On the Role of Sensory Cancellation and Corollary Discharge in Neural Coding and Behavior
Total Page:16
File Type:pdf, Size:1020Kb
On the Role of Sensory Cancellation and Corollary Discharge in Neural Coding and Behavior Armen Enikolopov Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2018 © 2018 Armen Enikolopov All Rights Reserved ABSTRACT On the Role of Sensory Cancellation and Corollary Discharge in Neural Coding and Behavior Armen Enikolopov Studies of cerebellum-like circuits in fish have demonstrated that synaptic plasticity shapes the motor corollary discharge responses of granule cells into highly-specific predictions of self- generated sensory input. However, the functional significance of such predictions, known as negative images, has not been directly tested. Here we provide evidence for improvements in neural coding and behavioral detection of prey-like stimuli due to negative images. In addition, we find that manipulating synaptic plasticity leads to specific changes in circuit output that disrupt neural coding and detection of prey-like stimuli. These results link synaptic plasticity, neural coding, and behavior and also provide a circuit-level account of how combining external sensory input with internally-generated predictions enhances sensory processing. In addition, the mammalian dorsal cochlear nucleus (DCN) integrates auditory nerve input with a diverse array of sensory and motor signals processed within circuity similar to the cerebellum. Yet how the DCN contributes to early auditory processing has been a longstanding puzzle. Using electrophysiological recordings in mice during licking behavior we show that DCN neurons are largely unaffected by self-generated sounds while remaining sensitive to external acoustic stimuli. Recordings in deafened mice, together with neural activity manipulations, indicate that self-generated sounds are cancelled by non-auditory signals conveyed by mossy fibers. In addition, DCN neurons exhibit gradual reductions in their responses to acoustic stimuli that are temporally correlated with licking. Together, these findings suggest that DCN may act as an adaptive filter for cancelling self-generated sounds. Adaptive filtering has been established previously for cerebellum-like sensory structures in fish suggesting a conserved function for such structures across vertebrates. Table of Contents LIST OF FIGURES ................................................................................................................................................ ii ACKNOWLEDGEMENTS ...................................................................................................................................... iii INTRODUCTION ......................................................................................................................... 1 HISTORICAL MOTIVATIONS AND BACKGROUND ................................................................................................... 2 COROLLARY DISCHARGE AND CANCELLATION IN REFLEXES ............................................................................... 9 HIGHER ORDER COROLLARY DISCHARGE AND CANCELLATION ...........................................................................13 CEREBELLUM-LIKE CIRCUITS .............................................................................................................................20 Anatomy common to cerebellum-like circuits ................................................................................................22 Other commonalities of cerebellum-like structures .......................................................................................25 Dorsal Cochlear Nucleus .............................................................................................................................27 Electrosensory Lobe ....................................................................................................................................32 Sensory Processing ......................................................................................................................................38 Formation of negative images for cancellation .............................................................................................42 INTERNALLY-GENERATED PREDICTIONS ENHANCE NEURAL AND BEHAVIORAL DETECTION OF SENSORY STIMULI IN AN ELECTRIC FISH ..................................................................48 INTRODUCTION .................................................................................................................................................49 RESULTS ...........................................................................................................................................................52 ELL Neurons Respond to Prey-Like Stimuli despite Self-Generated Interference ...........................................53 Improvements in Neural Detection of Prey-Like Stimuli due to Negative Images ...........................................60 Enhanced Behavioral Responses to Prey-Like Stimuli associated with Negative Image Formation ................67 Manipulating Synaptic Plasticity in ELL disrupts Neural Coding and Behavioral Responses to Prey-Like Stimuli .........................................................................................................................................................69 DISCUSSION ......................................................................................................................................................76 METHODS .........................................................................................................................................................80 A CEREBELLUM-LIKE CIRCUIT IN THE AUDITORY SYSTEM CANCELS RESPONSES TO SELF-GENERATED SOUNDS ...................................................................................................................89 INTRODUCTION .................................................................................................................................................90 RESULTS ...........................................................................................................................................................92 DCN neurons respond preferentially to external versus self-generated sounds ..............................................92 Non-auditory signals related to licking revealed in DCN of deafened mice.................................................. 101 A role for the spinal trigeminal nucleus in cancelling self-generated sounds ............................................... 103 Adaptive cancellation of sounds correlated with behavior in DCN neurons ................................................. 106 DISCUSSION .................................................................................................................................................... 110 METHODS ....................................................................................................................................................... 115 CONCLUSION ........................................................................................................................... 125 CONCERNING THE DORSAL COCHLEAR NUCLEUS............................................................................................... 126 CONCERNING THE ELECTROSENSORY LOBE ...................................................................................................... 129 WORKS CITED ............................................................................................................................................... 133 i List of Figures FIGURE 1.1 SCHEMATIC OF REAFFERENCE PRINCIPAL. .............................................................................................. 6 FIGURE 1.2 DIFFERENCES IN AUDITORY PERCEIVING OF SELF AND OTHER IN CONTROL AND SCHIZOPHRENIC PATIENTS ....................................................................................................................................................................15 FIGURE 1.3: SCHEMATIC OF MAJOR ANATOMICAL FEATURES OF A CEREBELLUM-LIKE CIRCUIT. .................................22 FIGURE 1.4 SIMPLIFIED SCHEMATIC OF CIRCUITRY OF THE DORSAL COCHLEAR NUCLEUS. ........................................27 FIGURE 1.5 EXAMPLE RESPONSE PROPERTIES OF DCN NEURONS..............................................................................29 FIGURE 1.6 HISTOLOGICAL SECTION SHOWING THE MORMYRID ELECTROSENSORY LOBE...........................................33 FIGURE 1.7 SCHEMATIC OF ELECTROSENSORY INPUT IN MORMYRIDS .......................................................................35 FIGURE 1.8 SIMPLIFIED CIRCUITRY OF THE MORMYRID ELL. ...................................................................................36 FIGURE 1.9 PLASTIC RESPONSES TO SENSORY CONSEQUENCES OF THE EOD. ............................................................43 FIGURE 1.10 MOSSY FIBER AND UBC RESPONSES TO EOCD....................................................................................46 FIGURE 2.1 SCHEMATIC ILLUSTRATING HYPOTHESIZED ROLE OF NEGATIVE IMAGES IN ENHANCING NEURAL CODING OF EXTERNAL STIMULI. ......................................................................................................................................52 FIGURE 2.2 ACCURATE DETECTION OF PREY-LIKE STIMULI IN ELL DESPITE SELF-GENERATED INTERFERENCE ...........54 FIGURE 2.3 BASIC PROPERTIES OF ELECTRORECEPTOR AFFERENTS, E CELLS, AND I CELLS.........................................56