SHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España

Yefremova, Z. A.; Kravchenko, V. D. Interactions among host plants, leaf miners and their in the forest- steppe zone of (Insecta: Lepidoptera, ) SHILAP Revista de Lepidopterología, vol. 43, núm. 170, junio, 2015, pp. 271-280 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España

Available in: http://www.redalyc.org/articulo.oa?id=45541421012

How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the , and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative 271-280 Interactions among host 3/6/15 10:45 Página 271

SHILAP Revta. lepid., 43 (170), junio 2015: 271-280 eISSN: 2340-4078 ISSN: 0300-5267

Interactions among host plants, Lepidoptera leaf miners and their parasitoids in the forest-steppe zone of Russia (Insecta: Lepidoptera, Hymenoptera)

Z. A. Yefremova & V. D. Kravchenko

Abstract

The article reports on the quantitative description of the food web structure of the community consisting of 65 species of Lepidoptera leaf miners reared from 34 plant species, as well as 107 species of eulophid (Hymenoptera: ). The study was conducted in the forest-steppe zone of the Middle Volga in Russia over 13 years (2000-2012). Leaf miners have been found to be highly host plant-specific. Most of them are associated with only one or two plant species and therefore the number of links between trophic levels is 73, which is close to the total number of Lepidoptera species (linkage density is 1.12). Most of the Eulophidae species are generalists, in contrast to the Lepidoptera, and they are associated with many species of leaf-miners; this increases the number of links between the Lepidoptera and the Eulophidae up to 385 (linkage density is 3.6). KEY WORDS: Lepidoptera, Hymenoptera, Chalcidoidea, leaf-miners, host plants, Russia.

Interaciones entre plantas nutricias, Lepidoptera minadores de hojas y sus parasitoides en la zona de bosques esteparios de Rusia (Insecta: Lepidoptera, Hymenoptera)

Resumen

El artículo informa sobre la descripción cuantitativa de la red de comida de la comunidad consistente en 65 especies minadoras de Lepidoptera criados en 34 especies de plantas, así como 107 especies de avispas eulófidos parasitoides (Hymenoptera: Eulophidae). El estudio fue realizado durante 13 años en la zona de bosques esteparios del Volga medio en Rusia (2000-2012). Se ha encontrado que los minadores de hojas son altamente específicos a sus plantas huéspedes. La mayoría de ellos están asociados a una o dos plantas nutricias, por lo tanto el número de vínvulos de sus niveles tróficos es de 73, que está cerca del número total de especies de Lepidoptera (la densidad de conexión es de 1.12). La mayoría de las especies de Eulophidae son generalistas, en contraste con los Lepidoptera y están asociados con muchas especies de minadores; esto incrementa el número de enlaces entre Lepidoptera y Eulophidae hasta 385 (la densidad de conexión es 3.6). PALABRAS CLAVE: Lepidoptera, Hymenoptera, Chalcidoidea, minadores, plantas nutricias, Rusia.

Introduction

Parasitic Hymenoptera are found in a number of trophic interactions in terrestrial ecosystems. (LASALLE & GAULD, 1991). The structure of the host-parasitoid community that included leaf-miners (23 species) and their parasitoids (Eulophidae) on 29 plant species were studied in the temperate zone by ASKEW & SHAW (1974, 1979a, 1979b). Later, the food web

271 271-280 Interactions among host 2/6/15 11:43 Página 272

Z. A. YEFREMOVA & V. D. KRAVCHENKO

structure of leaf-miner-parasitoid community was analyzed by ROTT & GODFRAY (2000) in southern England. That assemblage included 12 species of the (Gracillariidae) reared from four tree species and 27 hymenopterous parasitoids (there were 19 species in eight genera of Eulophidae among them). Food web structures and seasonal changes in the - parasitoid communities in the temperate zone were also analyzed by HIRAO & MURAKAMI (2008). Based on data on 16 species of Gracillariidae leaf-miners, 58 species of parasitoids (50 of them belonged to Eulophidae and only 12 were identified to the species level) and seven plant species they revealed that the majority of the web parameters were relatively constant across seasons. The food web and its seasonal changes in Costa Rica were shown for 88 species of plants, 92 leaf-miners and 93 parasitoids by MEMMOTT et al. (1994); the same was analyzed by LEWIS et al. (2002) for 88 species of plants, 93 leaf-miners and 84 parasitoids in Central America. Both studies included leaf-mining from the orders Diptera, Coleoptera and Lepidoptera, but excluded Eulophidae parasitoids. The Middle Volga area is currently one of the best-studied regions in Russia in terms of Eulophidae, Lepidoptera leaf-miners and their host plants (YEFREMOVA et al., 2000, 2003, 2006, 2009, 2011, 2012; YEFREMOVA, 2002; YEFREMOVA, MISHCHENKO, 2008, 2009, 2010; YEGORENKOVA et al., 2012; ERMOLAEV et al., 2011; MISHCHENKO et al., 2011). The Eulophidae fauna in the Middle Volga region currently includes 224 species (YEFREMOVA et al., 2000; YEGORENKOVA et al., 2007). Leaf-miners known in the region belong to the family Gracillariidae (54 species; MISHCHENKO & ZOLOTUKHIN, 2003), (57 species; NIEUKERKEN et al., 2004) and Tischeriidae (4 species; SINEV, 2008). This allows us to include in this study two families, Nepticulidae and Tischeriidae, that have never been studied before in the food web structure. The objectives of our study are the following: (1) to show the plant–herbivore–parasitoid food web structure in the Middle Volga Region; (2) to reveal the rate of specificity between the trophic levels; and (3) to understand how many leaf-miner species share the same plant and how many parasitoid species can develop in the same leaf-miner.

