Supplementary Information

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Information SUPPLEMENTARY INFORMATION The oldest known communal latrines provide evidence of gregarism in Triassic megaherbivores Lucas E. Fiorelli*, Martín D. Ezcurra, E. Martín Hechenleitner, Eloisa Argañaraz, Jeremías R. A. Taborda, M. Jimena Trotteyn, M. Belén von Baczko & Julia B. Desojo *To whom correspondence should be addressed. E-mail: [email protected] 1. Provenance, authenticity, geological setting and stratigraphy of the communal latrines of the Chañares Formation 2. Depositional setting 3. Taphonomy 4. Statistics 5. Age of the Chañares Formation 6. Fossil tetrapods from the Chañares Formation 7. Dinodontosaurus body size 8. Dinodontosaurus as a gregarious megaherbivore 9. References 1. Provenance, authenticity, geological setting and stratigraphy of the communal latrines of the Chañares Formation. Several communal latrines were found in successive palaeontological field works conducted in 2011 and 2012 in outcrops of the Chañares Formation situated in the Talampaya National Park, La Rioja Province, northwestern Argentina (Supplementary Figure 1a). The Chañares Formation 1 crops out as part of the Ischigualasto-Villa Unión Basin, which represents a succession of continental deposits composed of 4,000 metres of alluvial, fluvial and lacustrine sediments 2,3 . The basin contains the reddish Talampaya and Tarjados formations as its lower- most units and corresponds to the Synrift 1 tectonic phase. The Talampaya Formation is dated as Induan/Olenekian (Early Triassic) and the Tarjados Formation as Anisian (early Middle Triassic) according to some authors 3,4 . The lower section of the Talampaya Formation is represented by alluvian fan deposits followed by fluvial and playa lake deposits in the middle and upper sections 4. The Tarjados Formation has aerealy extensive outcrops in the Talampaya National Park but at the moment no significant fossil vertebrate remains were reported. The Tarjados Formation is represented by a succession of fluvial-playa lake-fluvial depositional systems 4. The upper levels of the Tarjados Formation are characterized by thick and massive red sandstones and sporadic lents interspersed by coarse sandy and conglomeratic river channels, some of them showing cross-bedding stratification 3. Some pebbles, bioturbations (invertebrate burrows) and numerous carbonate nodules may occur together with abundant thick silicified rhizoliths. This rhizoliths possess ramifications with an important horizontal development, indicating a dense packing between lenticular bodies of ephemeral river channels. The latter strongly suggests the presence of an edaphic organization and pedogenetic alterations in the upper levels of the Tarjados Formation, which indicate the development of incipient palaeosoils in palaeoenvironments with relatively humid climates 5,6 . 2 Supplementary Figure 1 | Geological setting of the communal latrines and geochronology of the Chañares Formation. (a) Geologic map of the Chañares and El Torcido localities showing the communal latrine locations. ( b) Chronostratigraphical position of the Chañares Formation according to Desojo and col.26 . The Geologic Time Scale based on the GSA. Maps drawn in Corel Draw Graphics Suite X5 based on Google Earth images and personal field observations. 3 There is a silcrete level of uncertain origin upholstering the palaeotopography of the Tarjados Formation 3, showing some thick vertical veins irrumpting the upper levels of the sedimentary unit. The contact between the Tarjados and Chañares formations is a regional unconformity that locally exhibits up to 2 metres of relief 3. This unconformity delimits the base of the Agua de la Peña Group, which is represented by four very fossiliferous formations: the Chañares, Los Rastros, Ischigualasto, and Los Colorados formations 2,3 . The unconformity is associated with an early extensional episode deposited after a second synrift stage 4 that is characteristic of the Chañares-Los Rastros sequence. The Chañares Formation is one of the most fossiliferous Middle Triassic-early Late Triassic tetrapod-bearing assemblages worldwide 3 and is characterized by fluvial and alluvial deposits that represent the beginning of a synrift phase of sedimentation 4. The sedimentary unit was deposited in an active rift basin that received sediments from surrounding highlands, as well as copious amounts of volcanic ash 3,4 . The best sampled locality of the formation is the classic “Los Chañares” locality (Supplementary Figure 1a), which yielded hundreds of fairly complete and articulated tetrapod specimens (see Rogers et al. [2001] for a detail geological and sedimentological description of the Chañares Formation) 3. The Chañares Formation has two clearly distinct lithological units 1,3 (Supplementary Figure 1b) and, as