03 Dino-Mammal Like Reptile.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

03 Dino-Mammal Like Reptile.Pdf Early amniotes (anapsids, mammal-like reptiles and the earliest dinosaurs) Amniota - fosterhinnedjur Amphibia Synapsida (incl. mammals) anapsids Diapsida (incl.dinosaurs) amnion amniote skulls Early amniotes 1) Anapsid reptiles Most primitive skull? – no temporal opening Pareiasauria (Permian, anapsid herbivores) Scutosaurus, Late Permian of Russia 2.4 m long Pareiasauria (Permian, anapsid herbivores) Deltavjatia, Late Permian of Russia Modern Anapsida – turtles and relatives “Early” amniotes – 2) turtles Amphibia Synapsida (incl. mammals) anapsids Diapsida (incl.dinosaurs) amnion Early amniotes: 3) Synapsida Early synapsids a.k.a. Mammal-like reptiles Mammal-like reptiles Mammal-like reptiles Mammal-like reptiles (Synapsida) Synapsid evolution therapsids pelycosaurs Archaeothyris: Carboniferous; one of the oldest synapsids Hylonomus: anapsid Carboniferous; earliest confirmed reptile Pelycosaurs Dicynodonta (Therapsida) Placerias Cynodontia Inostrancevia – a cynodont Permian, Russia The first mammals (A) early Triassic cynodont Thrinaxodon (B) advanced cynodont Probelesodon from the middle Triassic. (C) early mammal Megazostrodon from the early Jurassic Morganucodon • late Triassic • shrew-like • insectivorous • mammaliform reptilian jaw joint Mammal characters - Jaws och auditory ossicles (hörselben) incus (anvil) malleus (hammer) Differentiated teeth Early amniotes: 4) Diapsida • since Carboniferous • but not common until the Triassic Lepidosauria Archosauria Diapsida diapside skull ARCHOSAURIA (ruling lizzards; "Härskarödlor") Triassic-Recent Archosauria “thecodonts” crocodiles dinosaurs birds pterosaurs ARCHOSAURIA Triassic - Recent Archosauria “thecodonts” crocodiles dinosaurs birds pterosaurs “Thecodonts” (“socket-toothed”), Triassic Lagosuchus ARCHOSAURIA Triassic - Recent crocodiles and their relatives: dinosaurs and pterosaurs: crurotarsal ankle joint mesotarsal ankle joint CROCODILIA (Crurotarsi, Crocodylomorpha) (crocodiles; Jurassic - Recent) biggest living reptiles (6 m) Archosauria “thecodonts” crocodiles dinosaurs birds pterosaurs Dinosaur ancestor - Dinosauromorpha Lagosuchus Middle Triassic DINOSAURIA - synapomorphies DINOSAURIA "skräcködlor"; Triassic-Cretaceous .
Recommended publications
  • The Conservation Biology of Tortoises
    The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1.