Material and methods

STUDY SITE

Field surveys were conducted in the forest-steppe zone in 32 localities in the Ulyanovsk, Samara and Izhevsk regions (54º N 49º E and 52º N 46º E) during Spring-Summer, 2000-2012. The region has a mild continental climate with cold winters (average January temperature -13º C) and relatively hot summers (average July air temperature +19º C). Precipitation ranges from 350 mm in the south to 500 mm in the north. Most of the region is covered by forest-steppe landscape turning into steppe southwards. The list of plants of this area includes 1428 species, with about 100 tree species (BLAGOVESHCHENSKY & RAKOV, 1994).

LEAF SAMPLING

All mined leaves collected in the field were taken to the laboratory for rearing. Leaves with mines were kept separately in plastic containers. The method of rearing parasitoids was described elsewhere (YEFREMOVA & MISHCHENKO, 2008, 2010; YEFREMOVA et al., 2009, 2011, 2012).

IDENTIFICATION OF MATERIAL

Emerged adults of parasitoids were collected, mounted and labeled. Reared Eulophidae were identified by the first author, with the exception of Chrysocharis species that were identified by Dr

272 SHILAP Revta. lepid., 43 (170), junio 2015 271-280 Interactions among host 2/6/15 11:43 Página 273

INTERACTIONS AMONG HOST PLANTS, LEPIDOPTERA LEAF MINERS AND THEIR PARASITOIDS

Christer Hansson (Lund University, ). Identification keys for European species are provided by BOUCˇEK (1965), HANSSON (1985), TRIAPITSYN (1978), and STOROZHEVA et al. (1995). A total of 4785 Eulophidae specimens were identified to the species level and 192 specimens to the generic level. The material is deposited in the Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia. Emerged adult of Gracillariidae and Tischeriidae were identified by a group of specialists. Identification of some moths was done based on the shape of mines by Dr Erik Van Nieukerken.

DATABASE AND STATISTICS

All data were incorporated into a database of 404 samples, each with 10-15 mined leaves. The samples in the database were characterized by the locality, collection date, plant species, species of reared moths, number of specimens, species of parasitoids and number of parasitoid specimens (males and females separately). In order to characterize the food web, we apply some conventional indices. The connectance index is defined as a ratio of the number of actual links to the number of possible links. The linkage density is considered as a ratio between the number of species and the number of their links (PIMM, 1984). The linear (Pearson) coefficient of correlation is applied in order to estimate the strength of association between two variables; the partial correlation is applied in order to establish an association between two variables when the third variable is removed. The Paleontological Statistics Software Package (PAST) (HAMMER et al., 2001) is used for data analysis.

Results

The quantitative food web: In total, the food web comprises 34 plant species, 65 species of leaf-miners and 107 species of Eulophidae parasitoids (Fig. 1).

Fig. 1.– The semi-quantitative food web of plants, leaf-miner moths and their parasitoids.

SHILAP Revta. lepid., 43 (170), junio 2015 273 271-280 Interactions among host 2/6/15 11:43 Página 274

Z. A. YEFREMOVA & V. D. KRAVCHENKO

Plant key

Ulmus glabra Hudson, 1762 Trifolium alpinum Linnaeus, 1753 Scopoli, 1772 Trifolium alpestre Linnaeus, 1753 Miller, 1768 Linnaeus, 1753 Linnaeus, 1753 Rubus idaeus Linnaeus, 1753 Linnaeus, 1753 Rosa majalis Herrmann, 1762 Linnaeus, 1753 Linnaeus, 1753 Linnaeus, 1753 spinosa Linnaeus, 1753 Linnaeus, 1753 Orobus vernus Linnaeus, 1753 Linnaeus, 1753 Melilotus officinalis Linnaeus, 1753 Fragaria moschata Duchesne, 1766 Lathyrus sativus Linnaeus, 1753 oxyacantha Linnaeus, 1758 Caragana arborescens Lamarck, 1778 Cerasus vulgaris Miller, 1768 Viburnum lantana Linnaeus, 1753 Cerasus fruticosa Pallas, 1784 Lonicera xylosteum Linnaeus, 1753 Rhamnus cathartica Linnaeus, 1753 Roth, 1788 Linnaeus, 1753 Linnaeus, 1753 Linnaeus, 1753 Acer tataricus Linnaeus, 1753 Linnaeus, 1753 Linnaeus, 1753