a result, we suggest a more formal subdivision of the formation into a lower and an upper member. The lower member corresponds to the lower lithological unit that bears the volcanogenic concretions that typify the formation and contains most of the vertebrate fossil remains historically collected in the Chañares Formation 3. The two members of the Chañares Formation are described as follows. Lower member The lower member represents a rather homogeneous unit in the studied outcrops of the Talampaya National Park and reaches a thickness of 35 metres. The first metres of the 4 member are massive sandstones with some thin lenticular coarse sandy structures that correspond to sporadic anastomosed river channels (Supplementary Figure 2). These levels yielded non-concretioned vertebrate fossil remains, some of them partially articulated, with a different preservation than those yielded within the concretions (Supplementary Figure 3 and 4). In these levels, silicified and carbonate root traces –or rhizoconcretions– (Supplementary Figure 3a-b) are common and with a strong horizontal development across the fluvial system along together with some meandering horizontal burrows. The latters are immature paleosoils with poor vertical development, representing a typical poorly developed paleosoil near fluvial channels 7. The rhizolith morphology is not plant specific but is ecophenotypic (i.e., root patterns produced by specific environmental conditions) and suggests the development of incipient pedogenic horizons that correspond to a fossil rhizosphere in a palaeoenvironment with a relatively humid climate 5,8,9 . The lower five metres of the sedimentary unit are represented by fine and massive, slightly friable (Supplementary Figure 2), and yellowish-gray sandstones with a calcareous diagenetic matrix of microcrystalline silica and montmorillonite clay mineral 3. The grains generally have a size that ranges from 0.1 to 0.25 mm and are subangular with moderate sphericity and selection (Supplementary Figure 2d-e). Nevertheless, a sediment mixture is present, in which mono- and polycrystalline quartz grains are dominant and with a relatively high amount of sedimentary and volcanic lithic fragments and a lower concentration of feldspars forming a graywacke matrix-rich rock. The rest of the member is consolidated by a very fine and high relief calcite matrix (carbonate-mud matrix) (Supplementary Figure 3c), deposited together with grains, representing a quartz wacke sandstone and a grain-supported rock – packstone –. This rock has a poor grain selection and classification, with subrounded grains of 0.5 to 1.5 mm dominated by monocrystalline quartz. There are some microcrystalline quartz derived from the overlain Tarjados Formation and sedimentary and volcanic lithic fragments. 5 Supplementary Figure 2 | Sedimentary structures and rock thin sections from the lower member of the Chañares Formation. (a) Stratigraphic profile of the Top Ten locality. ( b) Thin section and microfabric of a typical volcanogenic concretion. ( c) Thin section and microfabric of the massive sedimentary level at the communal latrines. ( d and e) Typical microfabrics of the sandstone lenticular bodies at the first metres of the lower member. 6 Supplementary Figure 3 | Structures and fossils from the lower member of the Chañares Formation. (a and b) In situ rizoliths at the first metres of the lower member. ( c - e) Nonconcretioned vertebrate pinkish fossil remains from the first metres of the lower member. 7 Volcanogenic concretions (Supplementary Figures 2b and 4a,b) are common in the lower member and are particularly very large (~1–2 metre in diameter) in its upper half. The concretions in the upper half of the lower member yield the concretioned vertebrate fossils (Supplementary Figure 4c-d) described originally by Romer and collaborators1 and subsequent authors 3. The sedimentary mass-transport processes in the lower member suggest a gravity flow of mud, with a plastic mechanical behaviour and a sheared transport distributed through sediment mass, in which the strength principally from cohesion is due to clay content 3,10 . Subaerial mud flows occur commonly in semiarid regions after heavy rainfalls, but are also common in volcanic regions where volcanic debris are water saturated with deposits of muddy streams during heavy rains that accompanying eruptions 10 . We define two different beds within the lower member of the Chañares Formation (Supplementary Figure 1b): Bed #1–– Lower fluvial/paleosoil levels with abundant fossil remains associated to river channels in a semi-arid region. Fossil remains are generally not concretioned in a taphonomic association, but rarely articulated and present some weathering. Bed #2–– Middle/upper levels that correspond to floodplain
Recommended publications
