Angular Momentum of Galaxies in the Densest Environments: a FLAMES/GIRAFFE IFS Study of the Massive Cluster Abell 1689 at Z = 0

Total Page:16

File Type:pdf, Size:1020Kb

Angular Momentum of Galaxies in the Densest Environments: a FLAMES/GIRAFFE IFS Study of the Massive Cluster Abell 1689 at Z = 0 Astronomical Science Angular Momentum of Galaxies in the Densest Environments: A FLAMES/GIRAFFE IFS Study of the Massive Cluster Abell 1689 at z = 0.18 Francesco D’Eugenio1 of these empirical laws — alongside their bined with the collecting power of the Ryan C. W. Houghton1 very small scatter — imposes strong ESO Very Large Telescope (VLT), are the Roger L. Davies1 constraints on the structure and evolution ideal tools for this task. Elena Dalla Bontà2, 3 of ETGs (Bower et al., 1992). This makes them ideal testing grounds for any galaxy formation theory. Their study, important FLAMES/GIRAFFE observations of 1 Sub-department of Astrophysics, in its own right, is also fundamental Abell 1689 Department of Physics, University of for our understanding of the process of Oxford, United Kingdom structure formation in the Universe. Abell 1689, a massive galaxy cluster at 2 Dipartimento di Fisica e Astronomia redshift z = 0.183, has regular, concen- “G. Galilei”, Università degli Studi di The advent of integral field spectroscopy tric X-ray contours suggesting that it Padova, Italy (IFS) started a revolution in the study of is re laxed. Its X-ray luminosity outshines 3 INAF–Osservatorio Astronomico di ETGs. The SAURON survey discovered Coma by a factor of three, and Virgo Padova, Italy the existence of two kinematically distinct by over an order of magnitude. Its comov- classes of ETGs, slow and fast rotators ing distance is 740 Mpc, giving a scale (SRs and FRs, see Emsellem et al. [2007]) of 1 arcsecond per 3.0 kpc. Alongside its Early-type galaxies (ETGs) exhibit kine- and Cappellari et al. (2007). The former physical properties, Abell 1689 was an matically distinct slow and fast rotator have little or no rotation, exhibit kinemati- ideal target for FLAMES because the (SR, FR) morphologies. The former cally decoupled cores and misalignment spatial resolution of the GIRAFFE-deploy- are much less common (10% of ETGs), between kinematics and photo metry. The able integral field units (IFUs) samples up but their incidence is higher in the core latter are flattened systems, compatible to one effective radius (Re) for most gal- of the Virgo Cluster (25%). Here we pre- with rotational symmetry and a disc-type axies. Finally, a wealth of archival data, sent FLAMES/GIRAFFE integral field origin. The new division crucially crosses including imaging from the Hubble Space spectroscopy of 30 galaxies in the mas- the boundary between Es and S0s, in Telescope (HST) Advanced Camera for sive cluster Abell 1689 at z = 0.183. that FRs populate both morphological Surveys (ACS), is available and vital to a Abell 1689 has a density 30 times classes. ATLAS3D (the volume-limited fol- study of this nature. higher than that of Virgo, making it the low-up survey to SAURON; Cappellari ideal place to test the effects of envi- et al., 2011a; Emsellem et al., 2011), F625W-band imaging from the HST ACS, ronment, such as local density and established that 66% of morphological combined with g:- and r:-band GEMINI cluster properties. We find 4.5 ± 1.0 ellipticals are FRs, and thus share the imaging were used for the photometry SRs (or an average ETG fraction, ƒSR, of same internal structure as S0s. This is (Houghton et al., 2012). The spectroscopic 0.15 ± 0.03) in Abell 1689, identical to evidence for a new classifi cation para- data (spectral resolution, R = 11 800, the value for field/groups in ATLAS3D. digm, based on kinematics rather than spectral range 573 nm < λ < 652 nm Within Abell 1689 ƒSR increases towards morphology (Cappellari et al., 2011b). [486 nm < λ < 552 nm rest frame]) covers the centre, ex ceeding the value found in standard V-band absorption features. the core of Virgo. This work is the high- The ATLAS3D team presented the kine- GIRAFFE provides 15 independent mini est redshift study of its kind. matic morphology–density (kT–Σ) relation, IFUs, deployable anywhere on the focal analogous to the morphology–density plane; each IFU is positioned by a mag- relation (Dressler, 1980). It links the frac- netic button and contains an array of Kinematical classification of ETGs tion of SRs in the ETG population (ƒSR) 20 square microlenses. They are arranged with the local number density of galaxies: in four rows of six (with four “dead” cor- ETGs comprise morphologically distinct they found that ƒSR is independent of ners) for a total field of view of 3 by 2 arc- elliptical (E) and