    [Show full text]
  • Reptiles A. Cladistics 1. Many Groups of Organisms
    Reptiles A. Cladistics 1. Many groups of organisms are “polyphyletic” a. This means that the group combines 2 or more lineages - example=fish 2. Cladistics follows only pure lineages going back in time - example Osteichthys B. Reptile Classifiecation - looks like a polyphyletic group 1. Dry skin - no loss of water through skin like amphibians 2. Aminotic egg - an egg that can survive on dry land - in contrast with the amphibian egg C. Mammals and Birds are derived from different lineages of reptiles (We will see below) D. Stem Reptiles 1. Different lineages based on the temporal region of their skulls - number of holes (or bars) a. These holes are necessary to accommodate large jaw muscles b. Anapsid Skull - no holes in temporal - jaws can move fast, but with little force 1. Muscles that move the jaw are small 2. There is no good paleotological evidence for the transition between amphibians and reptiles - no fossil intermediates a. Fossil amphibians have lots of dermal bones in skull b. Amphibians have no temporal openings in skull 1. (Aside) both fossil amphibians and primitive reptiles have a parietal “eye” that senses light and dark (“third” eye in middle of head) c. Reptile skull is higher than amphibian to accomodate larger jaw muscles d. Of the modern reptiles only turtles are anapsids 2. Diapsid Skull - has holes in the temporal region a. Diapsid reptiles gave rise to lizards and snakes - they have a diapsid skull 1. Also Tuatara, crocodiles, dinosaurs and pterydactyls Reptiles b. One group of diapsids also had a pre-orbital hole in the skull in front of eye - this hole is still preserved in the birds - this anatomy suggests strongly that the birds are derived from the diapsid reptiles 3.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • Origin and Beyond
    EVOLUTION ORIGIN ANDBEYOND Gould, who alerted him to the fact the Galapagos finches ORIGIN AND BEYOND were distinct but closely related species. Darwin investigated ALFRED RUSSEL WALLACE (1823–1913) the breeding and artificial selection of domesticated animals, and learned about species, time, and the fossil record from despite the inspiration and wealth of data he had gathered during his years aboard the Alfred Russel Wallace was a school teacher and naturalist who gave up teaching the anatomist Richard Owen, who had worked on many of to earn his living as a professional collector of exotic plants and animals from beagle, darwin took many years to formulate his theory and ready it for publication – Darwin’s vertebrate specimens and, in 1842, had “invented” the tropics. He collected extensively in South America, and from 1854 in the so long, in fact, that he was almost beaten to publication. nevertheless, when it dinosaurs as a separate category of reptiles. islands of the Malay archipelago. From these experiences, Wallace realized By 1842, Darwin’s evolutionary ideas were sufficiently emerged, darwin’s work had a profound effect. that species exist in variant advanced for him to produce a 35-page sketch and, by forms and that changes in 1844, a 250-page synthesis, a copy of which he sent in 1847 the environment could lead During a long life, Charles After his five-year round the world voyage, Darwin arrived Darwin saw himself largely as a geologist, and published to the botanist, Joseph Dalton Hooker. This trusted friend to the loss of any ill-adapted Darwin wrote numerous back at the family home in Shrewsbury on 5 October 1836.
    [Show full text]
  • Comparative Bone Microstructure of Three Archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina
    Comparative bone microstructure of three archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina JORDI ALEXIS GARCIA MARSÀ, FEDERICO L. AGNOLÍN, and FERNANDO E. NOVAS Marsà, J.A.G., Agnolín, F.L., and Novas, F.E. 2020. Comparative bone microstructure of three archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina. Acta Palaeontologica Polonica 65 (2): 387–398. The Chañares Formation exhibits one of the most important archosauriform records of early Carnian ecosystems. Here we present new data on the palaeohistology of Chañares archosauriforms and provide new insights into their paleobiology, as well as possible phylogenetically informative traits. Bone microstructure of Lagerpeton chanarensis and Tropidosuchus romeri is dominated by fibro-lamellar tissue and dense vascularization. On the other hand, Chanaresuchus bonapartei is more densely vascularized, but with cyclical growth characterized by alternate fibro-lamellar, parallel-fibered and lamellar-zonal tissues. Dense vascularization and fibro-lamellar tissue imply fast growth and high metabolic rates for all these taxa. These histological traits may be tentatively interpreted as a possible adaptative advantage in front of Chañares Formation environmental conditions. Key words: Archosauromorpha, Lagerpeton, Tropidosuchus, paleobiology, paleohistology, Mesozoic, South America. Jordi Alexis Garcia Marsà [[email protected]] and Fernando E. Novas [[email protected]], Labora- torio de Anatomía Comparada y Evolución de los Vertebrados,
    [Show full text]
  • A Re-Evaluation of the Enigmatic Dinosauriform Caseosaurus Crosbyensis from the Late Triassic of Texas, USA and Its Implications for Early Dinosaur Evolution
