Review—Electrochemical Properties of 13 Vitamins: a Critical Review and Assessment Matthew D

Total Page:16

File Type:pdf, Size:1020Kb

Review—Electrochemical Properties of 13 Vitamins: a Critical Review and Assessment Matthew D G18 Journal of The Electrochemical Society, 165 (2) G18-G49 (2018) Review—Electrochemical Properties of 13 Vitamins: A Critical Review and Assessment Matthew D. Lovander, ∗ Jacob D. Lyon, Daniel L. Parr IV, ∗ Junnan Wang, ∗ Brenna Parke, ∗ and Johna Leddy ∗∗,z Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA Review of the literature on the currently recognized, thirteen vitamins yields an overview of the electrochemical properties that include estimates of the formal potentials at physiological pH and identification of the general classes of redox mechanisms. All vitamins are electroactive and map a range of formal potentials E0 over a 3 V window. The vitamins are grouped as lipid soluble (vitamins A, D, E, and K) and water soluble (B vitamins and vitamin C). Mechanisms are grouped as single electron transfer agents (B3, B7, B2, C, and D), vitamins that can be both oxidized and reduced (B1, B5, B6, B9, and E), and vitamins that undergo two successive, distinct reductions (B12 and K). Vitamin A voltammetry is uniquely complex. Plot of the formal potentials on a potential axis allows assessment of mechanistic paths to vitamin recycling, antioxidant behavior, pH dependence, electrochemical stability in air, acid, and water, electrochemical instability of vitamin pairs, and cooperative interactions between vitamins in medicine. The potential axis is shown as an effective tool for mapping thermodynamically complex interactions. The voltammetry literature for each vitamin is critically assessed. © The Author(s) 2018. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. [DOI: 10.1149/2.1471714jes] Manuscript submitted August 7, 2017; revised manuscript received December 4, 2017. Published January 27, 2018. This paper is a Critical Review in Electrochemical and Solid State Science and Technology (CRES3T). This article was reviewed by Shelley D. Minteer ([email protected]) and David E. Cliffel ([email protected]). The National Institutes of Health, Office of Dietary Supplements The review contains two main sections. One section compiles the defines vitamin as A nutrient that the body needs in small amounts to data for the vitamins and provides perspective on the electrochemical function and maintain health.1 Merriam Webster Dictionary2 defines behavior and properties. The second section summarizes the available vitamin as: literature for each vitamin where papers judged the best available are included. In the first section, some compilation of the electrochemical any of various organic substances that are essential in minute quanti- and voltammetric properties of vitamins are summarized in Table I. ties to the nutrition of most animals and some plants, act especially as The order of the reduction potentials, as approximated from voltam- coenzymes and precursors of coenzymes in the regulation of metabolic metric literature data at pH 7, is mapped in Figure 1. The notations for processes but do not provide energy or serve as building units, and are kinetics and potentials embedded in Table I and Figure 1 as well as a present in natural foodstuffs or sometimes produced within the body. brief discussion of how redox potentials are estimated are provided.4 A list of abbreviations is provided at the end of the document in By modern standards, the US federal government identifies 13 Table AI. vitamins.3 The water soluble vitamins are vitamin C and the eight B vitamins (B1, B2, B3, B5, B6, B7, B9, B12). The lipid or fat soluble vitamins are A, D, E, and K. The fat soluble vitamins can accumulate Kinetic notation.