I Chromosomal Complements in Human Immature and Mature

Total Page:16

File Type:pdf, Size:1020Kb

I Chromosomal Complements in Human Immature and Mature Chromosomal Complements in Human Immature and Mature Oocytes in Relation to Maternal Age Wejdan M. Alenezi Department of Human Genetics McGill University Montreal, Quebec, Canada Submitted March 2015 A thesis submitted to McGill University Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of masters in science ©Wejdan M. Alenezi i ACKNOWLEDGMENT Foremost, I dedicate my M.Sc. thesis to my beloved mother and siblings whose overseas, unlimited love and support pushed me to go further on the way of knowledge. Their encouragements and motivations allowed me to undertake this academic study and made my M.Sc. thesis to be possible achieved. I would like to express my sincere gratitude to my supervisor Prof. Asangla Ao for introducing me to the field of preimplantation genetic diagnosis (PGD) and embryology. She took the initiative to teach me the basics of human embryo manipulation and the fundamentals of PGD practice. She generously offered me her valuable time to guide me throughout writing my reports and M.Sc. thesis. She encouraged me to participate in several PGD-related conferences. On the top, she emotionally supported me through my health issues I have had during my studies. Without her unwavering guidance, supervision and patience, this academic accomplishment would not have been possible. Beside my supervisor, I would like to extend my acknowledgments to Dr. Zhange Li and Xiao Yun Zhang for teaching me most important PGD related techniques. Their helpful guidance, endless patience, and encouraging words made this project achieved. I am also indebted to my supervisory committee members Prof. Anna Naumova and Prof. Teruko Taketo for their insightful comments and suggestions, and valuable assistance and guidance (especially in statistics) that made this project to be successfully accomplished. I extend my acknowledgments to all embryologists, nurses, and physicians at McGill Reproductive Center for their assistance and cooperation during these years. I am deeply grateful to all patients who donated the research samples. I would like also to acknowledge the ii scholarship granted from the Department of Applied Medical Sciences at Taibah University, my hometown university. Finally, I would like to express my heartfelt thanks to my long-suffering friends: Maha, Raha, Basma, Ghadeer, Luci and Amal whose endless emotional support allowed me to overcome all obstacles I faced throughout my academic studies. Also, I am deeply thankful to Prof. Idrees Al-Turk who encouraged and motivated me to pursue my graduate studies. His continues support and advice, as well as absolute faith in me allowed me to undertake all difficulties I faced throughout my studies. iii PRESENTATION OF THE CURRENT THESIS This M.Sc. thesis was prepared in accordance to the guidelines for the traditional, monographic thesis style. The table of content, and an abstract in English and in French are included. Chapter one contains a general introduction, which provides an overview of the research scope of the present project including the significance, the rationale, and the objectives of the M.Sc. project. This is followed by a literature review, which provides a comprehensive review of the relevant literatures. Chapter two includes the material and methods were applied in the present research. Chapter three demonstrates the results, followed by chapter four that discuss the results obtained in this project. Last, a summery of the present work and final conclusions, including the future direction are presented in chapter five. This thesis is completed by a list of the references cited within chapter one to five, followed by an appendix includes a list of ethics approval of using all human materials were used in this project. iv ABBREVIATIONS 0PN Zero Pronuclear Zygote 1PN One Pronuclear Zygote 2PN Two Pronuclear Zygote 3PN Three Pronuclear Zygote AI Anaphase I stage aCGH Array Comparative Genomic Hybridization AL Anaphase Lag AFC Antral Follicular Count CGH Comparative Genomic Hybridization Chr Chromosome Cht Chromatid COH Controlled Ovarian Hyperstimulation FISH Fluorescence In Situ Hybridization GV Germinal Vesicle GVBD Germinal Vesicle Break Down ICSI Intracytoplasmic Sperm Injection IVF In Vitro Fertilization IVM In Vitro Maturation MC Miscarriage MF Male Factor MI Metaphase I Stage MII Metaphase II Stage ND Non-Disjunction PCOS Polycystic Ovary Syndrome PD Premature Separation PGD