State and Federally Listed and Special Concern Species for ME
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Identification of Insect-Plant Pollination Networks for a Midwest Installation: Fort Mccoy, WI 5B
1 - 16 - ERDC TN ERDC Center for the Advancement of Sustainability Innovations (CASI) Identification of Insect-Plant Pollination Networks for a Midwest Installation Fort McCoy, WI Irene E. MacAllister, Jinelle H. Sperry, and Pamela Bailey April 2016 Results of an insect pollinators bipartite mutualistic network analysis. Construction Engineering Construction Laboratory Research Approved for public release; distribution is unlimited. The U.S. Army Engineer Research and Development Center (ERDC) solves the nation’s toughest engineering and environmental challenges. ERDC develops innovative solutions in civil and military engineering, geospatial sciences, water resources, and environmental sciences for the Army, the Department of Defense, civilian agencies, and our nation’s public good. Find out more at www.erdc.usace.army.mil. To search for other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Center for the Advancement of ERDC TN-16-1 Sustainability Innovations (CASI) April 2016 Identification of Insect-Plant Pollination Networks for a Midwest Installation Fort McCoy, WI Irene E. MacAllister and Jinelle H. Sperry U.S. Army Engineer Research and Development Center (ERDC) Construction Engineering Research Laboratory (CERL) 2902 Newmark Dr. Champaign, IL 61822 Pamela Bailey U.S. Army Engineer Research and Development Center Environmental Laboratory (EL) 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Final Report Approved for public release; distribution is unlimited. Prepared for U.S. Army Engineer Research and Development Center Vicksburg, MS 39180-6199 Under Center for the Advancement of Sustainability Innovations (CASI) Program Monitored by U.S. Army Engineer Research and Development Center Construction Engineering Research Laboratory (ERDC-CERL) 2902 Newmark Drive Champaign, IL 61822 ERDC TN-16-1 ii Abstract Pollinating insects and pollinator dependent plants are critical compo- nents of functioning ecosystems yet, for many U.S. -
Arthropods and Nematodes: Functional Biodiversity in Forest Ecosystems
2 Arthropods and Nematodes: Functional Biodiversity in Forest Ecosystems Pio Federico Roversi and Roberto Nannelli CRA – Research Centre for Agrobiology and Pedology, Florence Italy 1. Introduction Despite the great diversity of habitats grouped under a single name, forests are ecosystems characterized by the dominance of trees, which condition not only the epigeal environment but also life in the soil. Unlike other ecosystems such as grasslands or annual agricultural crops, forests are well characterized by precise spatial structures. In fact, we can identify three main layers in all forests: a canopy layer of tree crowns, including not only green photosynthesizing organs but also branches of various sizes; a layer formed by the tree trunks; a layer including bushes and grasses, which can sometimes be missing when not enough light filters through the canopy. To these layers must be added the litter and soil, which houses the root systems. Other characteristic features of forests, in addition to their structural complexity, are the longevity of the plants, the peculiar microclimates and the presence of particular habitats not found outside of these biocoenoses, such as fallen trunks and tree hollows. Even in the case of woods managed with relatively rapid cycles to produce firewood, forests are particularly good examples of ecosystems organized into superimposed layers that allow the maximum use of the solar energy. The biomass of forests is largely stored in the trees, with the following general distribution: ca. 2% in the leaves and almost 98% in trunks, branches and roots. In conditions of equilibrium between the arboreal vegetation and animal populations, saprophages, which use parts of plants and remains of organisms ending up in the litter, play a very important role. -
Conservation and Management of Eastern Big-Eared Bats a Symposium
