Limitations of AM, Single Sideband, Frequency Modulation

Total Page:16

File Type:pdf, Size:1020Kb

Limitations of AM, Single Sideband, Frequency Modulation The G4EGQ RAE Course Lesson 10 Modulation Don’t over-do your modulation….. As you will remember, it is very important to avoid over-modulation. This would distort the amplitude modulated signal and cause undue bandwidth and interference. This shows the speech at various amplitudes. The dot/dash line indicates the level that corresponds to subsequent over-modulation. The resultant modulation envelope shows that the carrier reduces to zero at l00% modulation. If over-modulation does occur the carrier is chopped up and the modulation no longer resembles its modulating signal. At the receiving end the signal will be very distorted and unreadable - but more important, the over-modulated signal will have an increased bandwidth and will be rich in unwanted harmonics. This will result in severe interference to nearby aid harmonically related frequencies. Over-modulation must be prevented There are two ways this can be achieved:- (a) It can be arranged that an indication is given when the depth of modulation exceeds, say, 80%. This serves as a warning that modulating signal should be reduced in level. This could be done by monitoring the output with an oscilloscope or by a modulation meter. Alternatively, it could be arranged that a lamp or light emitting diode (LED) lights when a predetermined level is exceeded. (b) By automatic means, whereby the modulating signal is prevented from exceeding an amplitude that would result in over-modulation. It is quite a simple matter to "limit" the audio so that it is kept within the dotted lines A SIMPLE LIMITER Remember, silicon diodes begin to conduct when the forward Voltage reaches 0.7 Volt. Two such diodes, connected back-to-back, are put across the speech path at a point where sore than 0.7 Volt would result in over-modulation. Unfortunately, the speech becomes distorted when the peaks are clipped and this produces audio harmonics. In order to avoid excessive bandwidth, due to these harmonics1 the limiter should always be followed by a low-pass filter. Problems with Amplitude Modulation Large audio amplifiers and high power modulators are required. It is not an efficient method of communication as the "speech content" of the total signal is small. Most of the power is in the carrier and the speech that is present is duplicated. IE the speech power is split between the upper and lower sidebands. It is possible to do away with the carrier and one of the sidebands. This results in a much more efficient system known as Single Side Band (SSB). The above Shows the radio frequency spectrum of various modes of transmission. All these examples assume the speech is restricted to 300 Hz to 3 KHz In SSB all the permitted power is concentrated into one speech side band. It is therefore more efficient but has the disadvantage that both the transmitter and the receiver are more complicated than for simple AM. Page1 of 6 Less10.rtf © Pete Pennington G4EGQ 2000 The G4EGQ RAE Course Lesson 10 Modulation Generation of Single Sideband signals Speech, from the microphone, is amplified and connected via a low pass filter to one input of the double balanced mixer. The carrier, in this case 9 MHz, Is connected to the other input. The carrier is used in the production of the Single Sideband but is not actually transmitted. As with all mixers, the output will contain both the sum and the difference products. If the audio input contains frequencies up to 3 KHz then the mixer output will be 9.0 to 9.003 MHz & 8.997 to 9.0 MHz. However a double balanced mixer is special and is ideal for SSB production. Both the input signals (speech & carrier) are “balanced out" and are not present at the output of a double balanced mixer. Thus the mixer output contains both the upper and lower sidebands and, ideally, nothing else. This mixer has produced what is known as Double Sideband Suppressed Carrier. To obtain Single Sideband ESSE) it is necessary to eliminate the unwanted sideband. This is achieved by passing the DSB through a filter that will pass the wanted sideband and reject the unwanted one. Such filter must have steep sides to the response curve and are quite expensive. The filter is made up of 6 or S crystals connected in lattice formation. It is usual for the pass-band of the filter to be 2.4 KHz wide at the half power points. 