  • Ischigualasto Formation. the Second Is a Sile- Diversity Or Abundance, but This Result Was Based on Only 19 of Saurid, Ignotosaurus Fragilis (Fig
    This article was downloaded by: [University of Chicago Library] On: 10 October 2013, At: 10:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Journal of Vertebrate Paleontology Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/ujvp20 Vertebrate succession in the Ischigualasto Formation Ricardo N. Martínez a , Cecilia Apaldetti a b , Oscar A. Alcober a , Carina E. Colombi a b , Paul C. Sereno c , Eliana Fernandez a b , Paula Santi Malnis a b , Gustavo A. Correa a b & Diego Abelin a a Instituto y Museo de Ciencias Naturales, Universidad Nacional de San Juan , España 400 (norte), San Juan , Argentina , CP5400 b Consejo Nacional de Investigaciones Científicas y Técnicas , Buenos Aires , Argentina c Department of Organismal Biology and Anatomy, and Committee on Evolutionary Biology , University of Chicago , 1027 East 57th Street, Chicago , Illinois , 60637 , U.S.A. Published online: 08 Oct 2013. To cite this article: Ricardo N. Martínez , Cecilia Apaldetti , Oscar A. Alcober , Carina E. Colombi , Paul C. Sereno , Eliana Fernandez , Paula Santi Malnis , Gustavo A. Correa & Diego Abelin (2012) Vertebrate succession in the Ischigualasto Formation, Journal of Vertebrate Paleontology, 32:sup1, 10-30, DOI: 10.1080/02724634.2013.818546 To link to this article: http://dx.doi.org/10.1080/02724634.2013.818546 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • The Anatomy of Asilisaurus Kongwe, a Dinosauriform from the Lifua
    THE ANATOMICAL RECORD (2019) The Anatomy of Asilisaurus kongwe,a Dinosauriform from the Lifua Member of the Manda Beds (~Middle Triassic) of Africa 1 2 3 STERLING J. NESBITT , * MAX C. LANGER, AND MARTIN D. EZCURRA 1Department of Geosciences, Virginia Tech, Blacksburg, Virginia 2Departamento de Biologia, Universidade de Sao~ Paulo, Ribeirao~ Preto, Brazil 3Sección Paleontología de Vertebrados CONICET—Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina ABSTRACT The diagnosis of Dinosauria and interrelationships of the earliest dino- saurs relies on careful documentation of the anatomy of their closest rela- tives. These close relatives, or dinosaur “precursors,” are typically only documented by a handful of fossils from across Pangea and nearly all speci- mens are typically missing important regions (e.g., forelimbs, pelves, skulls) that appear to be important to help resolving the relationships of dinosaurs. Here, we fully describe the known skeletal elements of Asilisaurus kongwe, a dinosauriform from the Middle Triassic Manda Beds of the Ruhuhu Basin of Tanzania. The taxon is known from many disarticulated and partially articulated remains and, most importantly, from a spectacularly preserved associated skeleton of an individual containing much of the skull, pectoral and pelvic girdles, forelimb and hindlimb, and parts of the vertebral column including much of the tail. The unprecedented detail of the anatomy indi- cates that Asilisaurus kongwe had a unique skull that was short and had both a premaxillary and dentary edentulous margin, but retained a number of character states plesiomorphic for Archosauria, including a crocodylian- like ankle configuration and a rather short foot with well-developed meta- tarsals I and V.
    [Show full text]
  • Depositional Setting of Algoma-Type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok
    Depositional Setting of Algoma-type Banded Iron Formation Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok To cite this version: Blandine Gourcerol, P Thurston, D Kontak, O Côté-Mantha, J Biczok. Depositional Setting of Algoma-type Banded Iron Formation. Precambrian Research, Elsevier, 2016. hal-02283951 HAL Id: hal-02283951 https://hal-brgm.archives-ouvertes.fr/hal-02283951 Submitted on 11 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Depositional Setting of Algoma-type Banded Iron Formation B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok PII: S0301-9268(16)30108-5 DOI: http://dx.doi.org/10.1016/j.precamres.2016.04.019 Reference: PRECAM 4501 To appear in: Precambrian Research Received Date: 26 September 2015 Revised Date: 21 January 2016 Accepted Date: 30 April 2016 Please cite this article as: B. Gourcerol, P.C. Thurston, D.J. Kontak, O. Côté-Mantha, J. Biczok, Depositional Setting of Algoma-type Banded Iron Formation, Precambrian Research (2016), doi: http://dx.doi.org/10.1016/j.precamres. 2016.04.019 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • World Heritage Nomination - Iucn Technical Evaluation
