Plugged in the End of the Oil Age
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Slices of City Life Car P Arks, the Bea Ting Hear Ts of The
SLICES OF CITY LIFE INDIGO Group Sustainable Development 2020 CAR PARKS, THE BEATING HEARTS OF THE NEIGHBOURHOOD SHARING THE CITY SHARING THE CITY 01 CONTENTS SHARING THE CITY OUR VISION OF CSR How can an urban mobility company play a key role in building the city of the future? INDIGO Group Serge Clémente: Since its inception, our Group has worked with cities to make them more dynamic, more sustainable and above all more Sharing the city 01 pleasant to live in for all their residents. For us and for our partners the city Where the city’s on the move 03 authorities, it is about how we can improve the way we share every aspect Meeting four challenges 04 of the city. Of course, it starts with rethinking the way public spaces are ABOUT US shared between pedestrians, cars and other modes of transport, both Approaching the future with serenity 06 private and public. But it is also about creating economically prosperous Serge Clémente, PRESIDENT OF INDIGO GROUP Our values 08 cities without compromising the environment. About cities which, on the contrary, open up avenues for virtuous development. Lastly, it is about creating cities where everyone – the young, the elderly, families, workers, etc. – instinctively feel at home. Stepping up to the plate A responsible approach 12 Every gesture counts 14 All the new ways to get around 16 “BY ALLOWING ALL CITIZENS TO GET TO WHEREVER THEY NEED TO BE, CAR PARKS ACTIVELY CONTRIBUTE TO THE ENVIRONMENT THE VITALITY OF CITY CENTRES. ” Harmonious lines Bringing city-centres to life 20 Expanding our horizons 22 Do cars still have a place in this ideal city? The future underground 24 S. -
Electric Vehicle Pre-Infrastructure Planning a Discussion of Social, Economic, and Technological Readiness of Prince Edward Island
University of Prince Edward Island Electric Vehicle Pre-Infrastructure Planning A Discussion of Social, Economic, and Technological Readiness of Prince Edward Island Georgina Vardy 10/22/2012 A localized study, focused on Prince Edward Island, Canada, compiled to assist with determining social, economic and technological readiness for electric vehicles and the related infrastructure. The study used both a Christensen based disruptive technology framework approach and traditional marketing techniques to determine social and economic readiness. Residents showed an interest and aptitude for the social changes required however the financial affordability of the electric vehicles for residents was limited without nationally available, but locally deficient, incentives. A technology scan determined that electric vehicle battery chemical content and design are determining factors in effectively satisfying social needs and acceptance. The next stage includes localized marketing development for this unique location, vehicles sales and infrastructure. PERMISSION TO USE SIGNATURE PROJECT REPORT Title of Signature Project: Electric Vehicle Pre-Infrastructure Planning: A Discussion of Social, Economic, and Technological Readiness of Prince Edward Island Name of Author: Georgina Vardy Department: School of Business Degree: Master of Business Administration Year: 2012 Name of Supervisor(s): Tim Carroll In presenting this signature project report in partial fulfilment of the requirements for a Master of Business Administration degree from the University of Prince Edward Island, the author has agreed that the Robertson Library, University of Prince Edward Island, may make this signature project freely available for inspection and gives permission to add an electronic version of the signature project to the Digital Repository at the University of Prince Edward Island. -
Jersey Energy Trends 2018 Report