    A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution MATTHEW G. BARON and MEGAN E. WILLIAMS Baron, M.G. and Williams, M.E. 2018. A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution. Acta Palaeontologica Polonica 63 (1): 129–145. The holotype specimen of the Late Triassic dinosauriform Caseosaurus crosbyensis is redescribed and evaluated phylogenetically for the first time, providing new anatomical information and data on the earliest dinosaurs and their evolution within the dinosauromorph lineage. Historically, Caseosaurus crosbyensis has been considered to represent an early saurischian dinosaur, and often a herrerasaur. More recent work on Triassic dinosaurs has cast doubt over its supposed dinosaurian affinities and uncertainty about particular features in the holotype and only known specimen has led to the species being regarded as a dinosauriform of indeterminate position. Here, we present a new diagnosis for Caseosaurus crosbyensis and refer additional material to the taxon—a partial right ilium from Snyder Quarry. Our com- parisons and phylogenetic analyses suggest that Caseosaurus crosbyensis belongs in a clade with herrerasaurs and that this clade is the sister taxon of Dinosauria, rather than positioned within it. This result, along with other recent analyses of early dinosaurs, pulls apart what remains of the “traditional” group of dinosaurs collectively termed saurischians into a polyphyletic assemblage and implies that Dinosauria should be regarded as composed exclusively of Ornithoscelida (Ornithischia + Theropoda) and Sauropodomorpha. In addition, our analysis recovers the enigmatic European taxon Saltopus elginensis among herrerasaurs for the first time.
    [Show full text]
  • Gorgonopsia: Rubidgeinae) with Implications for the Identity of This Species
    Rediscovery of the holotype of Clelandina major Broom, 1948 (Gorgonopsia: Rubidgeinae) with implications for the identity of this species Christian F. Kammerer North Carolina Museum of Natural Sciences, 11 W. Jones Street, Raleigh, North Carolina 27604, U.S.A., and Evolutionary Studies Institute, University of the Witwatersrand, Private Bag 3, WITS, Johannesburg, 2050 South Africa E-mail: [email protected] Received 7 November 2017. Accepted 8 December 2017 No specimen number was given for the holotype of the rubidgeine gorgonopsian species Clelandina major Broom, 1948 in its original description. Historically, a specimen in the Rubidge Collection (RC 94) was considered to represent Broom’s type specimen for C. major. However, recent study has revealed that the holotype of C. major is in fact a different specimen in the McGregor Museum in Kimberley (MMK 5031). The morphology of this specimen is consistent with the genus Clelandina, contra work based on RC 94 that considered C. major referable to Aelurognathus. Clelandina major is here considered synonymous with the type species Clelandina rubidgei. MMK 5031 represents only the fifth known specimen of this rare and unusual gorgonopsian. Keywords: Synapsida, Therapsida, Gorgonopsia, Permian, holotype, taxonomy. Palaeontologia africana 2017. ©2017 Christian F.Kammerer. This is an open-access article published under the Creative Commons Attribution 4.0 Unported License (CC BY4.0). To view a copy of the license, please visit http://creativecommons.org/licenses/by/4.0/. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The article is permanently archived at: http://wiredspace.wits.ac.za/handle/10539/23480 INTRODUCTION provided no specimen numbers for the holotypes of Clelandina is one of the rarest and most unusual C.
    [Show full text]
  • Biomechanics of Running Indicates Endothermy in Bipedal Dinosaurs Herman Pontzer Washington University in St Louis
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2009 Biomechanics of running indicates endothermy in bipedal dinosaurs Herman Pontzer Washington University in St Louis Vivian Allen Royal Veterinary College, London John R. Hutchinson Royal Veterinary College, London Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Part of the Medicine and Health Sciences Commons Recommended Citation Pontzer, Herman; Allen, Vivian; and Hutchinson, John R., ,"Biomechanics of running indicates endothermy in bipedal dinosaurs." PLoS One.,. e7783. (2009). https://digitalcommons.wustl.edu/open_access_pubs/747 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Biomechanics of Running Indicates Endothermy in Bipedal Dinosaurs Herman Pontzer1*, Vivian Allen2, John R. Hutchinson2 1 Department of Anthropology, Washington University, St. Louis, Missouri, United States of America, 2 Structure and Motion Laboratory, Department of Veterinary Basic Sciences, The Royal Veterinary College, London, United Kingdom Abstract Background: One of the great unresolved controversies in paleobiology is whether extinct dinosaurs were endothermic, ectothermic, or some combination thereof, and when endothermy first evolved in the lineage leading to birds. Although it is well established that high, sustained growth rates and, presumably, high activity levels are ancestral for dinosaurs and pterosaurs (clade Ornithodira), other independent lines of evidence for high metabolic rates, locomotor costs, or endothermy are needed. For example, some studies have suggested that, because large dinosaurs may have been homeothermic due to their size alone and could have had heat loss problems, ectothermy would be a more plausible metabolic strategy for such animals.