Preimplantation Genetic Diagnosis PRL Repeated Pregnancy Loss PSSC Premature Separation of Sister Chromatids SGD Single Gene Defects SNP Single Nucleotide Polymorphism Array v ABSTRACT Numerical chromosome abnormalities significantly contribute to the high incidence of spontaneous abortions, stillbirths, and live births with congenital defects. The vast majority of these abnormalities are maternally related and attributed to meiotic errors occurring during oogenesis. The clinical relevance of these errors, the contribution to the overall rate of chromosome abnormalities, and the association with advanced maternal age are well documented. Maternally related chromosome abnormalities can also be attributed to errors occurring prior to meiosis. Select studies have estimated the incidence of pre-meiotic mitotic errors, though the prevalence, clinical relevance, and association with maternal age remain unknown. Therefore, we aimed to investigate the incidence of pre-meiotic mitotic errors in human immature and mature oocytes derived from women who underwent controlled ovarian hyperstimulation (COH) treatment cycles in relation to maternal age. FISH-based analysis for chromosomes most frequently involved in pregnancy loss (13, 15, 16, 18, 21, 22, and X) was applied to analyze the chromosomal complements in human oocytes. We pioneered a method in developing and validating the FISH signals scoring criteria of chromosomally normal immature oocytes at different maturation stages (in relation to maternal age) by plotting histograms of FISH signals per tested chromosome. These distributions allowed us to determine the possibility of sample variation, as well as confirmed our FISH signals scoring criteria for chromosomally normal oocytes. The overall rates of chromosomally normal immature oocytes at all different maturation stages were comparable between both maternal age groups, suggesting that pre- meiotic mitotic errors are not maternal-age dependent. We re-analyzed the data to estimate the incidence of chromosomally normal immature oocytes at the different maturation stages (in relation to maternal age) when each patient donated “sibling oocytes” for eliminating patient vi bias. These results confirmed that pre-meiotic mitotic errors are not associated with maternal age. Our findings indicate that the incidence of pre-meiotic mitotic errors in human mature oocytes with the corresponding first polar bodies in relation to maternal age is considerably low compared to first meiotic errors. As previously reported, the overall rate of first meiotic errors is directly related to maternal age. Our data suggest that although the contribution of pre-meiotic mitotic errors to the overall rate of maternally related chromosome abnormalities is relatively low, consequences of these errors have clinical relevance to human fertility, at least in our study population. vii SOMMAIRE Plusieurs anomalies chromosomiques contribuent significativement à l’incidence élevée d’avortements spontanés, de morts à la naissance et de naissances avec défauts congénitaux. La vaste majorité de ces anomalies sont attribuées à des erreurs méiotiques qui prennent place durant l’oogenèse. La pertinence de ces erreurs à la pratique clinique, leur contribution aux taux d’anomalies chromosomiques et leur association avec l’âge maternel avancé sont tous bien documentés. Les anomalies chromosomiques d’origine maternelle peuvent aussi être attribuées aux erreurs qui précèdent la méiose. Quelques études ont tenté d’estimer l’incidence d’erreurs miotiques précédant la méiose, malgré que leur prévalence, leur importance clinique et leur association avec l’âge maternel demeurent inconnus. Par conséquent, nous avons investigué l’incidence d’erreurs mitotiques précédant la méiose en relation à l’âge maternel dans les oocytes humains immatures et matures dérivés de femmes ayant subi des cycles de traitement de stimulation ovarienne. La méthode d’analyse FISH pour les chromosomes les plus souvent impliqués dans la perte de grossesse (13, 15, 16, 18, 21, 22, and X) a été appliqué à l’analyse des compléments chromosomiques des oocytes humains. Nous avons créé une nouvelle méthode pour le développement et la validation des critères de notation pour les signaux FISH provenant des oocytes immatures avec chromosomes normaux à différentes étapes de leur maturation en relation avec l’âge maternel. Pour ce faire, nous produisons des histogrammes des signaux FISH pour chaque chromosome testé. Ces distributions nous ont permis de déterminer la variation de l’échantillon ainsi que de confirmer nos critères de notation des signaux FISH.. Le nombre total d’oocytes immatures avec des chromosomes normaux à toutes les étapes de maturation était comparable entre les deux groupes d’âge maternel, suggérant que les erreurs mitotiques qui précèdent la méiose ne sont pas dépendantes sur l’âge maternel. Pour éliminer le biais de viii sélection, nous avons ré-analysé nos données pour estimer l’incidence de chromosomes normaux dans les oocytes immatures en relation à l’âge maternel lorsque chaque patient a donné des