Energy Trends 2018 Statistics Jersey: www.gov.je/statistics Overview This report examines supply and use of energy in Jersey through the importation, distribution and consumption of fuels such as petroleum products and electricity. The focus of the report is on energy supply and use in 2018. Figures are also presented for calendar years 2014 to 2017. Longer term trends, going back to 1991, are shown for road fuel consumption and for electricity importation and generation. The energy data presented in this report provides the basis for calculating carbon emissions for Jersey. Through the UK, Jersey is a signatory to the Kyoto Protocol; the document “Pathway 2050: An Energy Plan for Jersey”11outlines how the Island intends to reduce its carbon emissions in line with the commitments of the UK and other European nations. Jersey’s energy data is submitted annually to the compilers of the UK’s national greenhouse gas inventory, Aether, who independently verify and validate the data using internationally agreed methodologies. The resultant emissions calculated for Jersey are published by Aether2 and submitted to the international inventories as part of the UK’s national inventory. Summary for 2018 Supply • almost all of Jersey’s energy supply was imported; about 2% was produced on-Island as electricity generated by the Energy from Waste Facility • petroleum products accounted for almost two-thirds (63%) of Jersey’s energy supply; electricity (imported and on-Island generated) accounted for the remainder (37%) • Jersey’s total primary energy -
Comment 1 for ZEV 2008 (Zev2008) - 45 Day
Comment 1 for ZEV 2008 (zev2008) - 45 Day. First Name: Jim Last Name: Stack Email Address: [email protected] Affiliation: Subject: ZEV vehicles Comment: The only true ZEV vehicles are pure electric that chanrge on renewables Today 96% of the hydrogen is made from fossil fuels. This can be improved on but will take a long time. Today we already have very good Electric Vehicles liek the RAV4 with NiMH batteries that have lasted over 100,000 miles. Too bad Toyota stopped making it. We also have the Tesla and Ebox. Please do what is right. Jim Attachment: Original File Name: Date and Time Comment Was Submitted: 2008-02-16 11:19:59 No Duplicates. Comment 2 for ZEV 2008 (zev2008) - 45 Day. First Name: Star Last Name: Irvine Email Address: [email protected] Affiliation: NEV Owner Subject: MSV in ZEV regulations Comment: I as a NEV owner (use my OKA NEV ZEV about 3,000 miles annually) would like to see MSV (Medium Speed Vehicles) included in ZEV mandate so they can be available in California. I own two other vehicles FORD FOCUS and FORD Crown Vic. I my OKA NEV could go 35 MPH I would drive it at least twice as much as I currently do, and I would feel much safer doing so. 25 MPH top speed for NEV seriously limits its use and practicality for every day commuting. Attachment: Original File Name: Date and Time Comment Was Submitted: 2008-02-19 23:07:01 No Duplicates. Comment 3 for ZEV 2008 (zev2008) - 45 Day. First Name: Miro Last Name: Kefurt Email Address: [email protected] Affiliation: OKA AUTO USA Subject: MSV definition and inclusion in ZEV 2008 Comment: We believe that it is important that the ZEV regulations should be more specific in definition of "CITY" ZEV as to its capabilities and equipment. -
System Dynamics Simulation of Income Distribution and Electric Vehicle Diffusion for Electricity Planning in South Africa by Nalini Sooknanan Pillay
System Dynamics Simulation of Income Distribution and Electric Vehicle Diffusion for 25 JulyElectricity 2016 Planning in South Africa By Nalini Sooknanan Pillay Dissertation presented for the degree of Doctor of Philosophy in the Department of Industrial Engineering at Stellenbosch University Supervisor: Prof AC Brent Co-supervisor: Prof JK Musango Co-supervisor: Prof SS Grobbelaar December 2018 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated); that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights; and that I have not previously, in its entirety or in part, submitted it for obtaining any qualification. Date: December 2018 Copyright © 2018 Stellenbosch University All rights reserved 2 Stellenbosch University https://scholar.sun.ac.za Abstract The electricity generation industry has developed a symbiotic interdependence with the social, environmental, economic and political ecologies in the country, resulting in divergent complexities, which require non-linear model-based planning methodologies. Some of the determinants influencing the power industry include technologies, such as battery electric vehicles (BEVs), which have gained prominence as a possible option to support South Africa’s climate change commitments. This study used an adapted system dynamics modelling process to determine the provincial affordability of BEVs in South Africa so that amended regional forecasts of BEVs could be established to plan for charging infrastructure, environmental impacts in the energy and transport sectors, as well as changes in electricity consumption. -