9 MHz is a convenient Intermediate frequency as the addition of a further mixer and a VFO will result in the frequencies required for operation on two of our Amateur Bands. (80 Metres & 20 Metres) This transmitter uses the 9MHz SSB generator, at the top of the page, mixed with the output from a 5.0-5.5 MHz VFO. The tuned circuit is necessary to select either 3.5 or 14 MHz as it neither permitted or desirable to allow both 80 & 20 Metre frequencies to transmitted at the same time . You will note that the output from the mixer will cover a wider range than necessary. If the VFO is tuned from 5 to 5.5 MHz the output will go from 4 to3.5 MHz. Therefore it is only necessary to use the 5.5-5.2 MHz part of the VFO range to cover the British 80 Metre Amateur Band. (3.5 - 3.8 MHz) Transmitters can be designed to cover the other Amateur Bands by adding a further stage of mixing and suitable filters. Page2 of 6 Less10.rtf © Pete Pennington G4EGQ 2000 The G4EGQ RAE Course Lesson 10 Modulation FREQUENCY MODULATION You may find that it is not easy to understand the concept of Frequency Modulation. Read this explanation a couple of times and then read the RAE Manual covering this topic. You will remember that In AM It was the amplitude of the carrier that varied under the control of the speech modulation. This Is not the only way that the carrier can be modulated... In Frequency Modulation, the speech causes the frequency of the carrier to go up and down. Note that it is only the frequency of the carrier that changes - Its amplitude remains constant. The frequency change of the carrier is proportional to the amplitude of the modulating signal. The resultant change of the carrier from Its nominal frequency Is known as its deviation. It could be said to be the equivalent of AM’s "depth of modulation". There is no equivalent, In FM, of over-modulation. In FM, If the modulating frequency is increased in amplitude this purely results in a greater frequency deviation of the carrier. The signal will take up a greater bandwidth. However, the Amateur License states that the bandwidth of an transmission must be no more than the 6 kHz permitted on AM. It is known Narrow Band Frequency Modulation (NBFM). The frequency of the modulation does not alter the deviation of but it does control the frequency at which the carrier deviates. that last sentence again - it Is an important concept.) FREQUENCY MODULATORS With FM, the frequency of the carrier has to be varied by the speech. Thus the modulation process takes place at the oscillator. The circuit on the right shows how an oscillator is modulated. The most Important component is the Variable Capacitance Diode. All semiconductor diodes have self capacitance and this will vary according to the voltage across it. Usually the actual change in capacitance is very small. A variable capacitance diode is a semiconductor diode that has been specially manufactured with this property in mind. A known change in applied voltage will produce a known change in capacitance. The VCD is connected across the tuned circuit of an oscillator and Is reverse biased to a linear part of the Volts/Capacitance curve. The audio voltage is then superimposed on the bias voltage via C2. It Is important to ensure that the applied audio voltage does not totally overcome the bias as this would forward bias the diode into conduction. A conducting diode would damp the tuned circuit and may stop the oscillator. Page3 of 6 Less10.rtf © Pete Pennington G4EGQ 2000 The G4EGQ RAE Course Lesson 10 Modulation FREQUENCY MODULATION - Its Bandwidth First of all, lets recap and look at the frequency spectrum when a 145 MHz carrier is Amplitude Modulated by a 2 kHz tone. The result is a carrier, a lower side frequency and an upper side frequency. However, just look at the spectrum when 145 MHz is Frequency Modulated by the same 2 kHz tone. You can see it looks rather like a hedgehog! In theory there will be an infinite number of side frequencies at 2 kHz intervals. In practice, most of the energy is in the frequencies near to the centre. In fact, side frequencies remote from the carrier are very weak and can usually be ignored. Some formula.. There is a relationship between the deviation of the carrier (from nominal), and the modulating frequency. It is known as the MODULATION INDEX. DEVIATION FROM CARRIER CENTRE FREQUENCY MODULATION INDEX = ------------------------------------------------------------------------------ AUDIO FREQUENCY PRODUCING THIS DEVEIATION If, for example, the audio is restricted to 4 kHz and the deviation to + 2.5 kHz then the Modulation Index would be 0.625. Before we go on to something more interesting here is one more formula: MAXIMUM DEVIATION OF THE CARRIER DEVIATION RATIO = ----------------------------------------------------------- MAXIMUM MODULATING FREQUENCY Confused ? It is found rather tricky to understand FM - perhaps this explanation will help: The amplitude of the modulating frequency controls the amount that the carrier swings up and down (deviates) from nominal.