—Much of the data evaluated in this review is in the body whereas the water soluble vitamins do not. There are no drawn from voltammetry. Voltammetrydrives electron transfer events, current vitamins designated beyond E except for K because materials generically represented as A + ne B, where formal potential E 0 historically assigned the interposed letter designations either no longer characterizes the energy of the process. Voltammetric morphology fall under the modern definition of vitamin or several related mate- can be impacted by a wide variety of experimental conditions that rials were reclassified. Several vitamins exist in different but related include solvent, solution components, and pH as well as chemical chemical structures. processes. Kinetics are captured in abbreviations of E and C,thatde- Questions considered in this perspective include whether all vi- note mechanistic steps of interfacial (heterogeneous) electron transfer tamins are electroactive; what is the redox potential of the vitamins; and homogeneous (bulk phase) chemical reactions. E characterizes what are the kinetics and mechanisms of vitamins on oxidation and an electron transfer process at the electrode. If the electron transfer reduction; when are vitamins antioxidants; are vitamins stable to wa- is fast compared to the rate of voltammetric perturbation (e.g., cyclic ter and oxygen; do vitamins interact cooperatively. Although papers voltammetric scan rate v), then the process is said to be reversible and are available on the electrochemistry and voltammetry of individual Er is assigned to the process. Absent chemical reactions, Er charac- vitamins, no single resource summarizes the electrochemical data for terizes a Nernstian process. If the electron transfer is slow compared all vitamins. This review compiles and critically assesses the avail- to the voltammetric perturbation, the irreversible electron transfer is able literature on vitamin voltammetry. The compiled data serve to designated E . When rates of electron transfer and perturbation are develop perspective on the electrochemical properties of vitamins i comparable, the reaction is quasireversible, Eq .Whenthereareno and the role of vitamins individually and collectively as electroactive E 3 associated chemical reactions, designation with only is appropriate species. This CRES T review assimilates fundamentals of thermo- and reversibility of the electron transfer is usually readily determined. dynamics and estimated formal potentials, kinetics, and mechanisms When chemical steps couple with the electron transfer, the designa- as assessed voltammetrically for individual vitamins to provide per- tion is C. The chemical step can precede the electron transfer (CE)or spective on the collective electrochemical properties of the thirteen follow the electron transfer (EC). For more than one electron transfer, vitamins. Perspective on vitamin electrochemical properties may con- designations include EE, ECE,andECEC. When there is more than tribute to assess yet more complex bioelectrochemical processes. one electron transfer, disproportionation may occur. Chemical steps may be further characterized as irreversible, reversible, catalytic, and dimerizations. To identify the nature of the chemical step commonly ∗Electrochemical Society Student Member. requires extensive chemical and electrochemical characterization. For ∗∗Electrochemical Society Fellow. this review, a simple label of C is typically used. When the chemical z E-mail: [email protected] process is chemically irreversible, Ci is denoted. 