., A3411 Los Angeles, CA 90048 (310) 423-6889 Office Email: [email protected] EDUCATION: 1991 Ph.D. in Cardiology. Faculty of Medicine, University of Tokyo, Tokyo, Japan 1977-1983 M.D. Faculty of Medicine, University of Tokyo, Tokyo, Japan 1972-1976 B.S. in Physics. Faculty of Science, University of Tokyo, Tokyo, Japan LICENSURE AND CERTIFICATION National Board of Echocardiography (#2000-252) California Medical License (#000015) Ohio Medical License (#35. 080318) ECFMG (#0-576-045-9) Japanese Medical License (#274951) PROFESSIONAL EXPERIENCE 1/2009-present Associate Director Division of Noninvasive Cardiology Cedars-Sinai Heart Institute Los Angeles, CA 12/2001-12/2008 Clinical Staff Department of Cardiovascular Medicine Cleveland Clinic, Cleveland, OH 7/1999-11/2001 Advanced Cardiac Department of Cardiovascular Medicine Imaging Fellow Cleveland Clinic, Cleveland, OH 9/1997- 6/1999 Project Staff Department of Cardiovascular Medicine 2 Cleveland Clinic, Cleveland, OH 8/1992- 8/1997 Research Director Cardiac Imaging Laboratory, Clinical Care Center for Congenital Heart Disease, Oregon Health Sciences University, Portland, OR PROFESSIONAL ACTIVITIES: Academic Appointment 7/2009-present Professor of Medicine, Department of Medicine, Cedars-Sinai, Los Angeles, CA 8/2008-present Clinical Professor of Medicine, David Geffen School of Medicine at UCLA 7/2007-12/2008 Professor of Medicine, Cleveland
    [Show full text]
  • Transcatheter Aortic Valve Replacement
    What is TAVR? Cardiac Catheterization: Important things to know that will help you get ready Transcatheter Aortic Valve Replacement (TAVR) is a procedure Your doctor will tell if you need to stop eating or drinking to fix the aortic valve without taking out the old valve. A TAVR before your procedure. Your doctor also will tell you if you does not need open heart surgery and the heart does not need must stop taking any medications before the procedure. to be stopped. Catheterization Lab In the Pre-Operative (Pre-Op) Room before your The surgeon puts a catheter (thin tube) into an artery in your Cardiac Catheterization upper leg or through a small cut in your chest. The catheter will • You will wear a hospital gown. We will ask you to take off all Transcatheter Aortic Valve carry a new valve to your heart. your clothing (even underwear), jewelry, dentures, glasses, Replacement (TAVR) hearing aids, etc. • An intravenous line (IV) may be put into a vein in your arm • We will prepare and clean the catheter site (where the catheter goes into your body). We will clean your skin with a special wash that kills germs. We may need to trim body hair. • We will ask you to empty your bladder (pee) before your procedure After Your Cardiac Catheterization • You may be on bed rest (lying flat) for 2 to 6 hours. To lower the risk of bleeding, we do not want you to bend your body at the catheter site (where the catheter went into your body) • Your nurse will often check your vital signs (blood pressure, heart rate, temperature) and catheter site • You must use a urinal or bed pan until you can safely stand and walk to the bathroom • While you are healing, do not do strenuous exercise (such as running or lifting weights).
    [Show full text]
  • A Focus on Valve-Sparing Ascending Aortic Aneurysm Repair Newyork
    ADVANCES IN CARDIOLOGY, INTERVENTIONAL CARDIOLOGY, AND CARDIOVASCULAR SURGERY Affiliated with Columbia University College of Physicians and Surgeons and Weill Cornell Medical College A Focus on Valve-Sparing NOVEMBER/DECEMBER 2014 Ascending Aortic Aneurysm Repair Emile A. Bacha, MD The most frequent location for aneurysms in the Chief, Division of Cardiac, chest occurs in the ascending aorta – and these Thoracic and Vascular Surgery aneurysms are often associated with either aortic NewYork-Presbyterian/Columbia stenosis or aortic insufficiency, especially when the University Medical Center aneurysm involves a bicuspid aortic valve. Director, Congenital and Pediatric Cardiac Surgery “We know that patients who have enlarged NewYork-Presbyterian Hospital aortas or aneurysms of the ascending aorta are at [email protected] great risk for one of two major life-threatening events: an aortic rupture or an aortic dissection,” Allan Schwartz, MD says Leonard N. Girardi, MD, Director of Chief, Division of Cardiology Thoracic Aortic Surgery in the Department of NewYork-Presbyterian/Columbia Cardiothoracic Surgery, NewYork-Presbyterian/ University Medical Center Weill Cornell Medical Center. “Dissection of the Valve-sparing ascending aortic aneurysm repair [email protected] inner lining of the wall of the blood vessel can also lead to rupture or other complications down last 15 years, the Aortic Surgery Program at Weill O. Wayne Isom, MD the line. For example, as the tear extends it may Cornell has been aggressively pursuing the devel- Cardiothoracic Surgeon-in-Chief NewYork-Presbyterian/ affect the vessels that supply the brain or the opment of a procedure that would enable surgeons Weill Cornell Medical Center coronary arteries or cause tremendous damage to to spare the patient’s native valve.