Recommended publications
  • ETR 132 TECHNICAL August 1994 REPORT
    ETSI ETR 132 TECHNICAL August 1994 REPORT Source: EBU/ETSI JTC Reference: DTR/JTC-00011 ICS: 33.060 Key words: Broadcasting, FM, radio, transmitter, VHF European Broadcasting Union Union Européenne de Radio-Télévision EBU UER Radio broadcasting systems; Code of practice for site engineering Very High Frequency (VHF), frequency modulated, sound broadcasting transmitters ETSI European Telecommunications Standards Institute ETSI Secretariat Postal address: F-06921 Sophia Antipolis CEDEX - FRANCE Office address: 650 Route des Lucioles - Sophia Antipolis - Valbonne - FRANCE X.400: c=fr, a=atlas, p=etsi, s=secretariat - Internet: [email protected] Tel.: +33 92 94 42 00 - Fax: +33 93 65 47 16 Copyright Notification: No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 1994. All rights reserved. New presentation - see History box © European Broadcasting Union 1994. All rights reserved. Page 2 ETR 132: August 1994 Whilst every care has been taken in the preparation and publication of this document, errors in content, typographical or otherwise, may occur. If you have comments concerning its accuracy, please write to "ETSI Editing and Committee Support Dept." at the address shown on the title page. Page 3 ETR 132: August 1994 Contents Foreword .......................................................................................................................................................7 1 Scope
    [Show full text]
  • Maintenance of Remote Communication Facility (Rcf)
    ORDER rlll,, J MAINTENANCE OF REMOTE commucf~TIoN FACILITY (RCF) EQUIPMENTS OCTOBER 16, 1989 U.S. DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION AbMINISTRATION Distribution: Selected Airway Facilities Field Initiated By: ASM- 156 and Regional Offices, ZAF-600 10/16/89 6580.5 FOREWORD 1. PURPOSE. direction authorized by the Systems Maintenance Service. This handbook provides guidance and prescribes techni- Referenceslocated in the chapters of this handbook entitled cal standardsand tolerances,and proceduresapplicable to the Standardsand Tolerances,Periodic Maintenance, and Main- maintenance and inspection of remote communication tenance Procedures shall indicate to the user whether this facility (RCF) equipment. It also provides information on handbook and/or the equipment instruction books shall be special methodsand techniquesthat will enablemaintenance consulted for a particular standard,key inspection element or personnel to achieve optimum performancefrom the equip- performance parameter, performance check, maintenance ment. This information augmentsinformation available in in- task, or maintenanceprocedure. struction books and other handbooks, and complements b. Order 6032.1A, Modifications to Ground Facilities, Order 6000.15A, General Maintenance Handbook for Air- Systems,and Equipment in the National Airspace System, way Facilities. contains comprehensivepolicy and direction concerning the development, authorization, implementation, and recording 2. DISTRIBUTION. of modifications to facilities, systems,andequipment in com- This directive is distributed to selectedoffices and services missioned status. It supersedesall instructions published in within Washington headquarters,the FAA Technical Center, earlier editions of maintenance technical handbooksand re- the Mike Monroney Aeronautical Center, regional Airway lated directives . Facilities divisions, and Airway Facilities field offices having the following facilities/equipment: AFSS, ARTCC, ATCT, 6. FORMS LISTING. EARTS, FSS, MAPS, RAPCO, TRACO, IFST, RCAG, RCO, RTR, and SSO.