Leaf-miner key

Phyllonorycter agilella (Zeller, 1846) ekebladella (Bjerkander, 1795) Phyllonorycter schreberella (Fabricius, 1781) (Nicelli, 1851) (Zeller, 1839) (Stainton, 1854) (Kumata, 1963) spinosella Joannis, 1908 (Frey, 1856) (Stainton, 1854) (Heinemann, 1862) (Frey, 1855) (Stainton, 1854) (Klimesch, 1950) (Snellen, 1875) (Tengström, 1848) Phyllonorycter pastorella (Zeller, 1846) (Stainton, 1861) (Bjerkander, 1790) Stigmella splendidissimella (Herrich-Schäffer, 1855) (Herrich-Schäffer, 1855) Phyllonorycter insignitella (Zeller, 1846) (Zeller, 1848) Stigmella rolandi Van Nieukerken, 1990 Phyllonorycter populifoliella (Treitschke, 1833) (Stainton, 1854) (Haworth, 1828) Phyllonorycter pomonella (Zeller, 1846) Ectoedemia turbidella (Zeller, 1848) (Stainton, 1854) Phyllonorycter comparella (Duponchel, 1843) Phyllonorycter nigrescentella Logan, 1851 pulverosella (Stainton, 1849) Phyllonorycter medicaginella (Gerasimov, 1930) Phyllonorycter corylifoliella (Hübner, 1796) Micrurapteryx gradatella (Herrich-Schäffer, 1855) Phyllonorycter pyrifoliella (Gerasimov, 1933) Phyllonorycter lantanella (Schrank, 1802) (Herrich-Schäffer, 1855) Phyllonorycter emberizaepennella (Bouché, 1834) (Stainton, 1854) Phyllonorycter ulmifoliella (Hübner, 1817) Ectoedemia arcuatella (Herrich-Schäffer, 1855) (Stainton, 1856) (Hübner, 1825) (Stainton, 1856) (Frey, 1858) (Wocke, 1862) (Doubleday, 1859) (Stainton, 1857) Phyllonorycter cerasicolella (Herrich-Schäffer, 1855) Stigmella naturnella (Klimesch, 1936) Stigmella catharticella (Stainton, 1853) Phyllonorycter kleemannella (Fabricius, 1781) Ectoedemia septembrella (Stainton, 1849) (Linnaeus, 1758) Phyllonorycter harrisella (Linnaeus, 1761) Phyllonorycter acerifoilella (Zeller, 1839) Phyllonorycter muelleriella Zeller, 1839 Ectoedemia sericopeza (Zeller, 1839) Phyllonorycter quercifoliella (Zeller, 1839) Phyllonorycter acerifoliella (Zeller, 1839) (Zeller, 1839) Phyllonorycter sylvella (Haworth, 1828) (Zeller, 1839)