    [Show full text]
  • Ministerio De Cultura Y Educacion Fundacion Miguel Lillo
    MINISTERIO DE CULTURA Y EDUCACION FUNDACION MIGUEL LILLO NEW MATERIALS OF LAGOSUCHUS TALAMPAYENSIS ROMER (THECODONTIA - PSEUDOSUCHIA) AND ITS SIGNIFICANCE ON THE ORIGIN J. F. BONAPARTE OF THE SAURISCHIA. LOWER CHANARIAN, MIDDLE TRIASSIC OF ARGENTINA ACTA GEOLOGICA LILLOANA 13, 1: 5-90, 10 figs., 4 pl. TUCUMÁN REPUBLICA ARGENTINA 1975 NEW MATERIALS OF LAGOSUCHUS TALAMPAYENSIS ROMER (THECODONTIA - PSEUDOSUCHIA) AND ITS SIGNIFICANCE ON THE ORIGIN OF THE SAURISCHIA LOWER CHANARIAN, MIDDLE TRIASSIC OF ARGENTINA* by JOSÉ F. BONAPARTE Fundación Miguel Lillo - Career Investigator Member of CONICET ABSTRACT On the basis of new remains of Lagosuchus that are thoroughly described, including most of the skeleton except the manus, it is assumed that Lagosuchus is a form intermediate between Pseudosuchia and Saurischia. The presacral vertebrae show three morphological zones that may be related to bipedality: 1) the anterior cervicals; 2) short cervico-dorsals; and 3) the posterior dorsals. The pelvis as a whole is advanced, in particular the pubis and acetabular area of the ischium, but the ilium is rather primitive. The hind limb has a longer tibia than femur, and the symmetrical foot is as long as the tibia. The tarsus is of the mesotarsal type. The morphology of the distal area of the tibia and fibula, and the proximal area of the tarsus, suggest a stage transitional between the crurotarsal and mesotarsal conditions. The forelimb is proportionally short, 48% of the hind limb. The humerus is slender, with advanced features in the position of the deltoid crest. The radius and ulna are also slender, the latter with a pronounced olecranon process. A new family of Pseudosuchia is proposed for this form: Lagosuchidae.
    [Show full text]
  • 29 | Vertebrates 791 29 | VERTEBRATES
    Chapter 29 | Vertebrates 791 29 | VERTEBRATES Figure 29.1 Examples of critically endangered vertebrate species include (a) the Siberian tiger (Panthera tigris), (b) the mountain gorilla (Gorilla beringei), and (c) the Philippine eagle (Pithecophega jefferyi). (credit a: modification of work by Dave Pape; credit b: modification of work by Dave Proffer; credit c: modification of work by "cuatrok77"/Flickr) Chapter Outline 29.1: Chordates 29.2: Fishes 29.3: AmphiBians 29.4: Reptiles 29.5: Birds 29.6: Mammals 29.7: The Evolution of Primates Introduction Vertebrates are among the most recognizable organisms of the animal kingdom. More than 62,000 vertebrate species have been identified. The vertebrate species now living represent only a small portion of the vertebrates that have existed. The best-known extinct vertebrates are the dinosaurs, a unique group of reptiles, which reached sizes not seen before or after in terrestrial animals. They were the dominant terrestrial animals for 150 million years, until they died out in a mass extinction near the end of the Cretaceous period. Although it is not known with certainty what caused their extinction, a great deal is known about the anatomy of the dinosaurs, given the preservation of skeletal elements in the fossil record. Currently, a number of vertebrate species face extinction primarily due to habitat loss and pollution. According to the International Union for the Conservation of Nature, more than 6,000 vertebrate species are classified as threatened. Amphibians and mammals are the classes with the greatest percentage of threatened species, with 29 percent of all amphibians and 21 percent of all mammals classified as threatened.