Recommended publications
  • Timing of Centrosome Separation Is Important for Accurate Chromosome Segregation
    M BoC | ARTICLE Timing of centrosome separation is important for accurate chromosome segregation William T. Silkwortha, Isaac K. Nardia,*, Raja Paulb, Alex Mogilnerc, and Daniela Ciminia aDepartment of Biological Sciences, Virginia Tech, Blacksburg, VA 24061; bIndian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; cDepartment of Neurobiology, Physiology and Behavior and Department of Mathematics, University of California, Davis, Davis, CA 95616 ABSTRACT Spindle assembly, establishment of kinetochore attachment, and sister chroma- Monitoring Editor tid separation must occur during mitosis in a highly coordinated fashion to ensure accurate Yixian Zheng chromosome segregation. In most vertebrate cells, the nuclear envelope must break down to Carnegie Institution allow interaction between microtubules of the mitotic spindle and the kinetochores. It was Received: Feb 2, 2011 previously shown that nuclear envelope breakdown (NEB) is not coordinated with centrosome Revised: Nov 17, 2011 separation and that centrosome separation can be either complete at the time of NEB or can Accepted: Nov 22, 2011 be completed after NEB. In this study, we investigated whether the timing of centrosome separation affects subsequent mitotic events such as establishment of kinetochore attach- ment or chromosome segregation. We used a combination of experimental and computa- tional approaches to investigate kinetochore attachment and chromosome segregation in cells with complete versus incomplete spindle pole separation at NEB. We found that cells with incomplete spindle pole separation exhibit higher rates of kinetochore misattachments and chromosome missegregation than cells that complete centrosome separation before NEB. Moreover, our mathematical model showed that two spindle poles in close proximity do not “search” the entire cellular space, leading to formation of large numbers of syntelic at- tachments, which can be an intermediate stage in the formation of merotelic kinetochores.
    [Show full text]
  • GENETICS and GENOMICS Ed
    GENETICS AND GENOMICS Ed. Csaba Szalai, PhD GENETICS AND GENOMICS Editor: Csaba Szalai, PhD, university professor Authors: Chapter 1: Valéria László Chapter 2, 3, 4, 6, 7: Sára Tóth Chapter 5: Erna Pap Chapter 8, 9, 10, 11, 12, 13, 14: Csaba Szalai Chapter 15: András Falus and Ferenc Oberfrank Keywords: Mitosis, meiosis, mutations, cytogenetics, epigenetics, Mendelian inheritance, genetics of sex, developmental genetics, stem cell biology, oncogenetics, immunogenetics, human genomics, genomics of complex diseases, genomic methods, population genetics, evolution genetics, pharmacogenomics, nutrigenetics, gene environmental interaction, systems biology, bioethics. Summary The book contains the substance of the lectures and partly of the practices of the subject of ‘Genetics and Genomics’ held in Semmelweis University for medical, pharmacological and dental students. The book does not contain basic genetics and molecular biology, but rather topics from human genetics mainly from medical point of views. Some of the 15 chapters deal with medical genetics, but the chapters also introduce to the basic knowledge of cell division, cytogenetics, epigenetics, developmental genetics, stem cell biology, oncogenetics, immunogenetics, population genetics, evolution genetics, nutrigenetics, and to a relative new subject, the human genomics and its applications for the study of the genomic background of complex diseases, pharmacogenomics and for the investigation of the genome environmental interactions. As genomics belongs to sytems biology, a chapter introduces to basic terms of systems biology, and concentrating on diseases, some examples of the application and utilization of this scientific field are also be shown. The modern human genetics can also be associated with several ethical, social and legal issues. The last chapter of this book deals with these issues.