lenticular (S0) galaxies. the environment density over five orders seconds. Each lenslet is then connected Despite their differences, Es and S0s of magnitude from field to group environ- to the spectrometer with a dedicated opti- have lots in common. They are both char- ments. But they noticed a sharp increase cal fibre bundle. Alongside the 15 IFUs, acterised by old stellar populations, which in ƒSR in the inner core of the Virgo Clus- the instrument also provides 15 fully de - has earned them the attribute “early- ter, the highest density probed by the ployable sky fibres. type”. The average ETG has little or no ATLAS3D survey. Virgo is an unrelaxed, cold gas, which is reflected in the star low-density cluster, but what would be Since the magnetic buttons are larger formation rate. Its light profile is smooth measured in the denser environments (10 arcseconds) than the IFU field of view, and its shape fairly regular. One of the beyond the local Universe? Addressing they cannot be deployed closer than a most puzzling facts about these galaxies this question gives further insight on minimum distance of 11 arcseconds. is how, with masses and luminosities that the kT–Σ relation, and on the processes GIRAFFE permits the observer to target span several orders of magnitude, they that drive galaxy formation and evolution. 15 objects simultaneously and we chose obey a number of tight scaling relations. to target 30 galaxies as a compromise These include the colour–magnitude Since rich, relaxed clusters are rare, they between sample statistics and integration relation, the colour–σ and Mg–σ relations can only be found at higher redshifts. time. In order to gain the maximum pos- (where σ is the velocity dispersion) and the The multiplexing capabilities of FLAMES/ sible signal-to-noise ratio, we initially fundamental plane. The mere existence GIRAFFE (Pasquini et al., 2002), com- selected the 30 ETGs with the highest The Messenger 151 – March 2013 37 Astronomical Science D’Eugenio F. et al., Angular Momentum of Galaxies in the Densest Environments 01 02 03 Figure 1. Kinematic –150/150 0/225 –100/100 0/125–150/1500/225 maps of the Abell 1689 sample. For each of the 30 galaxies in the sam- ple we present a set of four images. The first 04 05 06 –100/100 0/125 –100/100 0/300–100/1000/325 one shows FLAMES/ GIRAFFE IFU footprints superimposed on HST imaging (Gemini imaging for target 20). The sec- ond plot shows the 07 08 09 –100/100 0/150 –100/100 0/225–100/1000/150 reconstructed image from VLT integral field spectroscopy, where each square is a spaxel and corresponds to a 10 11 12 lenslet of the IFU. Also –100/100 0/225 –100/100 0/150–100/1000/350 shown is an isophote at either Re, or the closest integer fraction that fits into the IFU footprint. The four black corners 13 14 15 –100/100 0/200 –175/175 0/325–100/1000/200 correspond to unavaila- ble “dead” spaxels, while other black spax- els (seen in 11, 15 and 30) correspond to bro- ken or unused fibres. 16 17 18 –100/100 0/175 –250/250 0/325–125/1250/200 Velocity and velocity dispersion maps are depicted in the third and fourth plots. The black compass arrows show 19 20 21 north and east direc- –100/100 0/275 –100/100 0/150–100/1000/150 tions. Colour-bar limits are given in km/s. 22 23 24 –200/200 0/250 –100/100 0/200–100/1000/200 25 26 27 –200/200 0/225 –100/100 0/275–100/1000/250 28 29 30 –175/175 0/175 –150/150 0/200–100/1000/200 surface brightness within a 3-arcsecond was exposed five times for two hours, for tions of the Virgo Cluster (for which the radius. This sample was then subject a total of ten hours per galaxy. The ob - SR population is known from ATLAS3D) to two practical constraints. We needed servations were carried out in visitor using the luminosity function of our sam- all of our targets to have high-resolution mode, which proved to be both efficient ple. This showed that we could recover HST imaging, which limited our choice to and accurate in terms of object acquisi- the true value of ƒSR for Abell 1689. candidates in the innermost regions of tion. Excellent seeing of 0.60 arcseconds Although we did not do a colour selec- the cluster. The 11-arcsecond proximity reduced the correlation between neigh- tion, our sample falls entirely on the Red constraint ruled out some targets in the bouring spaxels. Sequence (RS). However, the number most crowded regions, forcing us to re- of galaxies that do not fall on the RS in select from a reserve list. This left us with Our sample is biased towards bright Abell 1689 is extremely low, and we 29 galaxies inside the HST field of view ob jects, which in turn could bias us to found the bias to be minimal. and one outside (galaxy 20). Each plate detect more SRs.