    WORLD HERITAGE NOMINATION - IUCN TECHNICAL EVALUATION PENINSULA VALDES (ARGENTINA) 1. DOCUMENTATION i) IUCN/WCMC Data Sheet (11 references). ii) Additional Literature Consulted: Davis, S. ed. 1997. Centres of Plant Diversity. Vol. 3. IUCN/WWF, pp 549-542; Kelleher, Bleakley & Wells. ed. 1995. A Global Representative System of Marine Protected Areas. Vol. 2. IUCN/ WB/GBRMPA, pp 76-83; Stattersfield, Crosby, et al. 1998. Endemic Bird Areas of the World: Priorities for Biodiversity Conservation. Birdlife Conservation Series No. 7, pp 256-258; Reeves & Leatherwood. 1994. Dolphins, Porpoises and Whales – Action Plan for the Conservation of Cetaceans. IUCN/SSC Cetacean Specialist Group, pp 26-30; Bubas. 1996. Orcas de la Península Valdés. 13 p; Conway, R. & K. Payne. 1976. Patagonia: A wild shore where two worlds meet. National Geographic. 3/1976, pp 290-322; Erize. 1966. Sea Mammals of Patagonia. Animals. Vol. 8. No. 18, 4/1966, pp 479-481; CPPS/PNUMA. 1992. Plan de Acción para la Conservación de los Mamíferos Marinos en el Pacífico Sudeste. Informes y Estudios del Programa de Mares Regionales del PNUMA (UNEP), pp 110-155; Administración de Parques Nacionales de la Argentina. 1998. Las Areas Naturales Protegidas de la Argentina. APN/IUCN/FAO, 65 p; Leitch. 1990. South America's National Parks: A Visitor's Guide. The Mountaineers, pp 73-89. iii) Consultations: 5 external reviewers, National Parks Administration of Argentina, National Secretary for Tourism, National Commission of Co-operation with UNESCO, Patagonia Natural Foundation, Direction of Conservation and Tourism of the Chubut Province, EcoValdés Foundation, Superintendent of Península Valdés, National Centre for Patagonia, Association of Landowners of Península Valdés, Association of Artisan Fishermen, University of Patagonia, representative of Puerto Pirámides community, Whale watching tour operators, landowners iv) Field Visit: January 1999.
    [Show full text]
  • Stratigraphy, Lithology, and Depositional Environment of the Black Prince Formation Southeastern Arizona and Southwestern New Mexico
    Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Summer 1980 Stratigraphy, Lithology, and Depositional Environment of the Black Prince Formation Southeastern Arizona and Southwestern New Mexico Patrick Kevin Spencer Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Spencer, Patrick Kevin, "Stratigraphy, Lithology, and Depositional Environment of the Black Prince Formation Southeastern Arizona and Southwestern New Mexico" (1980). WWU Graduate School Collection. 644. https://cedar.wwu.edu/wwuet/644 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. VJWU LIBRARY MASTER'S THESIS In presenting this thesis in partial fulfillment of the requirements for a master's degree at Western Washington University, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this thesis is allowable only for scholarly purposes. It is understood, however, that any copying or publication of this thesis for commercial purposes, or for financial gain, shall not be allowed without my written permission. Signature Date 2., (^BO_________ MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU.
    [Show full text]
  • Download the Dossier
    THE LATIN AMERICA TRAVEL COMPANY TAILOR MADE ARGENTINA SELF DRIVE, MENDOZA TO SALTA ITINERARY ▶ CONTENTS, ABOUT US & TRIP SUMMARY CONTENTS OF THIS DOSSIER TRIP SUMMARY 2 ..... Contents, about us & trip summary DAY 1: Meet & greet at airport, private transfer to hotel 3 ….. Testimonials DAY 2: A city tour of the highlights of Buenos Aires 4 ..... Guide price and inclusions DAY 3: Fly to Mendoza, transfer to vineyard & asado dinner 5 ..... Detailed day by day itinerary DAY 4: A day of wine tasting at high end wineries & lunch 19 ... Recommended reading list DAY 5: Start driving north, stopping in Villa Unión 20 ... Booking conditions DAY 6: 4X4 excursion to the high Andean Puna DAY 7: Talampaya national park & a scenic drive to Belen ABOUT OUR COMPANY DAY 8: Drive to the wine town of Cafayate DAY 9: A day at leisure to visit wineries & enjoy the scenery As one of the UK’s leading, independent and family owned Latin DAY 10: Drive past the most stunning landscapes to Cachi America tour specialists our focus is on well thought through private and tailor made adventures. Our emphasis is very much on DAY 11: Continue past Los Cardones to Salta creating the right trip for you and we work closely with you in order DAY 12: A day at leisure or optional horse riding to achieve this. We use our experience and knowledge to ensure DAY 13: Return to Salta airport & fly back to Buenos Aires your trip to Latin America is a trip of a lifetime! DAY 14: Private transfer to the airport for departure ALL TOURS ARE FINANCIALLY PROTECTED SPEAK TO SOMEONE WHO HAS BEEN TO ARGENTINA THE LATIN AMERICA TRAVEL COMPANY We are members of ABTA (Y1699) and our tours are ATOL protected ■ www.thelatinamericatravelcompany.com (license 10287) giving you full peace of mind when booking with us ■ [email protected] both for monies paid to us as well as the code of conduct and high ☎ standards that membership of these organisations require.