    [Show full text]
  • Reception Performance Improvement of AM/FM Tuner by Digital Signal Processing Technology
    Reception performance improvement of AM/FM tuner by digital signal processing technology Akira Hatakeyama Osamu Keishima Kiyotaka Nakagawa Yoshiaki Inoue Takehiro Sakai Hirokazu Matsunaga Abstract With developments in digital technology, CDs, MDs, DVDs, HDDs and digital media have become the mainstream of car AV products. In terms of broadcasting media, various types of digital broadcasting have begun in countries all over the world. Thus, there is a demand for smaller and thinner products, in order to enhance radio performance and to achieve consolidation with the above-mentioned digital media in limited space. Due to these circumstances, we are attaining such performance enhancement through digital signal processing for AM/FM IF and beyond, and both tuner miniaturization and lighter products have been realized. The digital signal processing tuner which we will introduce was developed with Freescale Semiconductor, Inc. for the 2005 line model. In this paper, we explain regarding the function outline, characteristics, and main tech- nology involved. 22 Reception performance improvement of AM/FM tuner by digital signal processing technology Introduction1. Introduction from IF signals, interference and noise prevention perfor- 1 mance have surpassed those of analog systems. In recent years, CDs, MDs, DVDs, and digital media have become the mainstream in the car AV market. 2.2 Goals of digitalization In terms of broadcast media, with terrestrial digital The following items were the goals in the develop- TV and audio broadcasting, and satellite broadcasting ment of this digital processing platform for radio: having begun in Japan, while overseas DAB (digital audio ①Improvements in performance (differentiation with broadcasting) is used mainly in Europe and SDARS (satel- other companies through software algorithms) lite digital audio radio service) and IBOC (in band on ・Reduction in noise (improvements in AM/FM noise channel) are used in the United States, digital broadcast- reduction performance, and FM multi-pass perfor- ing is expected to increase in the future.
    [Show full text]
  • Chapter 7 Amplitude Modulation
    page 7.1 CHAPTER 7 AMPLITUDE MODULATION Transmit information-b earing message or baseband signal voice-music through a Communications Channel Baseband = band of frequencies representing the original signal for music 20 Hz - 20,000 Hz, for voice 300 - 3,400 Hz write the baseband message signal mt $ M f Communications Channel Typical radio frequencies 10 KHz ! 300 GHz write ct= A cos2f ct c ct = Radio Frequency Carrier Wave A = Carrier Amplitude c fc = Carrier Frequency Amplitude Mo dulation AM ! Amplitude of carrier wavevaries a mean value in step with the baseband signal mt st= A [1 + k mt] cos 2f t c a c Mean value A . c 31 page 7.2 Recall a general signal st= at cos[2f t + t] c For AM at = A [1 + k mt] c a t = 0 or constant k = Amplitude Sensitivity a Note 1 jk mtj < 1or [1 + k mt] > 0 a a 2 f w = bandwidth of mt c 32 page 7.3 AM Signal In Time and Frequency Domain st = A [1 + k mt] cos 2f t c a c j 2f t j 2f t c c e + e st = A [1 + k mt] c a 2 A A c c j 2f t j 2f t c c e + e st = 2 2 A k c a j 2f t c + mte 2 A k c a j 2f t c + mte 2 To nd S f use: mt $ M f j 2f t c e $ f f c j 2f t c e $ f + f c expj 2f tmt $ M f f c c expj 2f tmt $ M f + f c c A c S f = [f f +f +f ] c c 2 A k c a + [M f fc+Mf +f ] c 2 33 page 7.4 st = A [1 + k mt] cos 2f t c a c A c = [1 + k mt][expj 2f t+ expj 2f t] a c c 2 If k mt > 1, then a ! Overmo dulation ! Envelop e Distortion see Text p.