Conservation and Management of Eastern Big-eared Bats A Symposium y Edited b Susan C. Loeb, Michael J. Lacki, and Darren A. Miller U.S. Department of Agriculture Forest Service Southern Research Station General Technical Report SRS-145 DISCLAIMER The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. Papers published in these proceedings were submitted by authors in electronic media. Some editing was done to ensure a consistent format. Authors are responsible for content and accuracy of their individual papers and the quality of illustrative materials. Cover photos: Large photo: Craig W. Stihler; small left photo: Joseph S. Johnson; small middle photo: Craig W. Stihler; small right photo: Matthew J. Clement. December 2011 Southern Research Station 200 W.T. Weaver Blvd. Asheville, NC 28804 Conservation and Management of Eastern Big-eared Bats: A Symposium Athens, Georgia March 9–10, 2010 Edited by: Susan C. Loeb U.S Department of Agriculture Forest Service Southern Research Station Michael J. Lacki University of Kentucky Darren A. Miller Weyerhaeuser NR Company Sponsored by: Forest Service Bat Conservation International National Council for Air and Stream Improvement (NCASI) Warnell School of Forestry and Natural Resources Offield Family Foundation ContEntS Preface . v Conservation and Management of Eastern Big-Eared Bats: An Introduction . 1 Susan C. Loeb, Michael J. Lacki, and Darren A. Miller Distribution and Status of Eastern Big-eared Bats (Corynorhinus Spp .) . 13 Mylea L. Bayless, Mary Kay Clark, Richard C. Stark, Barbara S. -
2017, Jones Road, Near Blackhawk, RAIN (Photo: Michael Dawber)
Edited and Compiled by Rick Cavasin and Jessica E. Linton Toronto Entomologists’ Association Occasional Publication # 48-2018 European Skippers mudpuddling, July 6, 2017, Jones Road, near Blackhawk, RAIN (Photo: Michael Dawber) Dusted Skipper, April 20, 2017, Ipperwash Beach, LAMB American Snout, August 6, 2017, (Photo: Bob Yukich) Dunes Beach, PRIN (Photo: David Kaposi) ISBN: 978-0-921631-53-7 Ontario Lepidoptera 2017 Edited and Compiled by Rick Cavasin and Jessica E. Linton April 2018 Published by the Toronto Entomologists’ Association Toronto, Ontario Production by Jessica Linton TORONTO ENTOMOLOGISTS’ ASSOCIATION Board of Directors: (TEA) Antonia Guidotti: R.O.M. Representative Programs Coordinator The TEA is a non-profit educational and scientific Carolyn King: O.N. Representative organization formed to promote interest in insects, to Publicity Coordinator encourage cooperation among amateur and professional Steve LaForest: Field Trips Coordinator entomologists, to educate and inform non-entomologists about insects, entomology and related fields, to aid in the ONTARIO LEPIDOPTERA preservation of insects and their habitats and to issue Published annually by the Toronto Entomologists’ publications in support of these objectives. Association. The TEA is a registered charity (#1069095-21); all Ontario Lepidoptera 2017 donations are tax creditable. Publication date: April 2018 ISBN: 978-0-921631-53-7 Membership Information: Copyright © TEA for Authors All rights reserved. No part of this publication may be Annual dues: reproduced or used without written permission. Individual-$30 Student-free (Association finances permitting – Information on submitting records, notes and articles to beyond that, a charge of $20 will apply) Ontario Lepidoptera can be obtained by contacting: Family-$35 Jessica E. -
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometro
Contributions Toward a Lepidoptera (Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, Thyrididae, Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, & Noctuoidea) Biodiversity Inventory of the University of Florida Natural Area Teaching Lab Hugo L. Kons Jr. Last Update: June 2001 Abstract A systematic check list of 489 species of Lepidoptera collected in the University of Florida Natural Area Teaching Lab is presented, including 464 species in the superfamilies Drepanoidea, Geometroidea, Mimalonoidea, Bombycoidea, Sphingoidea, and Noctuoidea. Taxa recorded in Psychidae, Yponomeutidae, Sesiidae, Cossidae, Zygaenoidea, and Thyrididae are also included. Moth taxa were collected at ultraviolet lights, bait, introduced Bahiagrass (Paspalum notatum), and by netting specimens. A list of taxa recorded feeding on P. notatum is presented. Introduction The University of Florida Natural Area Teaching Laboratory (NATL) contains 40 acres of natural habitats maintained for scientific research, conservation, and teaching purposes. Habitat types present include hammock, upland pine, disturbed open field, cat tail marsh, and shallow