    [Show full text]
  • The Origin and Early Evolution of Dinosaurs
    Biol. Rev. (2010), 85, pp. 55–110. 55 doi:10.1111/j.1469-185X.2009.00094.x The origin and early evolution of dinosaurs Max C. Langer1∗,MartinD.Ezcurra2, Jonathas S. Bittencourt1 and Fernando E. Novas2,3 1Departamento de Biologia, FFCLRP, Universidade de S˜ao Paulo; Av. Bandeirantes 3900, Ribeir˜ao Preto-SP, Brazil 2Laboratorio de Anatomia Comparada y Evoluci´on de los Vertebrados, Museo Argentino de Ciencias Naturales ‘‘Bernardino Rivadavia’’, Avda. Angel Gallardo 470, Cdad. de Buenos Aires, Argentina 3CONICET (Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas); Avda. Rivadavia 1917 - Cdad. de Buenos Aires, Argentina (Received 28 November 2008; revised 09 July 2009; accepted 14 July 2009) ABSTRACT The oldest unequivocal records of Dinosauria were unearthed from Late Triassic rocks (approximately 230 Ma) accumulated over extensional rift basins in southwestern Pangea. The better known of these are Herrerasaurus ischigualastensis, Pisanosaurus mertii, Eoraptor lunensis,andPanphagia protos from the Ischigualasto Formation, Argentina, and Staurikosaurus pricei and Saturnalia tupiniquim from the Santa Maria Formation, Brazil. No uncontroversial dinosaur body fossils are known from older strata, but the Middle Triassic origin of the lineage may be inferred from both the footprint record and its sister-group relation to Ladinian basal dinosauromorphs. These include the typical Marasuchus lilloensis, more basal forms such as Lagerpeton and Dromomeron, as well as silesaurids: a possibly monophyletic group composed of Mid-Late Triassic forms that may represent immediate sister taxa to dinosaurs. The first phylogenetic definition to fit the current understanding of Dinosauria as a node-based taxon solely composed of mutually exclusive Saurischia and Ornithischia was given as ‘‘all descendants of the most recent common ancestor of birds and Triceratops’’.
    [Show full text]
  • The Depositional Environment and Petrology of the White Rim
    UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY The Depositional Environment and Petrology of the White Rim Sandstone Member of the Permian Cutler Formation, Canyonlands National Park, Utah by Brenda A. Steele-Mallory Open-File Report 82-204 1982 This report is preliminary and has not been been reviewed for conformity with U.S. Geological Survey editorial standards and stratigraphic nomenclature. CONTENTS Page Abstract ............................................................ 1 Introducti on..........................................................2 Methods of Study......................................................4 Geologic Setting......................................................6 Stratigrapic Relationships............................................9 Economic Geology.....................................................11 Field Observations................................................... 12 Sedimentary Structures..........................................12 Dune Genetic Unit..........................................12 Interdune Genetic Unit.....................................13 Miscellaneous Sedimentary Structures.......................20 Petrology....................................................... 23 Texture.................................................... 23 Mineralogy.................................................25 Bi ologi c Consti tuents...................................... 26 Chemical Constituents......................................26 Diagenetic Features........................................26
    [Show full text]
  • A Phylogenetic Analysis of the Basal Ornithischia (Reptilia, Dinosauria)
    A PHYLOGENETIC ANALYSIS OF THE BASAL ORNITHISCHIA (REPTILIA, DINOSAURIA) Marc Richard Spencer A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements of the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor Don C. Steinker Daniel M. Pavuk © 2007 Marc Richard Spencer All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The placement of Lesothosaurus diagnosticus and the Heterodontosauridae within the Ornithischia has been problematic. Historically, Lesothosaurus has been regarded as a basal ornithischian dinosaur, the sister taxon to the Genasauria. Recent phylogenetic analyses, however, have placed Lesothosaurus as a more derived ornithischian within the Genasauria. The Fabrosauridae, of which Lesothosaurus was considered a member, has never been phylogenetically corroborated and has been considered a paraphyletic assemblage. Prior to recent phylogenetic analyses, the problematic Heterodontosauridae was placed within the Ornithopoda as the sister taxon to the Euornithopoda. The heterodontosaurids have also been considered as the basal member of the Cerapoda (Ornithopoda + Marginocephalia), the sister taxon to the Marginocephalia, and as the sister taxon to the Genasauria. To reevaluate the placement of these taxa, along with other basal ornithischians and more derived subclades, a phylogenetic analysis of 19 taxonomic units, including two outgroup taxa, was performed. Analysis of 97 characters and their associated character states culled, modified, and/or rescored from published literature based on published descriptions, produced four most parsimonious trees. Consistency and retention indices were calculated and a bootstrap analysis was performed to determine the relative support for the resultant phylogeny. The Ornithischia was recovered with Pisanosaurus as its basalmost member.
