The Remarkable Reproductive Diversity of Teleost Fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Article Evolutionary Dynamics of the OR Gene Repertoire in Teleost Fishes
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Article Evolutionary dynamics of the OR gene repertoire in teleost fishes: evidence of an association with changes in olfactory epithelium shape Maxime Policarpo1, Katherine E Bemis2, James C Tyler3, Cushla J Metcalfe4, Patrick Laurenti5, Jean-Christophe Sandoz1, Sylvie Rétaux6 and Didier Casane*,1,7 1 Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France. 2 NOAA National Systematics Laboratory, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, U.S.A. 3Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., 20560, U.S.A. 4 Independent Researcher, PO Box 21, Nambour QLD 4560, Australia. 5 Université de Paris, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France 6 Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91190, Gif-sur- Yvette, France. 7 Université de Paris, UFR Sciences du Vivant, F-75013 Paris, France. * Corresponding author: e-mail: [email protected]. !1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.434524; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Teleost fishes perceive their environment through a range of sensory modalities, among which olfaction often plays an important role. -
Full Text in Pdf Format
Vol. 1: 117–132, 2015 SEXUALITY AND EARLY DEVELOPMENT IN AQUATIC ORGANISMS Published online June 11 doi: 10.3354/sedao00012 Sex Early Dev Aquat Org OPENPEN ACCESSCCESS Sexual development and maturity scale for the angel shark Squatina squatina (Elasmobranchii: Squatinidae), with comments on the adequacy of general maturity scales Filip Osaer1,2,3,*, Krupskaya Narváez1,2,3, José G. Pajuelo2, José M. Lorenzo2 1ELASMOCAN, Asociación Canaria para la Investigación y Conservación de los Elasmobranquios, 35001 Las Palmas de Gran Canaria, Spain 2Departamento de Biología, Universidad de Las Palmas de Gran Canaria, Edificio de Ciencias Básicas, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain 3Fundación Colombiana para la Investigación y Conservación de Tiburones y Rayas, SQUALUS, Carrera 60A No 11−39, Cali, Colombia ABSTRACT: This paper contributes to the reproductive biology of the genus Squatina and aims to complement the criteria, uniformity and adaptable staging of sexual maturity scales for elasmo- branchs based on data from the angel shark S. squatina captured near the island of Gran Canaria (Canary Islands, Central-East Atlantic). Both sexes presented a paired reproductive tract with both sides active and asymmetric gonad development. Microscopic and macroscopic observations of the testes were consistent and indicated seasonality of spermatogenesis. The spermatocyst de - velopment pattern in mature individuals could not be assigned to any of the categories described in the literature. The ovaries−epigonal organ association was of the external type. Although all Squatinidae share a conservative morphology, they show differences across species in the func- tionality of the paired reproductive tract, seasonality of spermatogenesis, coiled spermatozoa and the presence of egg candles. -
Fish Feeding and Dynamics of Soft-Sediment Mollusc Populations in a Coral Reef Lagoon
MARINE ECOLOGY PROGRESS SERIES Published March 3 Mar. Ecol. Prog. Ser. Fish feeding and dynamics of soft-sediment mollusc populations in a coral reef lagoon G. P. Jones*, D. J. Ferrelle*,P. F. Sale*** School of Biological Sciences, University of Sydney, Sydney 2006, N.S.W., Australia ABSTRACT: Large coral reef fish were experimentally excluded from enclosed plots for 2 yr to examine their effect on the dynamics of soft sediment mollusc populations from areas in One Tree lagoon (Great Barrier Reef). Three teleost fish which feed on benthic molluscs. Lethrinus nebulosus, Diagramrna pictum and Pseudocaranx dentex, were common in the vicinity of the cages. Surveys of feeding scars in the sand indicated similar use of cage control and open control plots and effective exclusion by cages. The densities of 10 common species of prey were variable between locations and among times. Only 2 species exhibited an effect attributable to feeding by fish, and this was at one location only. The effect size was small