274 SHILAP Revta. lepid., 43 (170), junio 2015 271-280 Interactions among host 2/6/15 11:43 Página 275

INTERACTIONS AMONG HOST PLANTS, LEPIDOPTERA LEAF MINERS AND THEIR PARASITOIDS

Parasitoid key

Chrysocharis sp. 5 Pediobius foliorum (Geoffroy, 1785) zoilus (Walker, 1839) Chrysocharis prodice (Walker, 1839) Achrysocharoides sp. 2 Pnigalio pectinicornis (Linnaeus, 1758) Oomyzus sp. 1 Sympiesis notata (Zetterstedt, 1838) Dicladocerus westwoodii Westwood, 1832 Chrysocharis pentheus (Walker, 1839) Oomyzus incertus (Ratzeburg, 1844) Horismenus specularis (Erdös, 1954) Neochrysocharis cuprifrons Erdös, 1954 Chrysocharis sp. (pentheus-group) Elachertus fenestratus Nees, 1834 Neochrysocharis formosus (Westwood, 1833) Pnigalio sp. 1 Omphale rubigus (Walker, 1839) Hyssopus nigritulus (Zetterstedt, 1838) Aprostocetus sp. 2 Diglyphus crassinervis Erdös, 1958 Tamarixia sp. 1 Diglyphus pusztensis (Erdös & Novicky, 1951) Pnigalio rotundiventris (Erdös, 1954) Chrysocharis laomedon (Walker, 1839) Achrysocharoides butus (Walker, 1839) Pnigalio soemius (Walker, 1839) Euplectrus liparidis Ferrière, 1941 Sympiesis gordius (Walker, 1848) Baryscapus sp. 1 Cirrospilus elegantissimus Westwood, 1832 Baryscapus sp. 3 Pediobius crassicornis (Thomson, 1878) Achrysocharoides sp. 4 Cirrospilus lyncus Walker, 1838 Pediobius pyrgo (Walker, 1839) Hyssopus geniculatus (Hartig, 1838) Pediobius flaviscapus (Thomson, 1878) Chrysocharis sp. 2 Sigmophora brevicornis (Panzer, 1804) Achrysocharoides sp. 5 Pediobius metallicus (Nees, 1834) Chrysocharis sp. 7 Chrysocharis pubens Delucchi, 1954 Pnigalio agraules (Walker, 1839) Chrysocharis sp. (pentheus-group) Minotetrastichus frontalis (Nees, 1834) Chrysocharis sp. 3 Cirrospilus pictus (Nees, 1834) Pediobius eubius (Walker, 1839) Sympiesis acalle (Walker, 1848) Elachertus pulcher (Erdös, 1961) Cirrospilus vittatus Walker, 1838 Aprostocetus sp. 3 Chrysocharis sp. 6 Oomyzus sp. 2 Chrysocharis albipes (Ashmead, 1904) Chrysocharis sp. 4 Chrysocharis collaris Graham, 1963 Rhicnopelte crassicornis (Nees, 1834) Sympiesis viridula (Thomson, 1878) Achrysocharoides insygnitellae (Erdös, 1966) Chrysocharis discalis Graham, 1975 Chrysocharis sp. n. 3. Diaulinopsis arenaria (Erdös, 1951) Pediobius cassidae Erdös, 1958 Chrysocharis nephereus (Walker, 1839) Aprostocetus sp. 1 Sympiesis dolichogaster Ashmead, 1888 Tamarixia sp. 2 Mischotetrastichus petiolatus (Erdös, 1961) Baryscapus sp. 2 sp. 3 Chrysocharis loranthellae Erdös, 1954 Sympiesis sericeicornis (Nees, 1834) Sympiesis flavopicta Boucˇek, 1959 Achrysocharoides sp. 1 Hyssopus simbirkiensis Mishchenko & Yefremova, 2012 Achrysocharoides atys (Walker, 1839) Tetrastichus sp. 1 Diglyphus chabrias (Walker, 1838) Chrysocharis idyia (Walker, 1839) Pediobius bruchicida (Rondani, 1872) Pnigalio mediterraneus Ferrière & Delucchi, 1957 Pediobius saulius (Walker, 1839) Pnigalio nemati (Westwood, 1838) Chrysocharis nautius (Walker, 1846) Chrysocharis sp. 8 Chrysocharis amanus (Walker, 1839) Chrysocharis aff. submutica Graham Cirrospilus diallus Walker, 1838 Hemiptarsenus ornatus (Nees, 1834) Chrysocharis polyzo (Walker, 1839) Chrysocharis sp. n. 1. Neochrysocharis aratus (Walker, 1838) Tetrastichus sp. 2 Chrysocharis phryne (Walker, 1839) Achrysocharoides sp. 3 Cirrospilus viticola (Rondani, 1877) Chrysocharis sp. n. 2. Pediobius phragmitis Boucˇek, 1965 Chrysocharis albicoxis Erdös, 1958 Euderus albitarsis (Zetterstedt, 1838) Achrysocharoides sp. Chrysocharis alpinus Yefremova, 2001 Chrysocharis sp. 1 Sympiesis gregori Boucˇek, 1959

SHILAP Revta. lepid., 43 (170), junio 2015 275 271-280 Interactions among host 2/6/15 11:43 Página 276