'RZQORDGHGRQWR,3DGGUHVV5HGLVWULEXWLRQVXEMHFWWR(&6WHUPVRIXVH VHHHFVGORUJVLWHWHUPVBXVH XQOHVV&&/LFHQVHLQSODFH VHHDEVWUDFW Journal of The Electrochemical Society, 165 (2) G18-G49 (2018) G19 Table I. Table of Electrochemical Properties of 13 Vitamins. a b Vitamin Estimated E1/2 (vs NHE) pH/aprotic E1/2 from pH dependent ≈ mechanism √ C 0.39 V C|Cox 7.4 Ep EC ascorbate B1 +0.6V B1|B1ox 7.4 Ep pH ind. 9 to 13 EC thiamine −0.38 V B1red|B1 3.5to6 Eave for pH 3.5 to 6: E Eaveind. ipdecreases B2 −0.54 V B2 |B2 DMSO E − EC ...E red p √ − . | 0 E riboflavin 0 22 V B2red B2 7 Eave √ E shifts neg. w/pH − . | p EC EC B3 1 4V B3red B3 7Ep E1/2 shifts neg. w/pH (likely i ) niacin for 2.5 < pH < 10 B5 √ +0.5V B5|B5 4.2 E E shifts pos. w/pH EC (likely EC ) ox p √ p i pantothenic + c −0.2V B5red|B5 6.08 Ep/ 2e/2H , PCET EC (likely ECi ) acid 2 − +1.1V B6|B6 MeCN Ep EC (likely EC ) B6 ox − i −0.8V B6red|B6 MeCN Eave E pyridoxine likely as pK and p a 5 −1.5V B6red|B6 6.5 E / E reported 1 2 pK predicted B7 DMF b −1.03 V B7red|B7 E − Ei biotin DMSO ave √ + EC or EEC B9 +1.0V B9|B9ox 7 Ep, Eave 2e/2H ,PCET adsorption, folate −0.3V B9red|B9 5.2 Ep likely as 2 pK a multiple peaks EE B12 +0.21 V B12red|B12 7.1 Eave likely, pK , pK pred. √ a b aquocobalamin; cobalamin −0.83 V B12red, |B12 7.1 Eave E / shifts neg. w/pH 2 red 1 2 cyano, methyl differ + . | − EC A 1 0V AA CH3OH; CH2Cl2 Ep i − . | − EC retinol (A) 1 95 V Ared A MeCN Ep − . | − EC retinal(A ) 2 1V Ared,2 Ared MeCN Ep + . | − EC β − carotene(Aβ) 1 3V A Aox CH2Cl2 Ep i − . | − E 1 1V Ared A MeCN Ep − | − EC 2V Ared,2 Ared MeCN Ep i +0.8V Aβ|Aβ,ox CH2Cl2 Eave − E −1.4V Aβ,red|Aβ CH2Cl2 Ep − ECi D D3 cholecalciferol +1.45 V D|Dox MeCN,CH2Cl2 Ep − ECi D2 ergocalciferol E +1.2V E|E MeCN − ox ECE 6 α − + . | − disp tocopherol 0 8V Eox Eox,2 MeCN − . | EE K 0 6V Kred K MeCN,50 mM H2O Eave √likely as 3 pKa − . | EE phylloquinone 1 2V Kred,2 Kred MeCN,50 mM H2O Eave CVs H2O dependent √ + −0.5V Kred,2|K MeCN,7.2 M H2O Eave 2e/2H , PCET EE ... aUnderscore indicates the native state vitamin in solution. Charge in the native state is noted in the Synopsis for the individual vitamin. bApproximate mechanism denoted in electron transfer steps (E) and chemical steps (C). c + PCET is proton coupled electron transfer (e.g., A + 2e + 2H H2A).
Recommended publications
  • Vitamin A: History, Current Uses, and Controversies M
    Vitamin A: History, Current Uses, and Controversies M. Shane Chapman, MD Vitamin A is required for the proper functioning of many important metabolic and physio- logic activities, including vision, gene transcription, the immune system and skin cell differentiation. Both excessive and deficient levels of vitamin A lead to poor functioning of many human systems. The biologically active form, retinoic acid, binds to nuclear receptors that facilitate transcription that ultimately leads to it’s physiological effects. Retinoids are derivatives of vitamin A that are medications used to treat acne vulgaris, psoriasis, ichthyosis (and other disorders of keratinization), skin cancer prevention as well as several bone marrow derived neoplasias. Systemic retinoids are teratogenic and have to be prescribed with caution and close oversight. Other potential adverse events are contro- versial. These include the relationship of retinoid derivatives in sunscreens, their effects on bone mineral density, depression and suicidal ideation and inflammatory bowel disease. These controversies will be discussed in detail. Semin Cutan Med Surg 31:11-16 © 2012 Published by Elsevier Inc. KEYWORDS vitamin A, retinoids, carotenoids, sunscreens, bone metabolism, teratogenicity, depression, suicidal ideation, istotretinoin, inflammatory bowel disease. itamin A is a fat-soluble vitamin that is required for the molecules, retinal, for both low-light- and color vision. Ret- Vproper functioning of a diverse array of metabolic and inol is also converted to retinoic acid, which is a hormone- physiologic activities. Vision, hematopoiesis, embryonic de- like growth factor important for epithelial cell growth and velopment, skin cell differentiation, immune system func- differentiation. It is required for skin and bone health, but in tion, and gene transcription all require vitamin A.