relative to the spatial and temporal variation in numbers. The power of the test was sufficient to detect effects of fish on most species, had they occurred. A number of the molluscs exhibited annual cycles in abundance, with summer peaks due to an influx of juveniles but almost total loss of this cohort in winter. There was no evidence that predation altered the size-structure of these populations. While predation by fish is clearly intense, it does not have significant effects on the demo- graphy of these molluscs. The results cast doubt on the generality of the claim that predation is an important structuring agent in tropical communities. -
Reproductive Biology of the Bonnethead (Sphyrna Tiburo) from the Southeastern U.S
University of North Florida UNF Digital Commons UNF Graduate Theses and Dissertations Student Scholarship 2014 Reproductive Biology of the Bonnethead (Sphyrna tiburo) from the Southeastern U.S. Atlantic Coast Melissa I. Gonzalez De Acevedo University of North Florida, [email protected] Follow this and additional works at: https://digitalcommons.unf.edu/etd Part of the Biology Commons, and the Ecology and Evolutionary Biology Commons Suggested Citation Gonzalez De Acevedo, Melissa I., "Reproductive Biology of the Bonnethead (Sphyrna tiburo) from the Southeastern U.S. Atlantic Coast" (2014). UNF Graduate Theses and Dissertations. 534. https://digitalcommons.unf.edu/etd/534 This Master's Thesis is brought to you for free and open access by the Student Scholarship at UNF Digital Commons. It has been accepted for inclusion in UNF Graduate Theses and Dissertations by an authorized administrator of UNF Digital Commons. For more information, please contact Digital Projects. © 2014 All Rights Reserved REPRODUCTIVE BIOLOGY OF THE BONNETHEAD (SPHYRNA TIBURO) FROM THE SOUTHEASTERN U.S. ATLANTIC COAST by Melissa Gonzalez De Acevedo A thesis submitted to the Department of Biology in partial fulfillment of the requirements for the degree of Masters of Science in Biology UNIVERSITY OF NORTH FLORIDA COLLEGE OF ARTS AND SCIENCES December 2014 Unpublished work, © Melissa Gonzalez De Acevedo CERTIFICATE OF APPROVAL The thesis “Reproductive biology of the bonnethead (Sphyrna tiburo) from the southeastern U.S. Atlantic coast” submitted by Melissa Gonzalez De Acevedo Approved by the thesis committee: Date Dr. Jim Gelsleichter Committee Chair Dr. Carolyn Belcher Dr. Eric Johnson Accepted for the Department of Biology: Dr. Cliff Ross Assistant Chair Accepted for the College of Arts and Sciences: Dr. -
Transposable Elements and Teleost Migratory Behaviour
International Journal of Molecular Sciences Article Transposable Elements and Teleost Migratory Behaviour Elisa Carotti 1,†, Federica Carducci 1,†, Adriana Canapa 1, Marco Barucca 1,* , Samuele Greco 2 , Marco Gerdol 2 and Maria Assunta Biscotti 1 1 Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; [email protected] (E.C.); [email protected] (F.C.); [email protected] (A.C.); [email protected] (M.A.B.) 2 Department of Life Sciences, University of Trieste, Via L. Giorgieri, 5-34127 Trieste, Italy; [email protected] (S.G.); [email protected] (M.G.) * Correspondence: [email protected] † Equal contribution. Abstract: Transposable elements (TEs) represent a considerable fraction of eukaryotic genomes, thereby contributing to genome size, chromosomal rearrangements, and to the generation of new coding genes or regulatory elements. An increasing number of works have reported a link between the genomic abundance of TEs and the adaptation to specific environmental conditions. Diadromy represents a fascinating feature of fish, protagonists of migratory routes between marine and fresh- water for reproduction. In this work, we investigated the genomes of 24 fish species, including 15 teleosts with a migratory behaviour. The expected higher relative abundance of DNA transposons in ray-finned fish compared with the other fish groups was not confirmed by the analysis of the dataset considered. The relative contribution of different TE types in migratory ray-finned species did not show clear differences between oceanodromous and potamodromous fish. On the contrary, a remarkable relationship between migratory behaviour and the quantitative difference reported for short interspersed nuclear (retro)elements (SINEs) emerged from the comparison between anadro- mous and catadromous species, independently from their phylogenetic position. -