Recommended publications
  • Atomic Gas Far Away from the Virgo Cluster Core Galaxy NGC 4388
    Astronomy & Astrophysics manuscript no. H4396 November 5, 2018 (DOI: will be inserted by hand later) Atomic gas far away from the Virgo cluster core galaxy NGC 4388 A possible link to isolated star formation in the Virgo cluster? B. Vollmer, W. Huchtmeier Max-Planck-Institut f¨ur Radioastronomie, Auf dem H¨ugel 69, D-53121 Bonn, Germany Received / Accepted 7 ′ Abstract. We have discovered 6 10 M⊙ of atomic gas at a projected distance greater than 4 (20 kpc) from the highly inclined Virgo spiral galaxy NGC 4388. This gas is most probably connected to the very extended Hα plume detected by Yoshida et al. (2002). Its mass makes a nuclear outflow and its radial velocity a minor merger as the origin of the atomic and ionized gas very unlikely. A numerical ram pressure simulation can account for the observed Hi spectrum and the morphology of the Hα plume. An additional outflow mechanism is still needed to reproduce the velocity field of the inner Hα plume. The extraplanar compact Hii region recently found by Gerhard et al. (2002) can be explained as a stripped gas cloud that collapsed and decoupled from the ram pressure wind due to its increased surface density. The star-forming cloud is now falling back onto the galaxy. Key words. Galaxies: individual: NGC 4388 – Galaxies: interactions – Galaxies: ISM – Galaxies: kinematics and dynamics 1. Introduction stripping. Based on their data they favoured a combina- tion of (iii) and (iv). Yoshida et al. (2002) on the other The Virgo cluster spiral galaxy NGC 4388 is located at hand favoured scenario (i) and (iv).
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Downloading Rectification Matrices the first Step Will Be Downloading the Correct Rectification Matrix for Your Data Off of the OSIRIS Website
    UNDERGRADUATE HONORS THESIS ADAPTIVE-OPTICS INTEGRAL-FIELD SPECTROSCOPY OF NGC 4388 Defended October 28, 2016 Skylar Shaver Thesis Advisor: Dr. Julie Comerford, Astronomy Honor Council Representative: Dr. Erica Ellingson, Astronomy Committee Members: Dr. Francisco Müller-Sánchez, Astrophysics Petger Schaberg, Writing Abstract Nature’s most powerful objects are well-fed supermassive black holes at the centers of galaxies known as active galactic nuclei (AGN). Weighing up to billions of times the mass of our sun, they are the most luminous sources in the Universe. The discovery of a number of black hole-galaxy relations has shown that the growth of supermassive black holes is closely related to the evolution of galaxies. This evidence has opened a new debate in which the fundamental questions concern the interactions between the central black hole and the interstellar medium within the host galaxy and can be addressed by studying two crucial processes: feeding and feedback. Due to the nature of AGN, high spatial resolution observations are needed to study their properties in detail. We have acquired near infrared Keck/OSIRIS adaptive optics-assisted integral field spectroscopy data on 40 nearby AGN as part of a large program aimed at studying the relevant physical processes associated with AGN phenomenon. This program is called the Keck/OSIRIS nearby AGN survey (KONA). We present here the analysis of the spatial distribution and two-dimensional kinematics of the molecular and ionized gas in NGC 4388. This nearly edge-on galaxy harbors an active nucleus and exhibits signs of the feeding and feedback processes. NGC 4388 is located in the heart of the Virgo cluster and thus is subject to possible interactions with the intra-cluster medium and other galaxies.