    [Show full text]
  • United States Patent [19] [11] Patent Number: 5,410,735 Borchardt Et Al
    U SOO54l0735A United States Patent [19] [11] Patent Number: 5,410,735 Borchardt et al. - [45] Date of Patent: Apr. 25, 1995 [54] WIRELESS SIGNAL TRANSMISSION 4,739,413 4/1983 Meyer - SYSTEMS, METHODS AND APPARATUS 4,771,344 9/1988 Fallacaro e141- - 4,847,903 7/1989 Schotz ................................... .. 381/3 [76] Inventors: Robert L. Borchardt, 120 E. End '. ' . ' ' Ave" New York, NY. 10028; _(L1st contlnued on next page.) _ William T. McGreevy, 43 Thompson FOREIGN PATENT DOCUMENTS Ave., Babylon, NY. 11702; Ashok _ Naw ge’ 3L7‘) 34th St.’ Apt.#3F, 0040481 2/1988 Japan .............................. .. 358/194.l Astoria, NY. 11105; Efrain L. OTHER PUBLICATIONS §°d"lf1“ez’§6; Y" “New 902-928 MHZ Band Now Open!”, Spec-Com mo yn’ ' ' Journal, Sep/Oct. 1985, cover page and p. 9. __ [21] Appl. No.: 259,339 Federal Register, vol. 50, Aug. 22, 1985, Final Rulemak . ing re addition of 902-928 MHz band to Amateur Radio [22] E169 J‘m' 13,1994 Service Rules, pp. 33937 through 33940. Related Us. Application Data (List continued on next page.) . - _ Primary Examiner—Reinhard J. Eisenzopf [63] ggéietanuation of Ser. No. 822,598, Jan. 17, 1992, aban Assistant Examiner_Andrew Faile [51] In G 6 H04B 1/00 Attorney, Agent, or Firm-Levisohn, Lerner & Berger t. > ............................................. .. [52] US. Cl. .................................... .. 455/42; 455/110; [571 ABSTRACT 455/205; 455/ 344; 455/ 351 ; 381/3 Systems, methods and apparatus are provided for con [58] Field of Search .................................. .. 455/42-43, ‘ducting local wireless audio signal transmissions from a 455/66, 95, 110-113, 120-125, 205, 208, 214, 'local audio signal source to a person within a local 344, 351, 352, 127, 343; 348/725, 731, 738; signal transmission area.
    [Show full text]
  • ELEC3027 Radio Communications Background Information on Amplitude Modulation
    ELEC3027 Radio Communications Background Information on Amplitude Modulation 1 Analogue Modulation 1.1 Amplitude Modulation When a Radio Frequency (RF) signal is placed onto the antenna of a transmitter, it will propagate through free space and can be detected on the antenna of a receiver. The higher the frequency of this signal, the smaller the antennas that are required. However, we are often interested in communicating relatively low frequency message signals, such as audio. Hence, we must modulate our low frequency message signal onto a high frequency carrier, in order to transmit it. This has the added benefit of allowing us to modulate different message signals onto different carrier frequencies, in order to transmit them without interfering with each other. Figure 1 shows the schematic of a transmission scheme that uses Amplitude Modulation (AM) to transmit a time-varying input signal x(t), as well as demodulation to obtain a received signal xˆ(t). Modulator Demodulator A cos(2πfct) x(t) y(t) u(t) xˆ(t) + LPF × Figure 1: AM modulation and demodulation. 1.1.1 Operation The AM modulator of Figure 1 uses the message signal x(t) to vary the amplitude of the carrier sinusoid cos(2πfct), where the carrier frequency fc is usually much higher than the highest frequency in the message signal. As shown in Figure 1 y(t) = [A + x(t)] cos(2πfct), (1) 1 where A is a constant DC offset. In the AM demodulator of Figure 1, the diode symbol represents a rectifier which gives y(t) if y(t) > 0 u(t)= .