Idaho Power Plan, Nov 1 2019
LISA D. NORDSTROM Lead Counsel [email protected] November 1, 2019 Public Utility Commission of Oregon Filing Center 201 High Street SE, Suite 100 P.O. Box 1088 Salem, Oregon 97301 RE: UM ___ – Idaho Power Company’s Application for Transportation Electrification Plan Attention Filing Center: Pursuant to OAR 860-087-0020, Idaho Power Company (“Idaho Power” or “Company”) submits the enclosed Transportation Electrification Plan (“TE Plan”) for acceptance by the Public Utility Commission of Oregon (“Commission”). Idaho Power’s TE Plan contains the Company’s long-term strategy to accelerate TE in its Oregon service area. Given the current state of the TE market in Idaho Power’s Oregon service area, the Company’s TE Plan is largely focused on improving the visibility and awareness of electric vehicles (“EV”). Through education and awareness, Idaho Power aims to accelerate TE by contributing to increased adoption of EVs, and access to electricity as a form of transportation fuel. Idaho Power respectfully requests that the Commission issue an order finding that the Company’s TE Plan meets the requirements of OAR 860-087-0020. The Company also requests that the Commission waive (per OAR 860-087-0001) OAR 860-087-0020(2)(d), which requires Idaho Power to present its TE Plan at a public meeting, if the Commission finds that presentation of the Company’s modest TE Plan, reflecting the limited EV penetration in its Oregon service area, would not materially benefit the Commission. It is respectfully requested that all formal data requests to the Company regarding this filing be addressed to the following: By email (preferred): [email protected] By regular mail: Lisa Nordstrom Lead Counsel Idaho Power Company 1221 W. -
Why Electromobility and What Is It?
2 WHY ELECTROMOBILITY AND WHAT IS IT? Anders Grauers Department of Signals and Systems, Chalmers University of Technology* Steven Sarasini Department of Energy and Environment, Chalmers University of Technology** Magnus Karlström Chalmers Industriteknik * Automatic control research group ** Division of Environmental Systems Analysis Chapter reviewer: Björn Sandén, Environmental Systems Analysis, Energy and Environment, Chalmers In this chapter we examine the notion of electromobility and aim to provide a working definition of the term that underpins the analyses presented in the rest of this e-book. We also describe electromobility in technological terms by presenting various technological configurations of electric vehicles, charging infrastructure and energy supply. We then proceed to examine why electromobility is currently supported as a favourable means to transform road transport by discussing drivers and barriers of change in the automotive industry. Whilst electromobility repre- sents a significant technical challenge, it also requires complex social changes. By arguing from different perspectives we hope to illustrate that electromobility is best understood by considering a range of systemic perspectives found in this and later chapters of this e-book. WHAT IS ELECTROMOBILITY? In this e-book we define electromobility as a road transport system based on vehicles that are propelled by electricity. Some road vehicles are equipped with technologies that make them capable of producing their own electricity (e.g. hybrid electric vehicles). Others utilise energy supplied by a source of electricity outside the vehicle – usually the electric grid. This definition works well for battery electric vehicles as well as for vehicles that do not store electrical energy such as trolley busses. -
The California Greenhouse Gas Initiative and Its Implications to the Automotive Industry