Reef-Associated Fishes Have More Maneuverable Body Shapes at a Macroevolutionary Scale
Coral Reefs https://doi.org/10.1007/s00338-020-01976-w REPORT Reef-associated fishes have more maneuverable body shapes at a macroevolutionary scale 1 1 2 2 Olivier Larouche • Bailey Benton • Katherine A. Corn • Sarah T. Friedman • 1 1 1 2 Dominique Gross • Mikayla Iwan • Brian Kessler • Christopher M. Martinez • 1 1 2 1 Sierra Rodriguez • Hannah Whelpley • Peter C. Wainwright • Samantha A. Price Received: 25 March 2020 / Accepted: 9 July 2020 Ó Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Marine habitats vary widely in structure, from with narrower and shallower caudal peduncles. Despite the incredibly complex coral reefs to simpler deep water and numerous evolutionary forces that may influence body open ocean habitats. Hydromechanical models of swim- shapes on a broad macroevolutionary scale, our results ming kinematics and microevolutionary studies suggest reveal differences in body shapes between reef-associated that these habitats select for different body shape charac- and non-reef species that are consistent with hydrome- teristics. Fishes living in simple habitats are predicted to chanical models of swimming kinematics as well as with experience selection for energy-efficient sustained swim- microevolutionary patterns. ming, which can be achieved by fusiform body shapes. In contrast, fishes living in complex habitats are predicted to Keywords Habitat structural complexity Á Fish body be under selection for maneuverability, which can be shapes Á Fish swimming Á Macroevolution Á Morphological enhanced by deep-bodied and laterally compressed forms. diversity To look for a signature of these processes at a broad macroevolutionary scale, we quantified the body shapes of 3322 species of marine teleostean fishes using a series of Introduction linear measurements. -
Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors
fishes Review Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility Benjamin J. Reading 1,2,*, Linnea K. Andersen 1, Yong-Woon Ryu 3, Yuji Mushirobira 4, Takashi Todo 4 and Naoshi Hiramatsu 4 1 Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA; [email protected] 2 Pamlico Aquaculture Field Laboratory, North Carolina State University, Aurora, NC 27806, USA 3 National Institute of Fisheries Science, Gijang, Busan 46083, Korea; [email protected] 4 Faculty of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan; [email protected] (Y.M.); todo@fish.hokudai.ac.jp (T.T.); naoshi@fish.hokudai.ac.jp (N.H.) * Correspondence: [email protected]; Tel.: +1-919-515-3830 Received: 28 August 2018; Accepted: 16 November 2018; Published: 21 November 2018 Abstract: Egg quality in fishes has been a topic of research in aquaculture and fisheries for decades as it represents an important life history trait and is critical for captive propagation and successful recruitment. A major factor influencing egg quality is proper yolk formation, as most fishes are oviparous and the developing offspring are entirely dependent on stored egg yolk for nutritional sustenance. These maternally derived nutrients consist of proteins, carbohydrates, lipids, vitamins, minerals, and ions that are transported from the liver to the ovary by lipoprotein particles including vitellogenins. The yolk composition may be influenced by broodstock diet, husbandry, and other intrinsic and extrinsic conditions. In addition, a number of other maternal factors that may influence egg quality also are stored in eggs, such as gene transcripts, that direct early embryonic development. -
Rhodopsin Gene Evolution in Early Teleost Fishes