    [Show full text]
  • Double Mitotic Nondisjunction
    J Med Genet: first published as 10.1136/jmg.15.5.395 on 1 October 1978. Downloaded from Case reports 395 well be that, in this family, 18q- is unable to segre- mosaicism. Chromosome 18 trisomy was found gate properly during gametogenesis and early post- only in 18% of lymphocytes and not in skin zygotic mitosis, leading to an unbalanced state and fibroblasts. A likely interpretation is double non- +(18q-). disjunction in a single lymphocyte precursor HAROLD N. BASs, FELICE WEBER-PARISI, AND of a trisomy 21 embryo. A brief review of other ROBERT S. SPARKES cases of mitotic multiple nondisjunction and Department ofPediatrics (Genetics), Kaiser- double aneuploid mosaicism is presented. Permanente Medical Center, Panorama City, California 91402; and Division ofMedical Genetics, Chromosomal mosaicism occurs in a small percentage Departments ofMedicine, Pediatrics, andPsychiatry, of patients with Down's syndrome. The vast majority UCLA Centerfor the Health Sciences, Los Angeles, of these mosaics have a normal cell line in addition to California 90024, USA the trisomy 21 cell line. This report describes the first reported instance, to our knowledge, of an unusual References type of double trisomy mosaicism in lymphocytes Castel, Y., Riviere, D., Nawrocki, T., Le Fur, J-M., and Toudic, involving chromosomes 18 and 21. L. (1975). Trisomie partielie 18q par translocation familiale t(l8q-;13q+). Lyon Medical, 233, 211-217. Francke, U. (1972). Quinacrine mustard fluorescence of human chromosomes: characterization of unusual translocations. Case report American Journal ofHuman Genetics, 24, 189-213. Fujita, K., and Fujita, H. M. (1974). An extra small submetacentric The proposita was referred for chromosome analysis chromosome: possible partial trisomy 18.
    [Show full text]
  • Epigenetic Centromere Specification Directs Aurora B Accumulation but Is Insufficient to Efficiently Correct Mitotic Errors
    JCB: Report Epigenetic centromere specification directs aurora B accumulation but is insufficient to efficiently correct mitotic errors Emily A. Bassett,1,2 Stacey Wood,2 Kevan J. Salimian,1,2 Sandya Ajith,1,2 Daniel R. Foltz,3 and Ben E. Black1,2 1Graduate Group in Biochemistry and Molecular Biophysics and 2Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 3Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908 he nearly ubiquitous presence of repetitive centro- of the kinetochore is intact at a human neocentromere mere DNA sequences across eukaryotic species is in lacking repetitive -satellite DNA. However, aurora B is Tparadoxical contrast to their apparent functional dis- inappropriately silenced as a consequence of the altered pensability. Centromeric chromatin is spatially delineated geometry of the neocentromere, thereby compromising into the kinetochore-forming array of centromere protein A the error correction mechanism. This suggests a model (CENP-A)–containing nucleosomes and the inner cen­ wherein the neocentromere represents a primordial inher- tromeric heterochromatin that lacks CENP-A but recruits itance locus that requires subsequent generation of a the aurora B kinase that is necessary for correcting erro- robust inner centromere compartment to enhance fidelity neous attachments to the mitotic spindle. We found that of chromosome transmission. the self-perpetuating network of CENPs at the foundation Introduction
    [Show full text]
  • Questions from Medical Biology and Genetics in Acad. Year 2019/2020 for 1 St Year Dentistry
    Questions from Medical biology and Genetics in acad. year 2019/2020 for 1 st year Dentistry I. The cell 1. Molecular structure of the biological membranes 2. Types of intercellular communications (endocrine, paracrine, autocrine and neural) 3. Types and function of receptors and signal molecules, first and second messengers, amplification of signal 4. Transport through membranes, mechanisms 5. Endoplasmic reticulum, structure and function 6. Ribosomes, their structure and function 7. Golgi complex, its structure, metabolic and distributional function 8. Lysosomes, peroxisomes, proteasomes and their function 9. Function and biogenesis mitochondria, characteristics of its genome 10. Functional organization of the cytoskeleton (microtubules, microfillaments) 11. Centromere, kinetochore, system permitting movement of chromosomes in cell division 12. Mitosis as a part of cell cycle 13. Cell cycle - phases, regulatory molecules, check points 14. Processes taking part in cell cycle regulation, examples 15. G1 check point of cell cycle, factors ruling transfer G1/S in cell cycle 16. G2 check point of cell cycle, factors ruling transfer G2/M in cell cycle 17. Mitotic check point, molecular mechanism of its regulation 18. Relation protooncogene – oncogene in regulation of cell cycle 19. Oncogenesis, molecular characteristics of malignant transformation of cell 20. Types of oncogenes, mechanisms changing protooncogene to oncogene 21. Mechanisms of protooncogens participation in deregulation of cell cycle 22. Nucleus, its structure and function 23. Totipotence of cells, stem cells, tissue engineering and regenerative medicine 24. Alternative usage of genetic information in differentiation of cell 25. Apoptosis - programmed cell death (telomeric sequences) 26. Mechanism of activation of apoptosis through ”death“ receptors 27. Mechanism of activation of apoptosis through mitochondrial pathway 28.