    [Show full text]
  • Dating the Origin of Dinosaurs COMMENTARY Hans-Dieter Suesa,1
    COMMENTARY Dating the origin of dinosaurs COMMENTARY Hans-Dieter Suesa,1 The Triassic subclades, sauropodomorphs and theropods, and In 1834, the salt-mining expert Friedrich von Alberti a nondinosaurian dinosauriform (7). This unexpected applied the name “Trias” to a succession of sedimentary diversity indicates that the origin and initial evolutionary rocks in Germany, which (from oldest to youngest) are the radiation of dinosaurs clearly predated the deposition of Buntsandstein (“colored sandstone”), Muschelkalk (“clam the Ischigualasto Formation. The Agua de la Peña Group limestone”), and Keuper (derived from a word for the also encompasses several other Triassic-age continental characteristic marls of this unit) (1). The Buntsandstein and deposits, one of which, the Chañares Formation, has Keuper each comprise predominantly continental sili- yielded a diverse assemblage of tetrapods including ciclastic strata, whereas the Muschelkalk is made up of a variety of archosaurs closely related to dinosaurs carbonates and evaporites deposited in a shallow epi- (Dinosauriformes) (8). The latter are small-bodied forms continental sea. Alberti’s threefold rock succession more with long, slender hindlimbs suitable for cursorial locomo- or less corresponds to the standard division of the tion and comprise Marasuchus (formerly “Lagosuchus”), Triassic into Lower, Middle, and Upper Triassic series. Pseudolagosuchus, and Lewisuchus (9). The Chañares Later researchers used fossils of marine invertebrates to correlate carbonate units exposed along the
    [Show full text]
  • Evolution and Homology of the Astragalus in Early Amniotes: New Fossils, New Perspectives
    JOURNAL OF MORPHOLOGY 267:415–425 (2006) Evolution and Homology of the Astragalus in Early Amniotes: New Fossils, New Perspectives F. Robin O’Keefe,1* Christian A. Sidor,1 Hans C.E. Larsson,2 Abdoudaye Maga,3 and Oumarou Ide3 1Department of Anatomy, New York College of Osteopathic Medicine, Old Westbury, New York 11568 2Redpath Museum, McGill University, Montreal, Quebec H3A 2K6, Canada 3Institut de Recherches en Sciences Humaines, Niamey, Niger Republic ABSTRACT The reorganization of the ankle in basal tarsal elements are unclear, rendering the study of amniotes has long been considered a key innovation al- specific joint articulations difficult (Sumida, 1997, p. lowing the evolution of more terrestrial and cursorial be- 387). New data and new insights on the developmen- havior. Understanding how this key innovation arose is a complex problem that largely concerns the homologizing tal and evolutionary repatterning of the amniote of the amniote astragalus with the various ossifications in ankle are therefore of prime importance, for they the anamniote tarsus. Over the last century, several hy- bear on one of the key transitions in tetrapod his- potheses have been advanced homologizing the amniote tory: the attainment of full terrestriality after the astragalus with the many ossifications in the ankle of long transition from fin to limb (Clack, 2002). amphibian-grade tetrapods. There is an emerging consen- Perhaps the most important novelty within the sus that the amniote astragalus is a complex structure amniote tarsus is the astragalus, a large, complex emerging via the co-ossification of several originally sep- arate elements, but the identities of these elements re- bone comprising the primary area of articulation for main unclear.
    [Show full text]