    [Show full text]
  • Modulation, Overmodulation, and Occupied Bandwidth: Recommendations for the AM Broadcast Industry
    Modulation, Overmodulation, and Occupied Bandwidth: Recommendations for the AM Broadcast Industry An AM Improvement Report from the National Association of Broadcasters September 11, 1986 Harrison J. Klein, P.E. Hammett & Edison, Inc. Consulting Engineers San Francisco on behalf of the AM Improvement Committee Michael C. Rau, Staff Liaison National Association of Broadcasters National Association of Broadcasters 1771 N Street, N.W. Washington, D.C. Washington, DC 20036 - Modulation, Overrnodulation, and Occupied Bandwidth: Recommendations for the AM Broadcast Industry HARRISON J. KLEIN, P.E. TABLE OF CONTENTS I. EXECUTIVE SUMMARy .1 II. INTRODUCTION .1 III. DEFINITIONS OF MODULATION AND OVERMODULATION 2 IV. THE AMPLITUDE MODULATION SPECTRUM .2 V. AM DEMODULATION 4 VI. THEORETICAL AMPLITUDE MODULATION ANALySIS 4 A. Fast Fourier Transform Techniques .4 B. FFT Modulation Analysis , 4 VII. TRANSMITTER MODULATION MEASUREMENTS 8 A. Sine Wave Measurements 8 B. Noise Measurements 12 C. Band-Limited Noise .15 D. Occupied Bandwidth Analysis of Noise Modulation .15 E. DC Level Shift. .18 F. Minimizing Occupied Bandwidth .18 VIII. AMPLITUDE AND PHASE ERRORS .18 A. Envelope Distortion .18 B. Modulation Nonlinearities 20 C. Previous Papers .20 D. Evaluating Station Antenna Performance 20 IX. MONITORING OF MODULATION AND OCCUPIED BANDWIDTH .22 A. Transmitter Monitoring 22 B. Need for Field Monitoring Improvements .22 C. Accurate Occupied Bandwidth Measurements .22 D. Modulation Percentage Measurement Limitations .23 X. CONCLUSIONS AND RECOMMENDATIONS 23 ACKNOWLEDGEMENTS 24 APPENDIX A DERIVATION OF SYNCHRONOUS DETECTION CHARACTERISTICS.. .24 APPENDIX B FAST FOURIER TRANSFORM PARAMETERS .25 APPENDICES C, D, E Attached papers FIGURES 1. Waveforms of AM Carriers for Various Modulation Indices 3 2. Overmodulation in a Typical AM Transmitter.
    [Show full text]
  • Appl. Note, Tech. Info, White Paper, Edu. Note
    Modulation and Signal Generation with R&S® Signal Generators Educational Note Products: ® ı R&S SMB100A ® ı R&S SMBV100A ® ı R&S SMC ı HM8134-3/HM8135 ı HMF2525 / HMF2550 Signal generators play a vital role in electrical test and measurement. They generate the test signals that are applied to components such as filters and amplifier, or even to entire modules, in order to ascertain and test their behavior and characteristics. The first part of this educational note presents the applications for and the most important types of signal generators. This is followed by a description of the construction and functioning of analog and vector signal generators. To permit a better understanding of the specifications found on data sheets, a closer look at the most important parameters for a signal generator is provided. Beyond the output of spectrally pure signals, a key function of RF signal generators is the generation of analog- and digitally modulated signals. The second part of this note therefore presents the fundamentals for the most significant analog and digital modulation methods. The third part of this educational note contains exercises on the topics of analog and digital modulation. All described measurements were performed using the R&S®SMBV100A vector signal generator and the R&S®FSV spectrum analyzer. Note: The most current version of this document is available on our homepage: http://www.rohde-schwarz.com/appnote/1MA225. e 2 - , M. Reil 1MA225 agner Educational Note R. W 8.2016 Contents Contents 1 What Is a Signal Generator? .............................................................. 4 1.1 Why Do We Need Signal Generators? ......................................................................
    [Show full text]
  • Double Sideband (DSB) and Amplitude Modulation (AM)
    Double Sideband (DSB) and Amplitude Modulation (AM) Modules: Audio Oscillator, Wideband True RMS Meter, Multiplier, Adder, Utilities, Phase Shifter, Tuneable LPF, Quadrature Utilities, Noise Generator, Speech, Headphones 0 Pre-Laboratory Reading Double sideband (DSB) is one of the easiest modulation techniques to understand, so it is a good starting point for the study of modulation. A type of DSB, called binary phase-shift keying, is used for digital telemetry. Amplitude modulation (AM) is similar to DSB but has the advantage of permitting a simpler demodulator, the envelope detector. AM is used for broadcast radio, aviation radio, citizens’ band (CB) radio, and short-wave broadcasting. 0.1 Double Sideband (DSB) Modulation A message signal 푥(푡) can be DSB modulated onto a carrier with a simple multiplication. The modulated carrier 푦(푡) can be represented by 푦(푡) = 푥(푡) ∙ cos⁡(2휋푓푐푡) (1) where 푓푐 is the carrier frequency. The Fourier transform 푌(푓) of the modulator output is related to the Fourier transform 푋(푓) of the message signal by 1 1 푌(푓) = 푋(푓 − 푓 ) + 푋(푓 + 푓 ) 2 푐 2 푐 (2) For a real 푥(푡), |푋(푓)| is symmetric about 푓 = 0 and |푋(푓 − 푓푐)| is symmetric about 푓 = 푓푐. For the present discussion, it is only necessary to consider that part of 푌(푓) that lies in the positive half of the frequency axis. The signal content that lies in the frequency domain below 푓푐 is the lower sideband. The signal content that lies in the frequency domain above 푓푐 is the upper sideband.