    [Show full text]
  • Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights
    Taylor University Pillars at Taylor University Student Scholarship: Chemistry Chemistry and Biochemistry Fall 2019 Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights David Joshua Ferguson Follow this and additional works at: https://pillars.taylor.edu/chemistry-student Part of the Analytical Chemistry Commons, Inorganic Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, and the Physical Chemistry Commons CHEMISTRY THESIS SIGNIFICANCE AND IMPLICATIONS OF VITAMIN B-12 REACTION SCHEMA- ETH ZURICH VARIANT: MECHANISMS AND INSIGHTS DAVID JOSHUA FERGUSON 2019 2 Table of Contents: Chapter 1 6 Chapter 2 17 Chapter 3 40 Chapter 4 59 Chapter 5 82 Chapter 6 118 Chapter 7 122 Appendix References 3 Chapter 1 A. INTRODUCTION. Vitamin B-12 otherwise known as cyanocobalamin is a compound with synthetic elegance. Considering how it is composed of an aromatic macrocyclic corrin there are key features of this molecule that are observed either in its synthesis of in the biochemical reactions it plays a role in whether they be isomerization reactions or transfer reactions. In this paper the focus for the discussion will be on the history, chemical significance and total synthesis of vitamin B12. Even more so the paper will be concentrated one of the two variants of the vitamin B-12 synthesis, namely the ETH Zurich variant spearheaded by Albert Eschenmoser.Examining the structure as a whole it is observed that a large portion of the vitamin B12 is a corrin structure with a cobalt ion in the center of the macrocyclic part, and that same cobalt ion has cyanide ligands.
    [Show full text]
  • Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis
    molecules Article Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis Roberto Sole 1 , Vanessa Gatto 2 , Silvia Conca 1 , Noemi Bardella 1, Andrea Morandini 1 and Valentina Beghetto 1,2,* 1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; [email protected] (R.S.); [email protected] (S.C.); [email protected] (N.B.); [email protected] (A.M.) 2 Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-041-2348928 Abstract: Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: − − Cl or ClO4 ). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption.
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • DRIDIETARY REFERENCE INTAKES Thiamin, Riboflavin, Niacin, Vitamin
    Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline http://www.nap.edu/catalog/6015.html DIETARY REFERENCE INTAKES DRI FOR Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline A Report of the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline and Subcommittee on Upper Reference Levels of Nutrients Food and Nutrition Board Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. Copyright © National Academy of Sciences. All rights reserved. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline http://www.nap.edu/catalog/6015.html NATIONAL ACADEMY PRESS • 2101 Constitution Avenue, N.W. • Washington, DC 20418 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was funded by the U.S. Department of Health and Human Services Office of Disease Prevention and Health Promotion, Contract No. 282-96-0033, T01; the National Institutes of Health Office of Nutrition Supplements, Contract No. N01-OD-4-2139, T024, the Centers for Disease Control and Prevention, National Center for Chronic Disease Preven- tion and Health Promotion, Division of Nutrition and Physical Activity; Health Canada; the Institute of Medicine; and the Dietary Reference Intakes Corporate Donors’ Fund.
    [Show full text]
  • Biotin Fact Sheet for Consumers
    Biotin Fact Sheet for Consumers What is biotin and what does it do? Biotin is a B-vitamin found in many foods. Biotin helps turn the carbohydrates, fats, and proteins in the food you eat into the energy you need. How much biotin do I need? The amount of biotin you need each day depends on your age. Average daily recommended amounts are listed below in micrograms (mcg). Life Stage Recommended Amount Birth to 6 months 5 mcg Infants 7–12 months 6 mcg Children 1–3 years 8 mcg Children 4–8 years 12 mcg Biotin is naturally present in some Children 9–13 years 20 mcg foods, such as salmon and eggs. Teens 14–18 years 25 mcg Adults 19+ years 30 mcg Pregnant teens and women 30 mcg Breastfeeding teens and women 35 mcg What foods provide biotin? Many foods contain some biotin. You can get recommended amounts of biotin by eating a variety of foods, including the following: • Meat, fish, eggs, and organ meats (such as liver) • Seeds and nuts • Certain vegetables (such as sweet potatoes, spinach, and broccoli) What kinds of biotin dietary supplements are available? Biotin is found in some multivitamin/multimineral supplements, in B-complex supplements, and in supplements containing only biotin. Am I getting enough biotin? Most people get enough biotin from the foods they eat. However, certain groups of people are more likely than others to have trouble getting enough biotin: • People with a rare genetic disorder called “biotinidase deficiency” • People with alcohol dependence • Pregnant and breastfeeding women 2 • BIOTIN FACT SHEET FOR CONSUMERS What happens if I don’t get enough biotin? Biotin and healthful eating Biotin deficiency is very rare in the United States.