    [Show full text]
  • Spring Constellations Leo
    Night Sky 101: Spring Constellations Leo Leo, the lion, is very recognizable by the head of the lion, which looks like a backwards question mark, and is commonly known as “the sickle.” Regulus, Leo’s brightest star, is also easy to pick out in most lights. The constellation is best seen in April and May, but rises after the Spring Equinox in March. Within the constellation, there are several spiral galaxies: M65, M66, M95, and M96. It is possible to fit M65 and M66 into the same view on a low powered telescope. In Greek mythology, Leo was the Nemean lion, who was completely impervious to bronze, steel and any kind of metal. As part of his 12 labors, Hercules was charged to fight the lion and killed him Photo Credit: Starry Night by strangling him. Hercules took the lion’s pelt as a prize and Leo, the lion, was placed in the stars to commemorate their fight. Virgo Virgo is best seen in the late spring and early summer, usually May to June. The bright star Arcturus, in the constellation Boötes, lines up with the Virgo’s brightest star Spica, which makes it easy to find. Within the constellation is the Virgo Galaxy Cluster, which is a conglomerate of thousands of unnamed galaxies. These galaxies are about 65 million light years away, and usually only appear as smudges in a telescope. Virgo, the maiden, is also known as Persephone, or the daughter of the Demeter. Hades, god of the Un- derworld, fell in love with Virgo and took her to the Underworld.
    [Show full text]
  • Inverse and Joint Variation 9.1.1
    Inverse and joint variation 9.1.1 One of the first things that scientists do with data is to graph it in various ways to see if a pattern emerges. If two variables are selected that lead to a smooth curve, the variables can be shown to lead to ‘correlated’ behavior that can either represent a direct, or inverse, variation. The specific shape of the curve indicates the exponent. The example to the left shows that for Cepheid variable stars, the Log of the star’s luminosity, L, is proportional to its period because the slope of the curve is ‘fit’ by a linear equation. Problem 1 – The radius of a black hole, R, is proportional to its mass, M, and inversely proportional to the square of the speed of light, c. If the constant of proportionality is twice Newton’s constant of gravity, G, what is the mathematical equation for the black hole radius? Problem 2 – The luminosity, L, of a star is proportional to the square of its radius, R, and proportional to its surface temperature, T, to the fourth power. What is the equation for L if the proportionality constant is C? Problem 3 – The thickness of a planetary atmosphere, H, is proportional to temperature, T, and inversely proportional to the product of its molecular mass, m, and the local acceleration of gravity, g. What is the equation for H if the constant of proportionality is k? Problem 4 – The temperature of a planet, T, to the fourth power is proportional to the luminosity, L, of the star that it orbits, and inversely proportional to the square of its distance from its star, D.
    [Show full text]
  • 18. Mapping the Universe the Local Group: Over 30 Galaxies
    Astronomy 242: Foundations of Astrophysics II 18. Mapping the Universe The Local Group: Over 30 Galaxies two large spirals with satellites one smaller spiral many dwarf elliptical and irregular galaxies Local Group The M81 Group M81 and M82 deep field The M81 Group in HI Tidal dwarfs in the M81 group The M81 Group M81 and M82 deep field The Virgo Cluster:: Over 1000 Galaxies! Distance: ~16 Mpc three massive elliptical galaxies many MW-sized galaxies The Virgo Cluster Abell 1689 Distance: ~754 Mpc Abell 1689: A Galaxy Cluster Makes Its Mark Abell 1689 in X-rays 7 keV Fe line (redshifted) X-ray Spectrum Abell 1689: A Galaxy Cluster Makes Its Mark Abell 1689 Central Galaxy Abell 1689: A Galaxy Cluster Makes Its Mark Abell 1689 Lensed galaxy in background Abell 1689: A Galaxy Cluster Makes Its Mark The Super-Galactic Plane Cosmography of the Local Universe Local Cosmography Pavo-Indus Super-Galactic Plane Perseus-Pisces Virgo Cluster 0 4000 8000 vr (km/s) Fornax Cluster Cosmography of the Local Universe The 2MASS Redshift Survey RESEARCH LETTER Extended Data Figure 3 | One of three orthogonal views that illustrate SGY 5 0 showing the region obscured by the plane of the Milky Way. As in the limits of the Laniakea supercluster. This SGX–SGY view at SGZ 5 0 Fig 2 in the main text, the orange contour encloses the inflowing streams, extends the scene shown in Fig. 2 with the addition of dark blue flow lines away hence, defines the limits of the LaniakeaThe Laniakea Supercluster supercluster of Galaxies containing the mass of from the Laniakea local basin of attraction, and also includes a dark swath at 1017 Suns and 100,000 large galaxies.