    [Show full text]
  • Haplotype-Aware Inference of Human Chromosome Abnormalities Daniel Ariad 1*, Stephanie M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444721; this version posted May 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Ariad et al. Haplotype-aware inference of human chromosome abnormalities Daniel Ariad 1*, Stephanie M. Yan 1, Andrea R. Victor2,FrankL.Barnes2, Christo G. Zouves2, Manuel Viotti 3 and Rajiv C. McCoy 1* Abstract Extra or missing chromosomes—a phenomenon termed aneuploidy—frequently arises during human meiosis and embryonic mitosis and is the leading cause of pregnancy loss, including in the context of in vitro fertilization (IVF). While meiotic aneuploidies a↵ect all cells and are deleterious, mitotic errors generate mosaicism, which may be compatible with healthy live birth. Large-scale abnormalities such as triploidy and haploidy also contribute to adverse pregnancy outcomes, but remain hidden from standard sequencing-based approaches to preimplantation genetic testing (PGT-A). The ability to reliably distinguish meiotic and mitotic aneuploidies, as well as abnormalities in genome-wide ploidy may thus prove valuable for enhancing IVF outcomes. Here, we describe a statistical method for distinguishing these forms of aneuploidy based on analysis of low-coverage whole-genome sequencing data, which is the current standard in the field. Our approach overcomes the sparse nature of the data by leveraging allele frequencies and linkage disequilibrium (LD) measured in a population reference panel. The method, which we term LD-informed PGT-A (LD-PGTA), retains high accuracy down to coverage as low as 0.05 and at higher coverage can also distinguish between meiosis I and meiosis II errors based on signatures⇥ spanning the centromeres.
    [Show full text]
  • A Acentric Fragment Linear One Telomere Radiation One Broken End Endonuclease Break-Inducing Mutagen
    Chromosome Res https://doi.org/10.1007/s10577-020-09636-z REVIEW Mechanisms driving acentric chromosome transmission Brandt Warecki & William Sullivan Received: 2 June 2020 /Revised: 16 July 2020 /Accepted: 19 July 2020 # Springer Nature B.V. 2020 Abstract The kinetochore-microtubule association is a Keywords Acentric . chromosome fragment . mitosis . core, conserved event that drives chromosome transmis- microtubules . double minutes . genome stability sion during mitosis. Failure to establish this association on even a single chromosome results in aneuploidy Abbreviations leading to cell death or the development of cancer. APC/C Anaphase-promoting complex However, although many chromosomes lacking centro- PtK cells Potorous tridactylus cells meres, termed acentrics, fail to segregate, studies in a UFBs Ultrafine DNA bridges number of systems reveal robust alternative mecha- CHMP4C Charged multivesicular body nisms that can drive segregation and successful pole- protein 4C ward transport of acentrics. In contrast to the canonical ESCRT-III Endosomal sorting complexes mechanism that relies on end-on microtubule attach- required for transport-III ments to kinetochores, mechanisms of acentric trans- mission largely fall into three categories: direct attach- ments to other chromosomes, kinetochore-independent lateral attachments to microtubules, and long-range teth- er-based attachments. Here, we review these “non-ca- Kinetochore-microtubule interactions drive nonical” methods of acentric chromosome transmission. poleward chromosome transmission Just as the discovery and exploration of cell cycle checkpoints provided insight into both the origins of In order to produce genetically identical daughter cells cancer and new therapies, identifying mechanisms and following mitosis, a cell must first duplicate its genome structures specifically involved in acentric segregation and then equally partition genetic material to its daugh- may have a significant impact on basic and applied ter cells through chromatid segregation.