RESEARCH ARTICLE Rhodopsin gene evolution in early teleost fishes 1 2 1 Jhen-Nien Chen , Sarah Samadi , Wei-Jen ChenID * 1 Institute of Oceanography, National Taiwan University, Taipei, Taiwan, 2 Institute de SysteÂmatique, E volution, Biodiversite (ISYEB), MuseÂum National d'Histoire Naturelle±CNRS, Sorbonne UniversiteÂ, EPHE, Paris, France * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Rhodopsin mediates an essential step in image capture and is tightly associated with visual adaptations of aquatic organisms, especially species that live in dim light environments (e.g., the deep sea). The rh1 gene encoding rhodopsin was formerly considered a single- copy gene in genomes of vertebrates, but increasing exceptional cases have been found in teleost fish species. The main objective of this study was to determine to what extent the OPEN ACCESS visual adaptation of teleosts might have been shaped by the duplication and loss of rh1 Citation: Chen J-N, Samadi S, Chen W-J (2018) genes. For that purpose, homologous rh1/rh1-like sequences in genomes of ray-finned Rhodopsin gene evolution in early teleost fishes. PLoS ONE 13(11): e0206918. https://doi.org/ fishes from a wide taxonomic range were explored using a PCR-based method, data mining 10.1371/journal.pone.0206918 of public genetic/genomic databases, and subsequent phylogenomic analyses of the Editor: Michael Schubert, Laboratoire de Biologie retrieved sequences. We show that a second copy of the fish-specific intron-less rh1 is pres- du DeÂveloppement de Villefranche-sur-Mer, ent in the genomes of most anguillids (Elopomorpha), Hiodon alosoides (Osteoglossomor- FRANCE pha), and several clupeocephalan lineages. -
Doctoral Thesis 2015 Multiscale Environmental
DOCTORAL THESIS 2015 MULTISCALE ENVIRONMENTAL - ICHTHYOPLANKTON ASSEMBLAGES RELATIONSHIPS IN THE BALEARIC SEA Itziar Álvarez Ellacuría DOCTORAL THESIS 2015 Doctoral Programme of Marine Science MULTISCALE ENVIRONMENTAL - ICHTHYOPLANKTON ASSEMBLAGES RELATIONSHIPS IN THE BALEARIC SEA Itziar Álvarez Ellacuría Director: Ignacio Alberto Catalán Alemany Director: Francisco Alemany Llodrà Tutor: Gabriel Moyà Niell Doctor by the Universitat de les Illes Balears LIST OF MANUSCRIPTS Published Álvarez I, Catalán IA, Jordi A, Palmer M, Sabatés A, Basterretxea G (2012) Drivers of larval fish assemblage shift during the spring-summer transition in the coastal Mediterranean. Estuarine, Coastal and Shelf Science 97: 127-135 Basterretxea G, Catalán IA, Jordi A, Álvarez I, Palmer M, Sabatés A (2013) Dynamic regulation of larval fish self-recruitment in a marine protected area. Fisheries Oceanography 22: 477-495 Rodríguez JM, Álvarez I, Lopez-Jurado JL, Garcia A, Balbin R, Álvarez-Berastegui D, Torres AP, Alemany F (2013) Environmental forcing and the larval fish community associated to the Atlantic bluefin tuna spawning habitat of the Balearic region (Western Mediterranean), in early summer 2005. Deep-Sea Research Part I: Oceanographic Research Papers 77: 11-22 Under revision Álvarez I, Catalán IA, Jordi A, Alemany F, Basterretxea G. Interaction between spawning habitat and coastally steered circulation regulate larval fish retention in a temperate Bay. Under second review in Estuarine Coastal and Shelf Science Álvarez I, Rodríguez JM, Catalán IA, Balbín -
Ecomorphology of Feeding in Coral Reef Fishes
Ecomorphology of Feeding in Coral Reef Fishes Peter C. Wainwright David R. Bellwood Center for Population Biology Centre for Coral Reef Biodiversity University of California at Davis School of Marine Biology and Aquaculture Davis, California 95616 James Cook University Townsville, Queensland 4811, Australia I. Introduction fish biology. We have attempted to identify generalities, II. How Does Morphology Influence Ecology? the major patterns that seem to cut across phylogenetic III. The Biomechanical Basis of Feeding Performance and geographic boundaries. We begin by constructing IV. Ecological Consequences of Functional a rationale for how functional morphology can be used Morphology to enhance our insight into some long-standing eco- V. Prospectus logical questions. We then review the fundamental me- chanical issues associated with feeding in fishes, and the basic design features of the head that are involved in prey capture and prey processing. This sets the stage I. Introduction for a discussion of how the mechanical properties of fish feeding systems have been modified during reef fish di- nce an observer gets past the stunning coloration, versification. With this background, we consider some O surely no feature inspires wonder in coral reef of the major conclusions that have been drawn from fishes so much as their morphological diversity. From studies of reef fish feeding ecomorphology. Because of large-mouthed groupers, to beaked parrotfish, barbeled space constraints we discuss only briefly the role of goatfish, long-snouted trumpet fish, snaggle-toothed sensory modalities--vision, olfaction, electroreception, tusk fish, tube-mouthed planktivores, and fat-lipped and hearingmbut these are also significant and diverse sweet lips, coral reef fishes display a dazzling array elements of the feeding arsenal of coral reef fishes and of feeding structures. -