pond. An active management plan has been developed for this area, including prescribed burning to restore the upland pine community and establishment of plots to study succession (http://csssrvr.entnem.ufl.edu/~walker/natl.htm). The site is a popular collecting locality for student and scientific collections. The author has done extensive collecting and field work at NATL, and two previous reports have resulted from this work, including: a biodiversity inventory of the butterflies (Lepidoptera: Hesperioidea & Papilionoidea) of NATL (Kons 1999), and an ecological study of Hermeuptychia hermes (F.) and Megisto cymela (Cram.) in NATL habitats (Kons 1998). Other workers have posted NATL check lists for Ichneumonidae, Sphecidae, Tettigoniidae, and Gryllidae (http://csssrvr.entnem.ufl.edu/~walker/insect.htm). -
Case Study: Prescribed Burning at Kennebunk Plains
Case Study: Prescribed Burning at Kennebunk Plains Site Description Kennebunk Plains is located in a large continuous barren area that consists of more than 405 hectares (1,000 acres) of diverse sandplain communities including sandplain grasslands, pitch pine-heath barrens, pitch pine-scrub oak barrens, and red maple alluvial swamp forest (Fig. 1). This area has been protected since 1989 with funding from the Land for Maine’s Future program. The property is located in the towns of Kennebunk and Sanford in southern Figure 1. Purple flowers of northern blazing star (Liatris Maine. Kennebunk Plains consists of novae-angliae) population. Photo credit: Robert over 243 hectares (600 acres) of Wernerehl. open grassland (Fig. 2) with flat to rolling topography. The Maine Chapter of The Nature Conservancy conducts prescribed burning on grassland portions of Kennebunk Plains on behalf of the state. An additional 50 hectares (123 acres) of Kennebunk Plains adjacent to state land is owned and managed by The Nature Conservancy. The Kennebunk Plains community is composed primarily of little bluestem (Schizachyrium scoparium), poverty grass (Danthonia spicata), Ericaceous shrubs, and supports 14 rare plant and animal species. The grasslands have the only viable population of the rare northern blazing star (Liatris novae-angliae) in Maine, the largest global population with over 1 million stems. Other rare plants include toothed white- topped aster (Sericocarpus asteroides) and upright bindweed (Calystegia spithamaea ssp. spithamaea). Kennebunk Plains also provides one of the best mainland sites for grasshopper sparrow (Ammodramus Figure 2. Map of Kennebunk Plains and Wells savannarum) nesting in New England. Other Barrens management units. -
Chaetaglaea Cerata (A Noctuid Moth)
Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Chaetaglaea cerata (A Noctuid Moth) Priority 2 Species of Greatest Conservation Need (SGCN) Class: Insecta (Insects) Order: Lepidoptera (Butterflies, Skippers, And Moths) Family: Noctuidae (Noctuid Moths) General comments: Typically found in pitch pine barrens and open heath lands, which are not common in ME; no recent EOs despite moderate survey effort by Schweitzer and others; G3G4; evidence of historic decline globally; potentially could be found outside PP habitats – host plants (blueberry, scrub oak, Prunus) not limiting Species Conservation Range Maps for A Noctuid Moth: Town Map: Chaetaglaea cerata_Towns.pdf Subwatershed Map: Chaetaglaea cerata_HUC12.pdf SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: Chaetaglaea cerata is listed as a species of Special Concern in Maine. Recent Significant Declines: NA Regional Endemic: NA High Regional Conservation Priority: NA High Climate Change Vulnerability: NA Understudied rare taxa: NA Historical: Species currently listed as state (SH) or global (GH) historical (by MDIFW or NatureServe) that have some reasonable probability of rediscovery with further survey effort. State Rank: SH, Global Rank: G3G4, Rounded Global Rank: G3, MDIFW Historical: Yes Culturally Significant: NA Habitats Assigned to A Noctuid Moth: Formation Name Northeastern Upland Forest Macrogroup Name Central Oak-Pine Habitat System Name: Central Appalachian Dry Oak-Pine Forest Notes: -
CHECKLIST of WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea)