    [Show full text]
  • The Origin and Impact of Embryonic Aneuploidy
    Hum Genet DOI 10.1007/s00439-013-1309-0 ORIGINAL INVESTIGATION The origin and impact of embryonic aneuploidy Elpida Fragouli • Samer Alfarawati • Katharina Spath • Souraya Jaroudi • Jonas Sarasa • Maria Enciso • Dagan Wells Received: 15 March 2013 / Accepted: 11 April 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract Despite the clinical importance of aneuploidy, divisions. All abnormalities appeared to be tolerated until surprisingly little is known concerning its impact during activation of the embryonic genome, after which some the earliest stages of human development. This study aimed forms started to decline in frequency. However, many an- to shed light on the genesis, progression, and survival of euploidies continued to have little impact, with affected different types of chromosome anomaly from the fertilized embryos successfully reaching the blastocyst stage. Results oocyte through the final stage of preimplantation devel- from the direct analyses of female meiotic divisions and opment (blastocyst). 2,204 oocytes and embryos were early embryonic stages suggest that chromosome errors examined using comprehensive cytogenetic methodology. present during preimplantation development have origins A diverse array of chromosome abnormalities was detec- that are more varied than those seen in later pregnancy, ted, including many forms never recorded later in devel- raising the intriguing possibility that the source of aneu- opment. Advancing female age was associated with ploidy might modulate impact on embryo viability. The dramatic increase in aneuploidy rate and complex chro- results of this study also narrow the window of time for mosomal abnormalities. Anaphase lag and congression selection against aneuploid embryos, indicating that most failure were found to be important malsegregation causing survive until the blastocyst stage and, since they are not mechanisms in oogenesis and during the first few mitotic detected in clinical pregnancies, must be lost around the time of implantation or shortly thereafter.
    [Show full text]
  • Chromosomal Mosaicism in Cleavage Stage Embryos Vs. Blastocyst Stage Embryos
    Research Article Journal of Molecular and Genetic Volume 14:4, 2020 DOI: 10.37421/jmgm.2020.14.462 Medicine ISSN: 1747-0862 Open Access Chromosomal Mosaicism in Cleavage Stage Embryos vs. Blastocyst Stage Embryos El-Bisari S*, Alyounis D, Sayed W and Uppal S Health Plus Genetics Laboratory, Abu Dhabi, United Arab Emirates Abstract Introduction: Chromosomal mosaicism is characterized by the presence of more than one chromosomally different cell line in an individual. Preimplantation chromosomal mosaicism is characterized by the presence of a mixture of chromosomally different cell lines in an embryo. Studies show that mosaicism for whole chromosomes (aneuploidies) in one or more cells (blastomeres) occurred in more than 75% of cleavage stage embryos, whilst 3%-24% of blastocyst stage embryos are chromosomally mosaic. Aim: The purpose of this study was to standardize and validate a Next Generation Sequencing (NGS) method for comprehensive chromosome testing for aneuploidies and to study the level of mosaicism in cleavages stage vs. blastocyst stage embryos. Methods: The validation involved a retrospective blind assessment of whole genome amplification (WGA) products from 14 cleavages stage embryo biopsies (blastomeres), 6 blastocyst stage embryo biopsies (TE), in addition to their 20 discarded blastocyst stage whole embryos. 42.8% of the cleavages stage embryos showed mosaicism, whilst results between the trophectoderm (TE) biopsies (TEB) and their whole embryos at blastocyst stage showed total concordance as no mosaicism was observed. NGS sensitivity and specificity for calling aneuploidy was found to be 100%. Conclusion: This is the first study reporting preclinical validation and accuracy assessment of the Ion semiconductor sequencing technology in studying the level of mosaicism in cleavage stage and TE biopsies blastocyst stage embryos vs.
    [Show full text]
  • Cell Division I
    CELL DIVISION I. MITOSIS DEFINITION: Division is an ensemble of genetic events, which ensures, by means of chromosomes, transmission of genetic information to daughter cells or to new organisms. as a rule, transmission of genetic information takes place exactly and with fidelity; errors during cell division cause the chromosome mutations (numerical and structural), which lead to abnormalities in cell and organism function. MITOSIS is the process of forming of identical daughter cells; during mitosis replicated chromosomes are segregated so that each daughter cell receives the same number of chromosomes (if you start with 46 in the parent cell, you should end up with 46 chromosomes in each daughter cell). 1. MAIN CHARACTERISTICS: during this type of cell division are multiplied most of the cells in human organism (all the somatic cells, excepting the red blood cells and neurons, skeletal muscle); it is a equational division - at the beginning of the division each somatic cell consists of 2n bichromatidian chromosomes which are separated during mitosis equally between daughter cells, so each of them contains 2n monochromatidian chromosomes 2n monochromatidian chromosomes 2n bichromatidian chromosomes 2n monochromatidian chromosomes 2. THE IMPORTANCE OF MITOSIS Mitosis has an important significance because divisions continue during all life beginning with the first division of zygote. Mitotic cell division provides the following advantages for organisms: * since mitosis produces a pair of genetically identical cells, it ensures stability of the characteristics of organisms; * in human organism, it provides embryogenesis (hysto- and organogenesis) before birth, and growth and development, in postnatal period; * it enables the damaged structures of organisms to be reformed; * it ensures the substitution of dead cells.