Z. A. YEFREMOVA & V. D. KRAVCHENKO

In Fig. 1 plants are arranged at the base with species of the same family linked by black bars. Each plant species is represented by a sphere with its volume being proportional to the number of miner species found feeding on that plant (for example numbers 9, 16 and 31 have a greater number of links with leaf-miners). The middle row of spheres represents miner species with volumes proportional to the total number of parasitoids reared from each species. Miners belong to three families, i.e. Nepticulidae (yellow), Gracillariidae (blue) and Tischeriidae (red). The top row of spheres represents parasitoids, their volumes proportional to the numbers of host species (for example 4, 11 and 13 have a greater number of links with host leaf miners). The thickness of the links between parasitoids and hosts is proportional to the strength of each interaction. The first trophic level comprises 34 plant species, viz. 10 bushes, 18 trees and 6 herbaceous plants. Most plant species belong to the families Rosaceae (10 spp.), Fabaceae (6 spp.) and Salicaceae (5 spp.), and others (13 spp.) to Asteraceae, Betulaceae, Caprifoliaceae, Corylaceae, Fagaceae, Hypericaceae, Rhamnaceae, Tiliaceae and Ulmaceae. The second trophic level consists of 65 leaf-miner species belonging to Gracillariidae (30 spp.), Nepticulidae (34 spp.) and Tischeriidae (1 spp.). The greatest number of moth species is recorded in the genera Phyllonorycter (Gracillariidae) (24 spp.) and Stigmella (Nepticulidae) (24 spp.). The genus Ectoedemia (Nepticulidae) is represented by four species, genera Tischeria (Tischeriidae) and Bohemannia (Nepticulidae) by only one species. Most species have been encountered only 1-5 times; only Phyllonorycter issikii and Phyllonorycter apparella are abundant (979 specimens, or 20.14% of total). The third trophic level comprises 107 parasitoid species of the subfamilies (53 spp.), (35 spp.), (18 spp.) and Entiinae (1 spp.). Most species are rare or uncommon. Abundant are Minotetrastichus frontalis (1112), Pnigalio soemius (784), Sympiesis gordius (577), Pnigalio agraules (452), Chrysocharis laomedon (309), and Sympiesis sericeicornis (299 specimens). Among 4785 reared specimens, females prevailed (3547 specimens, or 74.13% of total). The sex ratio in different species varies essentially (58.75-94.02%), although in all species it is biased towards females. Interactions between the 1st and 2nd trophic levels (figures in square brackets refer to the plant key in Fig. 1). About half the plant species hosted only one or two moth species. The most infected trees were B. pendula [31] (6 leaf-miner species), Q. robur [16] (6 spp.) and M. sylvestris [9] (5 ssp.). Out of 65 leaf-miner species, 58 were found only on one plant species; therefore the total number of links (73) between 1st and 2nd levels is close to the number of leaf-miner species (65). Seven species of leaf-miners were collected on two or three plant species; however each of those was associated with plants of the same family. The linkage density between plants and leaf-miners is 1.12 and the connectance index is 0.03. Interactions between the 2nd and 3rd trophic levels (figures in square brackets refer to the leaf-miner or parasitoid key in Fig. 1). In contrast to relationships between the leaf-miners and plants, the same parasitoid species was normally found in many species of leaf-miners. The highest number of parasitoids was found in P. issikii [4] (31 spp.), P. apparella [11] (20 spp.), P. populifoliella [13] (15 spp.). The total number of links between the parasitoids and leaf-miners reached 385, resulting in a linkage density = 3.60 and connectance index = 0.06. The species Pnigalio soemius [14], Sympiesis gordius [15] and Minotetrastichus frontalis [24] have the greatest number of links with hosts (Fig. 1). In order to show relationships between the levels we consider the number of leaf-miner and parasitoid species as a function of the number of samples (i.e. collecting efforts) taken per plant species (Fig. 2). If measured by linear correlation, the number of discovered leaf-miner species is grows when the number of samples increases (r = 0.754; p < 0.01), but in partial correlation the coefficient drops to 0.37 thus becoming insignificant. The coefficient of correlation between number of samples and number of parasitoids species is very high in both linear (r = +0.98; p < 0.01) and partial correlation (r = +0.94; p < 0.01). A positive linear correlation was also obtained for number of leaf-miner and parasitoid species (r = +0.675; p < 0.01), but in partial correlation it becomes negative and insignificant (r = -0.197) suggesting that this relation is spurious.

276 SHILAP Revta. lepid., 43 (170), junio 2015 271-280 Interactions among host 2/6/15 11:43 Página 277

INTERACTIONS AMONG HOST PLANTS, LEPIDOPTERA LEAF MINERS AND THEIR PARASITOIDS

35 33 30 31 34 25 28 32 Leaf-miner 20 species per 15 species of plant 13 15 24 17 30 9 10 10 15 Parasitoid 25 27 Number of species species per 26 5 species of plant 0 01020304050 Samples per species of plant

Fig. 2.– The number of leaf-miner and parasitoid species as a function of the number of collected samples per plant species. Data labels correspond to ordinal numbers of plants in the “Plant key”.