    [Show full text]
  • Sutureless Aortic Valve Replacement with Concomitant Valvular Surgery
    ADULT Adult: Aortic Valve: Evolving Technology Baran et al Sutureless aortic valve replacement with concomitant valvular surgery Cagdas Baran, MD, Mustafa Serkan Durdu, MD, PhD, Fatih Gumus, MD, Mehmet Cakici, MD, Mustafa Bahadir Inan, MD, Mustafa Sirlak, MD, and Ahmet Ruchan Akar, MD ABSTRACT Objectives: Sutureless aortic valve replacement (SU-AVR) is an alternative tech- nique to standard aortic valve replacement. We evaluated our experience with the Perceval SU-AVR with concomitant mitral valve surgery, with or without tricuspid valve surgery, and aimed to discuss the technical considerations. Methods: From January 2013 through June 2016, 30 patients with concomitant severe mitral valve disease, with or without tricuspid valve disease, underwent SU-AVR with the Perceval prosthesis in a single center. Results: The mean age was 73.0 Æ 6.6 years, ranging from 63 to 86 years, and 3D confirmation of relationship between aortic, mitral, 60% (n ¼ 18) were male. Mean logistic EuroScore of the study cohort was and tricuspid valves in angio-CT. 9.8 Æ 4.6. Concomitant procedures consisted of mitral valve repair (n ¼ 8, 26.6%), mitral valve replacement (n ¼ 22, 73.3%), tricuspid valve repair Central Message (n ¼ 18, 60%), tricuspid valve replacement (n ¼ 2, 6.6%), and cryoablation SU-AVR with concomitant valve surgery can for atrial fibrillation (n ¼ 21, 70%). Median prosthesis size was 25 mm (large be feasible and safe in elderly, high-risk pa- tients with relatively low morbidity and size). At 1 year, there were 2 deaths from noncardiac causes. One patient mortality. (3.3%) had third-degree atrioventricular block requiring permanent pacemaker implantation.
    [Show full text]
  • Minimally Invasive Concomitant Aortic and Mitral Valve Surgery: the “Miami Method”
    Keynote Lecture Series Minimally invasive concomitant aortic and mitral valve surgery: the “Miami Method” Joseph Lamelas Division of Cardiac Surgery, Mount Sinai Medical Center, Miami Beach, Florida, USA Correspondence to: Joseph Lamelas, M.D. Chief of Cardiothoracic Surgery, Mount Sinai Medical Center, Mount Sinai Heart Institute 4300 Alton Road, Miami Beach, Florida 33140, USA. Email: [email protected]. Valve surgery via a median sternotomy has historically been the standard of care, but in the past decade various minimally invasive approaches have gained increasing acceptance. Most data available on minimally invasive valve surgery has generally involved single valve surgery. Therefore, robust data addressing surgical techniques in patients undergoing double valve surgery is lacking. For patients undergoing combined aortic and mitral valve surgery, a minimally invasive approach, performed via a right lateral thoracotomy (the “Miami Method”), is the preferred method at our institution. This method is safe and effective and leads to an enhanced recovery in our patients given the reduction in surgical trauma. The following perspective details our surgical approach, concepts and results for combined aortic and mitral valve surgery. Keywords: Minimally invasive; valve surgery; aortic valve replacement; mitral valve surgery; double valve surgery Submitted Jun 21, 2014. Accepted for publication Jul 17, 2014. doi: 10.3978/j.issn.2225-319X.2014.08.17 View this article at: http://dx.doi.org/10.3978/j.issn.2225-319X.2014.08.17 Introduction Technique for minimally invasive aortic and mitral valve surgery Minimally invasive valve surgery was first performed by Navia et al. in 1996, and by Cohn et al. in 1997 (1,2).
    [Show full text]
  • Elective Femoro-Femoral Cardiopulmonary Bypass During Transcatheter Aortic Valve Implantation: a Useful Tool
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Drews et al Acquired Cardiovascular Disease Elective femoro-femoral cardiopulmonary bypass during transcatheter aortic valve implantation: A useful tool Thorsten Drews, MD, Miralem Pasic, MD, PhD, Semih Buz, MD, Giuseppe D’Ancona, MD, PhD, Alexander Mladenow, MD, Roland Hetzer, MD, PhD, and Axel Unbehaun, MD Objective: Transcatheter aortic valve implantation is a new method to treat high-risk patients with aortic valve stenosis. The operative risk can be reduced, especially in patients with severely reduced left ventricular function or cardiogenic shock. Nevertheless, this new procedure has some potential risks, especially during the phases of rapid pacing (valvuloplasty and valve deployment). The use of cardiopulmonary bypass allows the perioperative risk to be reduced. Method: Between April 2008 and August 2011, 512 consecutive patients underwent transcatheter aortic valve implantation. Cardiopulmonary bypass was used in 35 patients. In this special group, there were 17 men and 18 women with a mean age of 77 Æ 12 years (range, 38–92 years). Left ventricular ejection fraction was a mean of 32% Æ 19% (range, 10%–70%), European System for Cardiac Operative Risk Evaluation was 60% Æ 27% (range, 13%–97%), and Society of Thoracic Surgeons’ mortality score was 35% Æ 28% (range, 4%–90%). Results: Cardiopulmonary bypass was used in 13 patients with preoperative cardiogenic shock, 11 patients with impaired heart function during the procedure, 7 patients with severely impaired left ventricular function (left ventricular ejection fraction, 17% Æ 6%; range, 10%–30%), 3 patients with concomitant conventional surgical ACD procedures, and 1 patient with impaired right ventricular function.
    [Show full text]