WISCONSIN ENTOMOLOGICAL SOCIETY SPECIAL PUBLICATION No. 6 JUNE 2018 CHECKLIST OF WISCONSIN MOTHS (Superfamilies Mimallonoidea, Drepanoidea, Lasiocampoidea, Bombycoidea, Geometroidea, and Noctuoidea) Leslie A. Ferge,1 George J. Balogh2 and Kyle E. Johnson3 ABSTRACT A total of 1284 species representing the thirteen families comprising the present checklist have been documented in Wisconsin, including 293 species of Geometridae, 252 species of Erebidae and 584 species of Noctuidae. Distributions are summarized using the six major natural divisions of Wisconsin; adult flight periods and statuses within the state are also reported. Examples of Wisconsin’s diverse native habitat types in each of the natural divisions have been systematically inventoried, and species associated with specialized habitats such as peatland, prairie, barrens and dunes are listed. INTRODUCTION This list is an updated version of the Wisconsin moth checklist by Ferge & Balogh (2000). A considerable amount of new information from has been accumulated in the 18 years since that initial publication. Over sixty species have been added, bringing the total to 1284 in the thirteen families comprising this checklist. These families are estimated to comprise approximately one-half of the state’s total moth fauna. Historical records of Wisconsin moths are relatively meager. Checklists including Wisconsin moths were compiled by Hoy (1883), Rauterberg (1900), Fernekes (1906) and Muttkowski (1907). Hoy's list was restricted to Racine County, the others to Milwaukee County. Records from these publications are of historical interest, but unfortunately few verifiable voucher specimens exist. Unverifiable identifications and minimal label data associated with older museum specimens limit the usefulness of this information. Covell (1970) compiled records of 222 Geometridae species, based on his examination of specimens representing at least 30 counties. -
Butterflies of North America
Insects of Western North America 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa Contributions of the C.P. Gillette Museum of Arthropod Diversity Colorado State University, Fort Collins, CO 80523-1177 2 Insects of Western North America. 7. Survey of Selected Arthropod Taxa of Fort Sill, Comanche County, Oklahoma. 4. Hexapoda: Selected Coleoptera and Diptera with cumulative list of Arthropoda and additional taxa by Boris C. Kondratieff, Luke Myers, and Whitney S. Cranshaw C.P. Gillette Museum of Arthropod Diversity Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, Colorado 80523 August 22, 2011 Contributions of the C.P. Gillette Museum of Arthropod Diversity. Department of Bioagricultural Sciences and Pest Management Colorado State University, Fort Collins, CO 80523-1177 3 Cover Photo Credits: Whitney S. Cranshaw. Females of the blow fly Cochliomyia macellaria (Fab.) laying eggs on an animal carcass on Fort Sill, Oklahoma. ISBN 1084-8819 This publication and others in the series may be ordered from the C.P. Gillette Museum of Arthropod Diversity, Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, 80523-1177. Copyrighted 2011 4 Contents EXECUTIVE SUMMARY .............................................................................................................7 SUMMARY AND MANAGEMENT CONSIDERATIONS -
Sites of Importance for Nature Conservation Wales Guidance (Pdf)
Wildlife Sites Guidance Wales A Guide to Develop Local Wildlife Systems in Wales Wildlife Sites Guidance Wales A Guide to Develop Local Wildlife Systems in Wales Foreword The Welsh Assembly Government’s Environment Strategy for Wales, published in May 2006, pays tribute to the intrinsic value of biodiversity – ‘the variety of life on earth’. The Strategy acknowledges the role biodiversity plays, not only in many natural processes, but also in the direct and indirect economic, social, aesthetic, cultural and spiritual benefits that we derive from it. The Strategy also acknowledges that pressures brought about by our own actions and by other factors, such as climate change, have resulted in damage to the biodiversity of Wales and calls for a halt to this loss and for the implementation of measures to bring about a recovery. Local Wildlife Sites provide essential support between and around our internationally and nationally designated nature sites and thus aid our efforts to build a more resilient network for nature in Wales. The Wildlife Sites Guidance derives from the shared knowledge and experience of people and organisations throughout Wales and beyond and provides a common point of reference for the most effective selection of Local Wildlife Sites. I am grateful to the Wales Biodiversity Partnership for developing the Wildlife Sites Guidance. The contribution and co-operation of organisations and individuals across Wales are vital to achieving our biodiversity targets. I hope that you will find the Wildlife Sites Guidance a useful tool in the battle against biodiversity loss and that you will ensure that it is used to its full potential in order to derive maximum benefit for the vitally important and valuable nature in Wales. -