The California Greenhouse Gas Initiative and Its Implications to the Automotive Industry June, 2005 Prepared for The Center for Transportation Research Argonne National Laboratory and the United States Department of Energy by the Center for Automotive Research Ann Arbor, MI 1 Acknowledgements As with any project, this report is the result of many people contributing in many ways. The authors of this report would like to thank Karen Esper and Diana Douglass, who contributed greatly by creating and formatting the document. Their expertise and patience were critical to the project’s success. Chris Gulis and Emilio Brahmst spent many long hours researching, documenting and detailing powertrain technologies and manufacturing processes. Dr. Richard Gerth created, applied, and wrote analysis for the single and multiple Logit statistical models used for forecasting. Dr. Gerth also served as an advisor for the regression modeling, and overall statistical analysis. Jillian Lindsay Gauthier contributed by assisting with the statistical modeling and overall document review. Chris Powers also added document review support. Finally, we would like to thank those in the automotive industry that took time to guide the authors. This topic presents many challenges, not the least of which being the political risks involved in participating in any discussion. The arena of advanced powertrain technology—is a highly controversial and emotional issue. Several industry experts were willing to rise above the fray and offer their time and highly knowledgeable insight into the many challenges of advanced powertrain technology. For this, CAR is greatly appreciative. Brett C. Smith, Assistant Director, Manufacturing Engineering and Technology Raymond T. Miller, Research Assistant 2 Executive Summary Introduction CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. -
(19) United States (12) Patent Application Publication (10) Pub
US 20060137922A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0137922 A1 Ketcham (43) Pub. Date: Jun. 29, 2006 (54) STEAM DRIVEN ROAD VEHICLE (52) US. Cl. .......................................................... .. ISO/65.2 (76) Inventor: John C. Ketcham, Elon, NC (US) (57) ABSTRACT Correspondence Address: A steam driven road vehicle having a ?rebox, a boiler, a CHARLES Y. LACKEY drive mechanism operated by steam from the boiler, a Water ATTORNEY AT LAW supply supplying Water to the boiler, and a drive connection P.O. BOX 5871 connected between the drive mechanism and an axle of the WINSTON-SALEM, NC 27113-5871 (US) vehicle. A fuel bin is supported by the vehicle frame holds a supply of fuel to be fed to the ?rebox. A poWer driven (21) Appl' NO" 11/021,196 conveyor conveys fuel from the fuel bin to the ?rebox. An (22) Filed: Dec_ 24, 2004 electrical system is made up of a plug-in element Which connects With an electric source, and a preheating element Publication Classi?cation on the boiler for producing preheat in the boiler. A heat control device controls the temperature of the output of the (51) Int, Cl, preheating element, and a time control device is arranged to 360K 6/00 (200601) energize the preheating element prior to driving the vehicle. A mmocous ‘ B WATER mm 1 c (XJNDENSBR I D EwcmcAL REGENERATION Patent Application Publication Jun. 29, 2006 Sheet 1 0f 2 US 2006/0137922 A1 FIGURE 1 A HEATING 0011s I 1: WATER mm 2 c CONDENSER I D ELECTRICAL REGENERATION Patent Application Publication Jun. -
Year in Review 2015 Facts & Figures Opel Mokka X
YEAR IN REVIEW 2015 FACTS & FIGURES OPEL MOKKA X More information about Opel: Weitere Informationen über Opel: opel.com opel.de For media: Für Journalisten: media.opel.com media.opel.de Social Media: https://www.facebook.com/Opel https://www.youtube.com/opel http://twitter.com/opel http://instagram.com/opelofficial https://plus.google.com/+Opel https://www.facebook.com/OpelDE https://www.youtube.com/opelde http://twitter.com/opelDE http://twitter.com/KT_Neumann/@ KT_Neumann http://www.opel-blog.com/ If you have any questions, please contact: Bei Fragen wenden Sie sich bitte an: Nico Schmidt +49 61 42 77 83 25 [email protected] Alexander Bazio +49 61 42 77 29 14 [email protected] Rainer Rohrbach +49 61 42 77 28 22 [email protected] This document was produced by Opel Corporate Communications, February 2016 Dieses Dokument wurde produziert von