    [Show full text]
  • Messier 58, 59, 60, 89, and 90, Galaxies in Virgo
    Messier 58, 59, 60, 89, and 90, Galaxies in Virgo These are five of the many galaxies of the Coma-Virgo galaxy cluster, a prime hunting ground for galaxy observers every spring. Dozens of galaxies in this cluster are visible in medium to large amateur telescopes. This star hop includes elliptical galaxies M59, M60, and M89, and spiral galaxies M58 and M90. These galaxies are roughly 50 to 60 million light years away. All of them are around magnitude 10, and should be visible in even a small telescope. Start by finding the Spring Triangle, which consists of three widely- separated first magnitude stars-- Arcturus, Spica, and Regulus. The Spring Triangle is high in the southeast sky in early spring, and in the southwest sky by mid-Summer. (To get oriented, you can use the handle of the Big Dipper and "follow the arc to Arcturus"). For this star hop, look in the middle of the Spring Triangle for Denebola, the star representing the back end of Leo, the lion, and Vindemiatrix, a magnitude 2.8 star in Virgo. The galaxies of the Virgo cluster are found in the area between these two stars. From Vindemiatrix, look 5 degrees west and slightly south to find ρ (rho) Virginis, a magnitude 4.8 star that is easy to identify because it is paired with a slightly dimmer star just to its north. Center ρ in the telescope with a low-power eyepiece, and then just move 1.4 degrees north to arrive at the oval shape of M59. Continuing with a low-power eyepiece and using the chart below, you can take hops of less than 1 degree to find M60 to the east of M59, and M58, M89, and M90 to the west and north.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect This Document
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) N79-28092 (NASA-T"1-80294) A SEARCH FOR X-RAY FM13STON FROM RICH CLUSTF.'+S, F.XTFNt1Et'• F1ALOS AWIND CLUSTERS, AND SUPERCLUSTERS (NASA) 37 p rinclas HC AOl/ N F A01 CSCL 038 G3/90 29952 Technical Memorandum 80294 A Search for X- Ray Emission from Riche Clusters, Extended Halos around Clusters, and Superclusters S. H. Pravdo, E. A. Boldt, F. E. Marshall, J. Mc Kee, R. F. Mushotzky, B. W. Smith, and G. Reichert JUNE 1979 A Naticnal Aeronautics and Snn,^ Administration "` Goddard Space Flight Center Greenbelt, Maryland 20771 A SEARCH FOR X-RAY EMISSION FROM RICH CLUSTERS, EXTENDED HALOS AROUND CLUSTERS, ANU SUPERCLUSTERS • S.H Pravdo E A Boldt, F.E Marshall J. McKee R.F Mushotzky , B.W.
    [Show full text]
  • Virgo the Virgin
    Virgo the Virgin Virgo is one of the constellations of the zodiac, the group tion Virgo itself. There is also the connection here with of 12 constellations that lies on the ecliptic plane defined “The Scales of Justice” and the sign Libra which lies next by the planets orbital orientation around the Sun. Virgo is to Virgo in the Zodiac. The study of astronomy had a one of the original 48 constellations charted by Ptolemy. practical “time keeping” aspect in the cultures of ancient It is the largest constellation of the Zodiac and the sec- history and as the stars of Virgo appeared before sunrise ond - largest constellation after Hydra. Virgo is bordered by late in the northern summer, many cultures linked this the constellations of Bootes, Coma Berenices, Leo, Crater, asterism with crops, harvest and fecundity. Corvus, Hydra, Libra and Serpens Caput. The constella- tion of Virgo is highly populated with galaxies and there Virgo is usually depicted with angel - like wings, with an are several galaxy clusters located within its boundaries, ear of wheat in her left hand, marked by the bright star each of which is home to hundreds or even thousands of Spica, which is Latin for “ear of grain”, and a tall blade of galaxies. The accepted abbreviation when enumerating grass, or a palm frond, in her right hand. Spica will be objects within the constellation is Vir, the genitive form is important for us in navigating Virgo in the modern night Virginis and meteor showers that appear to originate from sky. Spica was most likely the star that helped the Greek Virgo are called Virginids.