Discovery of a New Mode of Oviparous Reproduction in Sharks and Its Evolutionary Implications Kazuhiro Nakaya1, William T
www.nature.com/scientificreports OPEN Discovery of a new mode of oviparous reproduction in sharks and its evolutionary implications Kazuhiro Nakaya1, William T. White2 & Hsuan‑Ching Ho3,4* Two modes of oviparity are known in cartilaginous fshes, (1) single oviparity where one egg case is retained in an oviduct for a short period and then deposited, quickly followed by another egg case, and (2) multiple oviparity where multiple egg cases are retained in an oviduct for a substantial period and deposited later when the embryo has developed to a large size in each case. Sarawak swellshark Cephaloscyllium sarawakensis of the family Scyliorhinidae from the South China Sea performs a new mode of oviparity, which is named “sustained single oviparity”, characterized by a lengthy retention of a single egg case in an oviduct until the embryo attains a sizable length. The resulting fecundity of the Sarawak swellshark within a season is quite low, but this disadvantage is balanced by smaller body, larger neonates and quicker maturation. The Sarawak swellshark is further uniquely characterized by having glassy transparent egg cases, and this is correlated with a vivid polka‑dot pattern of the embryos. Five modes of lecithotrophic (yolk-dependent) reproduction, i.e. short single oviparity, sustained single oviparity, multiple oviparity, yolk‑sac viviparity of single pregnancy and yolk‑sac viviparity of multiple pregnancy were discussed from an evolutionary point of view. Te reproductive strategies of the Chondrichthyes (cartilaginous fshes) are far more diverse than those of the other animal groups. Reproduction in chondrichthyan fshes is divided into two main modes, oviparity (egg laying) and viviparity (live bearing). -
Teleost Radiation Teleost Monophyly
Teleost Radiation Teleostean radiation - BIG ~ 20,000 species. Others put higher 30,000 (Stark 1987 Comparative Anatomy of Vertebrates) About 1/2 living vertebrates = teleosts Tetrapods dominant land vertebrates, teleosts dominate water. First = Triassic 240 my; Originally thought non-monophyletic = many independent lineages derived from "pholidophorid" ancestry. More-or-less established teleostean radiation is true monophyletic group Teleost Monophyly • Lauder and Liem support this notion: • 1. Mobile premaxilla - not mobile like maxilla halecostomes = hinged premaxilla modification enhancing suction generation. Provides basic structural development of truly mobile premaxilla, enabling jaw protrusion. Jaw protrusion evolved independently 3 times in teleostean radiation 1) Ostariophysi – Cypriniformes; 2) Atherinomorpha and 2) Percomorpha – especially certain derived percomorphs - cichlids and labroid allies PREMAXILLA 1 Teleost Monophyly • Lauder & Liem support notion: • 2. Unpaired basibranchial tooth plates (trend - consolidation dermal tooth patches in pharynx). • Primitive = whole bucco- pharynx w/ irregular tooth patches – consolidate into functional units - modified w/in teleostei esp. functional pharyngeal jaws. Teleost Monophyly • Lauder and Liem support this notion: • 3. Internal carotid foramen enclosed in parasphenoid (are all characters functional, maybe don't have one - why should they?) 2 Teleost Tails • Most interesting structure in teleosts is caudal fin. • Teleosts possess caudal skeleton differs from other neopterygian fishes - Possible major functional significance in Actinopterygian locomotor patterns. • Halecomorphs-ginglymodes = caudal fin rays articulate with posterior edge of haemal spines and hypurals (modified haemal spines). Fin is heterocercal (inside and out). Ginglymod - Gars Halecomorph - Amia 3 Tails • “Chondrostean hinge” at base of upper lobe - weakness btw body and tail lobe. Asymmetrical tail = asymmetrical thrust with respect to body axis.