    [Show full text]
  • April 27, 2017 * This Document Is Being Released As Part of a "Permit-But-Disclose" Proceeding. Any Presentations Or V
    April 27, 2017 FCC FACT SHEET* Part 95 Personal Radio Service Reform Report and Order - WT Docket No. 10-119 Background: The Commission’s Part 95 Personal Radio Services (PRS) rules address a wide variety of wireless devices that are used by the general public to satisfy personal communications needs. These devices generally use low-power transmitters, communicate over shared radio frequencies, and (with a few exceptions) do not require an individual FCC license for each user. Some common examples of PRS devices include walkie-talkies; radio control toy cars, boats, and planes; hearing assistance devices; CB radios; medical implant devices; and Personal Locator Beacons. This draft Report and Order completes a thorough review of the PRS rules in order to modernize them, remove outdated requirements, and reorganize them to make it easier to find information. As a result of this effort, the rules will become consistent, clear, and concise. What the Rules Would Do: GMRS/FRS Reform. General Mobile Radio Service (GMRS) and Family Radio Service (FRS) devices are both used for personal communications over several miles. The public may be most familiar with FRS walkie-talkies. While GMRS and FRS share spectrum, GMRS provides for greater communications range and requires an FCC license, while FRS does not require a license. The rules will increase the number of communications channels for both GMRS and FRS, expand digital capabilities to GMRS (currently allowed for FRS), and increase the power/range for certain FRS channels to meet consumer demands for longer range communications (while maintaining higher power capabilities for licensed GMRS).
    [Show full text]
  • Analog Communications
    Analog Communications Student Workbook 91578-00 Ê>{YpèRÆ3*Ë Edition 4 3091578000503 FOURTH EDITION Second Printing, March 2005 Copyright March, 2003 Lab-Volt Systems, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means, electronic, mechanical, photocopied, recorded, or otherwise, without prior written permission from Lab-Volt Systems, Inc. Information in this document is subject to change without notice and does not represent a commitment on the part of Lab-Volt Systems, Inc. The Lab-Volt F.A.C.E.T.® software and other materials described in this document are furnished under a license agreement or a nondisclosure agreement. The software may be used or copied only in accordance with the terms of the agreement. ISBN 0-86657-224-4 Lab-Volt and F.A.C.E.T.® logos are trademarks of Lab-Volt Systems, Inc. All other trademarks are the property of their respective owners. Other trademarks and trade names may be used in this document to refer to either the entity claiming the marks and names or their products. Lab-Volt System, Inc. disclaims any proprietary interest in trademarks and trade names other than its own. Lab-Volt License Agreement By using the software in this package, you are agreeing to 6. Registration. Lab-Volt may from time to time update the become bound by the terms of this License Agreement, CD-ROM. Updates can be made available to you only if a Limited Warranty, and Disclaimer. properly signed registration card is filed with Lab-Volt or an authorized registration card recipient.
    [Show full text]
  • Recommendation Itu-R Bs.412-9*
    Recommendation ITU-R BS.412-9 (12/1998) Planning standards for terrestrial FM sound broadcasting at VHF BS Series Broadcasting service (sound) ii Rec. ITU-R BS.412-9 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Recommendations (Also available online at http://www.itu.int/publ/R-REC/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management SNG Satellite news gathering TF Time signals and frequency standards emissions V Vocabulary and related subjects Note: This ITU-R Recommendation was approved in English under the procedure detailed in Resolution ITU-R 1.
    [Show full text]