    [Show full text]
  • Comparative Bone Microstructure of Three Archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina
    Comparative bone microstructure of three archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina JORDI ALEXIS GARCIA MARSÀ, FEDERICO L. AGNOLÍN, and FERNANDO E. NOVAS Marsà, J.A.G., Agnolín, F.L., and Novas, F.E. 2020. Comparative bone microstructure of three archosauromorphs from the Carnian, Late Triassic Chañares Formation of Argentina. Acta Palaeontologica Polonica 65 (2): 387–398. The Chañares Formation exhibits one of the most important archosauriform records of early Carnian ecosystems. Here we present new data on the palaeohistology of Chañares archosauriforms and provide new insights into their paleobiology, as well as possible phylogenetically informative traits. Bone microstructure of Lagerpeton chanarensis and Tropidosuchus romeri is dominated by fibro-lamellar tissue and dense vascularization. On the other hand, Chanaresuchus bonapartei is more densely vascularized, but with cyclical growth characterized by alternate fibro-lamellar, parallel-fibered and lamellar-zonal tissues. Dense vascularization and fibro-lamellar tissue imply fast growth and high metabolic rates for all these taxa. These histological traits may be tentatively interpreted as a possible adaptative advantage in front of Chañares Formation environmental conditions. Key words: Archosauromorpha, Lagerpeton, Tropidosuchus, paleobiology, paleohistology, Mesozoic, South America. Jordi Alexis Garcia Marsà [[email protected]] and Fernando E. Novas [[email protected]], Labora- torio de Anatomía Comparada y Evolución de los Vertebrados,
    [Show full text]
  • A Re-Evaluation of the Enigmatic Dinosauriform Caseosaurus Crosbyensis from the Late Triassic of Texas, USA and Its Implications for Early Dinosaur Evolution
    A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution MATTHEW G. BARON and MEGAN E. WILLIAMS Baron, M.G. and Williams, M.E. 2018. A re-evaluation of the enigmatic dinosauriform Caseosaurus crosbyensis from the Late Triassic of Texas, USA and its implications for early dinosaur evolution. Acta Palaeontologica Polonica 63 (1): 129–145. The holotype specimen of the Late Triassic dinosauriform Caseosaurus crosbyensis is redescribed and evaluated phylogenetically for the first time, providing new anatomical information and data on the earliest dinosaurs and their evolution within the dinosauromorph lineage. Historically, Caseosaurus crosbyensis has been considered to represent an early saurischian dinosaur, and often a herrerasaur. More recent work on Triassic dinosaurs has cast doubt over its supposed dinosaurian affinities and uncertainty about particular features in the holotype and only known specimen has led to the species being regarded as a dinosauriform of indeterminate position. Here, we present a new diagnosis for Caseosaurus crosbyensis and refer additional material to the taxon—a partial right ilium from Snyder Quarry. Our com- parisons and phylogenetic analyses suggest that Caseosaurus crosbyensis belongs in a clade with herrerasaurs and that this clade is the sister taxon of Dinosauria, rather than positioned within it. This result, along with other recent analyses of early dinosaurs, pulls apart what remains of the “traditional” group of dinosaurs collectively termed saurischians into a polyphyletic assemblage and implies that Dinosauria should be regarded as composed exclusively of Ornithoscelida (Ornithischia + Theropoda) and Sauropodomorpha. In addition, our analysis recovers the enigmatic European taxon Saltopus elginensis among herrerasaurs for the first time.
    [Show full text]