Discussion

The constructed food web includes a great number of Eulophidae species from a deciduous forest in the temperate zone. At the plant-leaf-miners trophic level only 73 of 2210 possible associations have been observed (connectance index 0.033), which reflects a high rate of leaf- miners’ monophagy. The value for our food web (0.03–0.06) is lower than that for Lepidoptera leaf- miners in a temperate deciduous forest in England (0.13-0.16) (ROTT & GODFRAY, 2000) and in a deciduous forest in (0.140) (HIRAO & MURAKAMI, 2008). The linkage density between plants and leaf-miners is 1.12. The third trophic level includes parasitoids that infect different leaf- miners. The linkage density between the parasitoids and leaf-miners is 3.60 and the connectance index is 0.06. The present research shows great differences in host-specificity of the leaf-miners and parasitoids. Since most species of leaf-miners are monophagous, their number per plant is determined not so much by the number of samples taken, but by the plant species itself. Parasitoids are generalists (not specific to a particular leaf-miner), therefore their species diversity increases with the number of samples taken, regardless of leaf-miner species and species of plant. Thus, the more common the parasitoid, the more species of leaf-miners it could infect. Differences in host specificity between leaf-miners and parasitoids are probably derived from their ability to find their hosts. Lepidoptera species are well known as perfect recognizers of plants’ olfactory stimuli, which is extremely important during their egg-laying search. Moreover, larvae of the studied moths are obligate leaf-miners; i.e. they can develop only on the mesophyll of leaves. Feeding inside the mesophyll, as opposed to open phytophagy, results in a high rate of monophagy (MATTSON et al., 1988). The absence of host specificity in parasitoids probably results from their attraction to damaged leaves rather then to leaf-miner larvae. For parasitoids, it is probably impractical trying to recognize leaf-miners inside the leaf at a distance through olfactory stimuli. For example, a study of the tri- trophic relationships of the leaf-miner Stilbosis juvantis (Cosmopterigidae) showed that a higher rate of attacks by parasitoids is attributable to physical or chemical alterations in damaged leaves

SHILAP Revta. lepid., 43 (170), junio 2015 277 271-280 Interactions among host 2/6/15 11:43 Página 278

Z. A. YEFREMOVA & V. D. KRAVCHENKO

(FAETH, 1985). According to GIBSON et al. (1997), “many parasitoid species display some habitat-specific, rather than host-specific, behavior”. The insect in the leaf mine can belong to the Lepidoptera, Diptera or even Hymenoptera but chalcidoids develop as long as the habitat is appropriate.

Acknowledgements

Dr. Charles Godfray (University of Oxford, Oxford, UK) is thanked for drawing food web and important comments; Dr. Christer Hansson (Zoological Museum, Lund, Sweden) for identification of Chrysocharis and Ahcrysocharoides species; Dr. Erik van Nieukerken (National Museum of Natural History Naturalis, Leiden, The ) for identification of some Stigmella species; Ekaterina Yegorenkova, Andrey Mishchenko and Irina Strakhova (Ulyanovsk State Pedagogical University, Russia) and Ivan Ermolaev (Izhevsk State University, Russia) for rearing parasitoids; Andrey Mishchenko, Ivan Ermolaev and Svetlana Baryshnikova (Zoological Institution of Russian Academy of Sciences, St. Petersburg, Russia) for identification of Phyllonorycter species. Thanks are due to John Noyes (The Natural History Museum, London, UK) for providing us with access to the relevant collections in 2010.