Bat Aggregational Response to Pest Caterpillar Emergence Ján Blažek*, Adam Konečný & Tomáš Bartonička
www.nature.com/scientificreports OPEN Bat aggregational response to pest caterpillar emergence Ján Blažek*, Adam Konečný & Tomáš Bartonička Moths (Lepidoptera) are major agricultural and forest pests in many parts of the world, including Europe, with many causing great economic damage to crops, horticultural plants, stored items, and wool products. Here, we focus on two ecologically similar inchworms, Operophtera brumata and Erannis defoliaria, known for their high foliage consumption during the spring emergence of caterpillars. We hypothesise that bats could play a role in reducing pests such as caterpillars by switching to this abundant emerging prey. At two infested and one control forest sites, caterpillars were sampled during spring to determine levels of infestation. At the same time, bat fight activity was monitored during the peak in caterpillar abundance. During the spring caterpillar outbreak, we collected faecal samples of forest-dwelling bats capable of using gleaning. The majority of samples were positive for our focus species, being 51.85% for O. brumata and 29.63% for E. defoliaria faecal samples. The foraging activity of two gleaning bats, Myotis nattereri and Myotis bechsteinii, increased at both infested sites, but not at the control site, during caterpillar emergence, as did foraging of Plecotus auritus/austriacus, which used both gleaning and aerial hawking. We conclude that both specialists and occasional gleaners, which prefer diferent prey but are able to switch their foraging strategies, aggregate at sites during pest emergence and, as such, our results confrm the high potential of bats to reduce numbers of pest species such as caterpillars. A predator’s efect on prey populations is generally studied using numerical responses 1,2 driven by two mecha- nisms, migration of predators to sites with high prey concentrations (aggregational response) and predator reproduction, which results in a delayed increase in the density of predators3. -
The Cutworm Moths of Ontario and Quebec
The Cutworm Moths of Ontario and Quebec Eric W. Rockburne and J. Donald Lafontaine Biosystematics Research Institute Ottawa, Ontario Photographs by Thomas H. Stovell Research Branch Canada Department of Agriculture Publication 1593 1976 © Minister of Supply and Services Canada 1976 Available by mail from Printing and Publishing Supply and Services Canada Ottawa, Canada K 1A 089 or through your bookseller. Catalogue No. A43-1593/1976 Price: Canada: $ 8.50 ISBN 0-660-00514-X Other countries: $10.20 Price subject to change without notice. 01 A05-6-38481 The Cutworm Moths of Ontario and Quebec INTRODUCTION The cutworm, or owlet, moths constitute a family belonging to the order Lepidoptera. This order consists of all the moths and butterflies. Cutworm moths are common throughout the world. In Canada and the United States over three thousand species are represented, from the Arctic tundra to the arid deserts of southwestern United States. Many species are found in eastern North America, but the family is best represented in the mountains and on the plateaus of western North America. CLASSIFICATION AND NOMENCLATURE In zoology, classification is the systematic arrangement of animals into related groups and categories, and nomenclature is the system of names given to these groups. The cutworm moths are insects that belong in the class Insecta. Insecta is divided into several orders: Diptera, the true flies: Hymenoptera. the wasps, bees, and ants: Coleoptera. the beetles, and so on. The order Lepidoptera includes all the moths and butterflies. Each order is divided into a number of families, and the Noctuidae family, which includes all the cutworm moths, is a family of the Lepidoptera.