    [Show full text]
  • Common Variants Spanning PLK4 Are Associated with Mitotic-Origin Aneuploidy in Human Embryos Rajiv C
    RESEARCH | REPORTS REFERENCES AND NOTES HUMAN GENETICS 1. B. J. Fegley, R. G. Prinn, in The Formation and Evolution of Planetary Systems, H. A. Weaver et al., Eds. (Univ. of Arizona Press, Tucson, AZ, 1989), pp. 171–205. PLK4 2. O. Mousis et al., Planet. Space Sci. 104,29–47 (2014). Common variants spanning 3. D. P. Cruikshank et al., Science 261, 742–745 (1993). 4. T. C. Owen et al., Science 261, 745–748 (1993). 5. P. Rousselot et al., Astrophys. J. 780, L17 (2014). are associated with mitotic-origin 6. D. Bockelée-Morvan et al., in Comets II, M. Festou, H. U. Keller, H. A. Weaver, Eds. (Univ. of Arizona Press, Tucson, AZ, 2004), pp. 391–423. aneuploidy in human embryos 7. A. Bar-Nun, G. Notesco, T. Owen, Icarus 190, 655–659 (2007). 757 8. O. Mousis et al., Astrophys. J. , 146 (2012). 1 2 2 2 2 9. A. L. Cochran, W. D. Cochran, E. S. Barker, Icarus 146, Rajiv C. McCoy, Zachary Demko, Allison Ryan, Milena Banjevic, Matthew Hill, 2 2 1 1 583–593 (2000). Styrmir Sigurjonsson, Matthew Rabinowitz, Hunter B. Fraser, Dmitri A. Petrov 10. A. L. Cochran, Astrophys. J. 576, L165–L168 (2002). 11. P. P. Korsun, P. Rousselot, I. V. Kulyk, V. L. Afanasiev, Aneuploidy, the inheritance of an atypical chromosome complement, is common in O. V. Ivanova, Icarus 232,88–96 (2014). 12. D. Krankowsky et al., Nature 321, 326–329 (1986). early human development and is the primary cause of pregnancy loss. By screening 13. P. Eberhardt et al., Astron.
    [Show full text]
  • Laboratory Diagnosis of Turner Syndrome
    TURNER SYNDROME HOW TO REQUEST LAB. TESTS M.A.Daneshmand ;MD;AP;CP GENETIC DEFINITION OF TURNER SYNDROME Complete or Partial Loss of One ( X) Chromosome WHO REQUEST LAB. TESTS FOR TURNER Prenatologists Pediatricians Endocrinologists Cardiologists Orthopedists Dermatologist Urologist Every Physicians Sara is a 9 months petite girl with good health and normal development brought to the clinic for limb swelling COLLECTION OF UN-RELATED ABNORMALITIES Parents also pointed to abnormal redundant skin on the back of her Neck. ABDOMINAL SONOGRAPHY ORDERED Horseshoe Kidney Anomaly REQUEST BLOOD KARYOTYPE In routine karyotypes usually the metaphase of 10 or up to 15 cells will be analysed. There is a chance to miss low level of mosaicism. As reported by Hook, to detect 10% mosaicism with 95% confidence, ≥ 29 metaphases are needed to exclude a mosaic cell line (such as 45,X). To detect 5% and 1% mosaicism with 95% confidence, ≥ 59 and ≥299 metaphases, respectively, are needed KARYOTYPE PROCEDURE METAPHASE SPREAD KARYOTYPE PROCEDURE KARYOTYPE REPORT FOR SARA ( 45XO ) IMPORTANT TERMINOLOGIES IN KARYOTYPE REPORTS RELATED TO TURNER SYNDROME 1) Numerical abnormalities(Trisomy- Monosomy) 2) Structural abnormalities ( Breakage) Abn(X) ; Ring Chromosome ; del (Xp) ; Isochromosome i(Xq) x 3 ) Mosaicism PARTIAL (X) DELETION ABNORMALITIES IN TURNER ABNORMAL X IS SEEN IN 20% OF TURNERS CLINICIAN ORDERED A CELL FREE DNA TEST FOR Y CHROMOSOME FOR SARA !!! METHODS OF (Y) CHROMOSOME DETECTION 1) FISH with Probe for SRY 2) PCR on cell free DNA for
    [Show full text]