BIBLIOGRAPHY

ASKEW, R. R. & SHAW, M. R., 1974.– An account of the Chalcidoidea (Hymenoptera) parasitizing leaf- mining insects of deciduous trees in Britain. – Biological Journal of the Linnean Society, 6(4): 289-335. ASKEW, R. R. & SHAW, M. R., 1979a.– Mortality factors affecting the leaf-mining stages of Phyllonorycter (Lepidoptera: Gracillariidae) on oak and . 2. Analysis of the mortality factors.– Zoological Journal of the Linnean Society, 67: 31-49. ASKEW, R. R. & SHAW, M. R., 1979b.– Mortality factors affecting the leaf-mining stages of Phyllonorycter (Lepidoptera: Gracillariidae) on oak and birch. 2. Biology of the parasite species.– Zoological Journal of the Linnean Society, 67: 51-64. BOUCˇEK, Z. 1965.– Studies of European Eulophidae, IV: Pediobius Walk. And two allied genera (Hymenoptera).– Acta entomologica Musei nationalis Pragae, 36: 5-90. BLAGOVESHCHENSKY, V. V. & RAKOV, N. S. 1994.– Konspect flory visshyh sosudistyh rasteniy Ulyanovskoy oblasti (Synopsis of flora of vascular plants of the Ulyanovsk province): 116 pp. Ulyanovsk Branch of Moscow State University, Moscow. (In Russian) EGORENKOVA, E. N., EFREMOVA, Z. A., KRAVCHENKO, V. D. & MISHCHENKO, A. V. 2012.– Eulophidae (Hymenoptera) parasitoids of mining Gracillariidae (Lepidoptera) in forests of the Samara Region.– Plant Protection News, 3: 45-49. (In Russian) ERMOLAEV, I. V., EFREMOVA, Z. A. & IZHBOLDINA, N. V. 2011.– Parasitoides as a morality factor for the lime leaf-miner (Phillonorycter issikii, Lepidoptera, Gracillariidae).– Zoologichesky Zhurnal, 90(1): 24- 32. FAETH, S. H. 1985.– Host leaf selection by leaf-miners interactions among three trophic levels. Ecology, 66(3): 870-875. GIBSON, G. A. P., HUBER, J. T. & WOOLLEY, J. B., 1997.– Annotated keys to the genera of Nearctic Chalcidoidea (Hymenoptera): 794 pp. NRC Research Press, Ottawa, Ontario. HAMMER, Ø., HARPER, D. A. T. & RYAN, P. D., 2001.– PAST: Paleontological statistics software package for education and data analysis.– Palaeontologia Electronica, 4(1): 9 pp. (http://palaeo- electronica.org/2001_1/past/issue1_01.htm) HANSSON, C., 1985.– and biology of the Palaearctic species of Chrysocharis Förster, 1856 (Hymenoptera: Eulophidae).– Entomologica Scandinavica, 26: 1-130. HIRAO, T. & MURAKAMI, M., 2008.– Quantitative food webs of lepidopteran leaf-miners and their parasitoids in a Japanese deciduous forest.– Ecological Research, 23: 159-168. LASALLE, J. & GAULD, I. D., 1991.– Parasitic Hymenoptera and the biodiversity crisis.– Redia, 74: 315-334. LEWIS, O. T., MEMMOTT, J., LASALLE, J., LYAL, C. H. C., WHITEFOORD, C. & GODFRAY, H. C. J.,