    [Show full text]
  • Stars and Galaxies
    Stars and Galaxies STUDENT PAGE Se e i n g i n to t h e Pa S t A galaxy is a gravitationally bound system of stars, gas, and dust. Gal- We can’t travel into the past, but we axies range in diameter from a few thousand to a few hundred thou- can get a glimpse of it. Every sand light-years. Each galaxy contains billions (10 9) or trillions (1012) time we look at the Moon, for of stars. In this activity, you will apply concepts of scale to grasp the example, we see it as it was a distances between stars and galaxies. You will use this understanding little more than a second ago. to elaborate on the question, Do galaxies collide? That’s because sunlight reflected from the Moon’s surface takes a little more EX P LORE than a second to reach Earth. We see On a clear, dark night, you can see hundreds of bright stars. The next table the Sun as it looked about eight minutes shows some of the brightest stars with their diameters and distances from ago, and the other stars as they were a the Sun. Use a calculator to determine the scaled distance to each star few years to a few centuries ago. (how many times you could fit the star between itself and the Sun). Hint: And then there’s M31, the Androm- you first need to convert light-years and solar diameters into meters. One eda galaxy — the most distant object light-year equals 9.46 x 1015 meters, and the Sun’s diameter is 1.4 x 109 that’s readily visible to human eyes.
    [Show full text]
  • 'Virgo' from 'Urania's Mirror Or, a View of the Heavens' (1824)
    Virgo 'Virgo' from 'Urania's Mirror or, a view of the Heavens' (1824) More exclusive content at InteractiveStars.com Your Personal Daily Horoscope - based on your exact date of birth Real Time, Personal Compatibility Horoscopes Soulmate Reports, Astrology Charts and much more click here to visit our website Contents Cover The Myths and Legends of Virgo The Stars The Sun in Astrology Mercury, Ruler of Virgo The Flowers of Virgo Copyright Information The Myths and Legends of Virgo The Great Goddess of the Harvest The winged Virgin, holding the palm branch and the Ear of Wheat which marks her brightest star, was worshipped as the great goddess of the harvest throughout the ancient world. The earth's bounty - flowers, fruits and fields of grain - were seen as her Beloved, whom she mourned at harvest time, when he was cut down in his prime. Having spent the winter in the underworld, he was reborn each spring and reunited with her. The origins of the cult of the Great Goddess, who was both virgin and mother, are prehistoric, but since the dawn of recorded history she has been associated with the constellation Virgo, through which the sun passes around harvest-time. Queen of the Stars Virgo is also the ancient Iraqi goddess Ishtar, Queen of the Stars, the lover of the corn god Tammuz, whose death she mourns every autumn, when he is cut down in his prime. Winter reigns during her journey to the underworld to bring him back, after which he reappears as the new, green corn each spring. Venus and Adonis The stories of Venus and Adonis, of Isis and Osiris, and of Cybele, the early Asiatic goddess in her turreted crown who loved Attis, are all variations on the theme.
    [Show full text]
  • Reconstructing the Projected Gravitational Potential of Abell 1689 from X-Ray Measurements Céline Tchernin1, Charles L
    A&A 574, A122 (2015) Astronomy DOI: 10.1051/0004-6361/201323242 & c ESO 2015 Astrophysics Reconstructing the projected gravitational potential of Abell 1689 from X-ray measurements Céline Tchernin1, Charles L. Majer2,3,SvenMeyer2, Eleonora Sarli2, Dominique Eckert1, and Matthias Bartelmann2 1 Astronomical Observatory of the University of Geneva, ch. d’Ecogia 16, 1290 Versoix, Switzerland e-mail: [email protected] 2 Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Philosophenweg 12, 69120 Heidelberg, Germany 3 Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany Received 12 December 2013 / Accepted 22 December 2014 ABSTRACT Context. Galaxy clusters can be used as cosmological probes, but to this end, they need to be thoroughly understood. Combining all cluster observables in a consistent way will help us to understand their global properties and their internal structure. Aims. We provide proof of the concept that the projected gravitational potential of galaxy clusters can directly be reconstructed from X-ray observations. We also show that this joint analysis can be used to locally test the validity of the equilibrium assumptions in galaxy clusters. Methods. We used a newly developed reconstruction method, based on Richardson-Lucy deprojection, that allows reconstructing projected gravitational potentials of galaxy clusters directly from X-ray observations. We applied this algorithm to the well-studied cluster Abell 1689 and compared the gravitational potential reconstructed from X-ray observables to the potential obtained from gravitational lensing measurements. We also compared the X-ray deprojected profiles obtained by the Richardson-Lucy deprojection algorithm with the findings from the more conventional onion-peeling technique.
    [Show full text]