Opel Corporate Communications, Februar 2016 Layout | Gestaltung: www.designkultur-wiesbaden.de INDEX INHALT AT A GLANCE – 2015 5 ÜBERBLICK – 2015 5 CHAPTER I: COMPANY KAPITEL I: DAS UNTERNEHMEN Management Board 7 Geschäftsführung 7 Heritage 8 Geschichte 10 Innovations 12 Innovationen 15 Awards 17 Auszeichnungen 18 Opel Locations in Europe 20 Opel-Standorte in Europa 20 CHAPTER II: VEHICLES & TECHNOLOGIES KAPITEL II: FAHRZEUGE & TECHNOLOGIEN Vehicles 23 Fahrzeuge 23 Technologies 34 Technologien 34 CHAPTER III: PRODUCTION KAPITEL III: PRODUKTION Production by Country and Plant 36 Produktion nach Ländern und Werken 36 Vehicle Production by Model 37 Fahrzeugproduktion nach Modellen -
Ahydrogen Economy
AHYDROGEN ECONOMY • Will motorists someday fill up theirtanks with hydrogen? Many complex challenges must be overcome before a hydrogen·fueled future can become a reality. Using hydrogen to fuel cars may eventually slash oil consumption and carbon emissions, but it will take some time BY JOAN OGDEN Developing cleaner power sources els. Liquid fuels derived from woody for transportation is perhaps the tricki plants or synthesized from tar sands or est piece of the energy puzzle. The dif coal may play important roles. Over the ficulty sterns from two discouraging long term, however, the most feasible facts. First, the number of vehicles ways to power vehicles with high effi worldwide, now 750 million, is expect ciency and zero emissions are through ed to triple by 2050, thanks largely to connections to the electric grid or the use the expanding buying power of custom of hydrogen as a transportation fuel. ers in China, India and other rapid Iy de Unfortunately, the commercializa veloping countries. And second, 97 per tion of electric vehicles has been stymied OVERVIEW cent of transportation fuel currently by a daunting obstacle: even large ar i,; Hydrogen fuel·cell comes from crude oil. rays of batteries cannot store enough cars could become In the near term, improving fuel charge to keep cars running for distanc commercially feasi economy is the best way to slow the rise es comparable to gasoline engines. For ble ifauto makers succeed In develop in oil use and greenhouse gas emissions this reason, most auto companies have ingsafe, Inexpen from cars and trucks. But even if auto abandoned the technology. -
An Analysis of the Presidency of Jimmy Carter
An Analysis of the Presidency of Jimmy Carter Simona Škařupová Bachelor's thesis 2021 ABSTRAKT Tato bakalářská práce analyzuje působení Jimmyho Cartera v roli 39. prezidenta Spojených států od roku 1977 do roku 1981. Když na začátku 70. let vyšly najevo nelegální aktivity a nečestnost bývalého prezidenta Richarda Nixona, byl Jimmy Carter Američany vnímán jako správná volba. Ačkoliv si Prezident Ford vedl dobře, stal se obětí tzv. [pendulum] efektu, který je často spojován se střídáním dvou politických stran. Amerika vyžadovala změnu a tu, evangelík z Jihu a Washingtonský outsider, Jimmy Carter představoval. Neexistovalo však nic, co by Cartera ochránilo před bouřlivými událostmi z konce 70. let. Tato práce hodnotí úspěchy a neúspěchy Carterové prezidentury a zjišťuje, proč nebyl znovuzvolen. Ačkoli jeho prezidentura byla silně kritizována a do značné míry považována za neefektivní, Jimmy Carter by měl být respektován za to, že se vždy snažil ze špatné situace vytěžit maximum. Klíčová slova: 70. léta, Dohody z Camp Davidu, Gerald Ford, Iránská krize rukojmí, Jimmy Carter, Panamský průplav, [pendulum] efekt, prezident, Ronald Reagan, Spojené státy ABSTRACT This bachelor's thesis analyzes Jimmy Carter's role as the 39th president of the United States from 1977 to 1981. When the illegal activities and dishonesty of former President Richard Nixon became clear in the early 1970s, Jimmy Carter began to appeal to Americans as a virtuous alternative. President Ford did well enough, but he became a victim of the pendulum effect often associated with a two-party system. America desired a change, and Carter, an evangelical southerner and Washington outsider, was it. Nothing, however, could protect Carter from the turbulent events of the late-1970s, which undermined his presidency and led to him being the first consecutive one-term president.