278 SHILAP Revta. lepid., 43 (170), junio 2015 271-280 Interactions among host 2/6/15 11:43 Página 279

INTERACTIONS AMONG HOST PLANTS, LEPIDOPTERA LEAF MINERS AND THEIR PARASITOIDS

2002.– Structure of a diverse tropical forest insect-parasitoid community.– Journal of Ecology, 71: 855-873. MEMMOTT, J., GODFRAY, H. C. J & CAULD I. D., 1994.– The structure of a tropical host-parasitoid community.– Journal of Animal Ecology, 63: 521-540. MATTSON, W. J., LAWRENCE, R. K, HAACK, R. A., HERMS, D. A. & CHARLES, P. J., 1988.– Defensive strategies of woody plants against different insect-feeding guilds in relation to plant ecological strategies and intimacy of association with insects: 3-38. In W. J. MATTSON, J. LEVIEWR AND C. BERNARD- DAGAN, eds. Mechanisms of Woody Plant Defenses against Insects: Search for Pattern: 416 pp. Springer- Verlag, New York. MISHCHENKO, A. V., YEFREMOVA, Z. A. & YEGORENKOVA, Å. N., 2011.– Parasitism of chalcid (Hymenoptera: Eulophidae) on leaf-miners moths: 72 pp. Ulyanovsk: «Corporation of technological improving». (In Russian) MISHCHENKO, A. V. & ZOLOTUKHIN, V. V., 2003.– Leaf-mining moths pestryanki genus Phyllonorycter Hbn., 1822 (Lepidoptera: Gracillariidae) Ulyanovsk Region.– Priroda Simbirskogo kraya. Ulyanovsk, 4: 47-53. NIEUKERKEN, E. J. VAN, ZOLOTUHIN, V. V. & MISTCHENKO, A. V., 2004.– Nepticulidae from Volga and Ural regions.– Nota lepidopterologica, 27(2-3): 125-157. PIMM, S. L., 1984.– The complexity and stability of ecosystemes.– Nature, 307(5949): 321-326. ROTT, A. S. & GODFRAY, H. C. J., 2000.– The Structure of a leaf-miner-parasitoids Community.– Journal of Animal Ecology, 69: 274-289. SINEV, S. Yu. 2008.– Catalogue of the Lepidoptera of Russia: 425 pp. KMK Press, St. Petersburg, Moscow. STOROZHEVA, N. A., KOSTJUKOV, V. V., YEFREMOVA Z. A., 1995.– 46. Family Eulophidae, Subfamily Eulophinae.– In P. A. LER (Ed.). Key to the insects of Russian Far East in six volumes, 4(2): 346-505. Dal’nauka, Vladivostok. (In Russian) TRIAPITSYN, V. A., 1978.– Hymenoptera II. Chalcidoidea, 13. Sem. Eulophidae – Evlofidy (excl. Tetrastichinae): 381-467.– In G. S. MEDVEDEV (Ed.). Opredelitel’ Nasekomykh Evropey’skoy Chasti SSSR, Tom III, Pereponchatokrylye, Vtoraya [=2nd] chast’: 759 + 1 pp. Nauka, Leningrad. (In Russian) YEFREMOVA, Z. A., 2002.– Catalogue of the Eulophidae (Hymenoptera) of Russia.– Linzer biologische Beiträge, 34(1): 563-618. YEFREMOVA, Z. A., KRISKOVICH, M. V. & SHROLL O. JU., 2000.– Parasitic wasps of Eulophidae (Hymenoptera, Chalcidoidea, Eulophidae) of Ulyanovsk province: 153-145.– In A. Yu ISAEV (ed.). Nature of Ulyanovsk Province. Insects and of Ulyanovsk province. Sbornik nauchnich statey, 9: 184 pp. Ulyanovsk’s branch of Moscow State University, Moscow. (In Russian) YEFREMOVA, Z. A., MISHCHENKO, A. V. & FOMINA, E. N., 2003.– To study parasitofauna of the genus Phyllonorycter Hbn, 1822 (Lepidoptera: Gracillariidae): 31-35. Priroda Simbirskogo kraya, Ulyanovsk. (In Russian) YEFREMOVA, Z. A. & MISHCHENKO, A. V., 2008.– The parasitoid complex (Hymenoptera, Eulophidae) of the lime leaf-miner Phyllonorycter issikii (Lepidoptera, Gracillariidae) from the Middle Volga Basin.– Zoologichesky Zhurnal, 87(2): 189-196. YEFREMOVA, Z. A., KRAYUSHKINA, A. V. & MISHCHENKO, A. V., 2009.– Parasitoid complexes (Hymenoptera, Eulophidae) of leaf-miners of the genus Phyllonorycter (Lepidoptera, Gracillariidae) in the Middle Volga Basin.– Entomological Review, 89(8): 1213-1221. YEFREMOVA, Z. A. & MISHCHENKO, A. V., 2009.– New dates about trophiñ links of Eulophidae (Hymenoptera: Chalcidoidea) with Lepidoptera in the Middle Volga.– Entomologicheskoe Obozrenie, 88(1): 29-37. YEFREMOVA, Z. A. & MISHCHENKO, A. V., 2010.– The dynamics of the populations of dominant parasitoids (Hymenoptera: Eulophidae) of Phyllonorycter issikii (Kumata) (Lepidoptera: Gracillariidae) in the Middle Volga Basin (Russia).– Proceeding of the Russian Entomological Society, 80(2): 64-75. YEFREMOVA, Z. A., MISHCHENKO, A. V., YEGORENKOVA, E. N., STRAKHOVA, I. S. & LENGESOVA, N. A., 2011.– Eulophidae (Hymenoptera) parasitoids of Phyllonorycter aparella and Ph. Populifoliella (Lepidoptera: Gracillariidae), pests of Populus tremula and Populus nigra in Ulyanovsk region, Russia.– Zoologichesky Zhurnal, 90(4): 438-444. YEFREMOVA, Z. A., YEGORENKOVA, E. & MISHCHENKO, A. V., 2012.– Eulophid wasps (Hymenoptera, Eulophidae), parasitoids of leaf-mining moths (Lepidoptera: Gracillariidae, Nepticulidae, Tischeriidae) on the English oak in the Middle Volga Area.– Entomological Review, 93(3): 309-315.

SHILAP Revta. lepid., 43 (170), junio 2015 279 271-280 Interactions among host 2/6/15 12:29 Página 280

Z. A. YEFREMOVA & V. D. KRAVCHENKO

YEGORENKOVA, E. N., YEFREMOVA, Z. A. & KOSTJUKOV, V. V., 2007.– To study subfamily Tetrastichinae (Hymenoptera: Eulophidae) in the Middle Volga.– Entomologicheskoe Obozrenie, 86(4): 781-796.

*Z. A. Y. Department of Zoology Department of Zoology Ulyanovsk State Pedagogical University The George S. Wise Faculty of Life Sciences Ulyanovsk, 432700 Tel-Aviv University RUSIA / RUSSIA 69978 Tel-Aviv E-mail: [email protected] / ISRAEL E-mail: [email protected]

V. D. K. Department of Zoology The George S. Wise Faculty of Life Sciences Tel-Aviv University 69978 Tel-Aviv ISRAEL / ISRAEL E-mail: [email protected]

*Autor para la correspondencia / Corresponding author

(Recibido para publicación / Received for publication 23-V-2014) (Revisado y aceptado / Revised and accepted 25-IX-2014) (Publicado / Published 30-VI-2015)

280 SHILAP Revta. lepid., 43 (170), junio 2015