    [Show full text]
  • COMPARISON of the WHO ATC CLASSIFICATION & Ephmra/Intellus Worldwide ANATOMICAL CLASSIFICATION
    COMPARISON OF THE WHO ATC CLASSIFICATION & EphMRA/Intellus Worldwide ANATOMICAL CLASSIFICATION: VERSION June 2019 2 Comparison of the WHO ATC Classification and EphMRA / Intellus Worldwide Anatomical Classification The following booklet is designed to improve the understanding of the two classification systems. The development of the two systems had previously taken place separately. EphMRA and WHO are now working together to ensure that there is a convergence of the 2 systems rather than a divergence. In order to better understand the two classification systems, we should pay attention to the way in which substances/products are classified. WHO mainly classifies substances according to the therapeutic or pharmaceutical aspects and in one class only (particular formulations or strengths can be given separate codes, e.g. clonidine in C02A as antihypertensive agent, N02C as anti-migraine product and S01E as ophthalmic product). EphMRA classifies products, mainly according to their indications and use. Therefore, it is possible to find the same compound in several classes, depending on the product, e.g., NAPROXEN tablets can be classified in M1A (antirheumatic), N2B (analgesic) and G2C if indicated for gynaecological conditions only. The purposes of classification are also different: The main purpose of the WHO classification is for international drug utilisation research and for adverse drug reaction monitoring. This classification is recommended by the WHO for use in international drug utilisation research. The EphMRA/Intellus Worldwide classification has a primary objective to satisfy the marketing needs of the pharmaceutical companies. Therefore, a direct comparison is sometimes difficult due to the different nature and purpose of the two systems.
    [Show full text]
  • Magnesium-Protoporphyrin Chelatase of Rhodobacter
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 1941-1944, March 1995 Biochemistry Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli (protoporphyrin IX/tetrapyrrole/chlorophyll/bacteriochlorophyll/photosynthesis) LUCIEN C. D. GIBSON*, ROBERT D. WILLOWSt, C. GAMINI KANNANGARAt, DITER VON WETTSTEINt, AND C. NEIL HUNTER* *Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom; and tCarlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark Contributed by Diter von Wettstein, November 14, 1994 ABSTRACT Magnesium-protoporphyrin chelatase lies at Escherichia coli and demonstrate that the extracts of the E. coli the branch point of the heme and (bacterio)chlorophyll bio- transformants can convert Mg-protoporphyrin IX to Mg- synthetic pathways. In this work, the photosynthetic bacte- protoporphyrin monomethyl ester (20, 21). Apart from posi- rium Rhodobacter sphaeroides has been used as a model system tively identifying bchM as the gene encoding the Mg- for the study of this reaction. The bchH and the bchI and -D protoporphyrin methyltransferase, this work opens up the genes from R. sphaeroides were expressed in Escherichia coli. possibility of extending this approach to other parts of the When cell-free extracts from strains expressing BchH, BchI, pathway. In this paper, we report the expression of the genes and BchD were combined, the mixture was able to catalyze the bchH, -I, and -D from R. sphaeroides in E. coli: extracts from insertion of Mg into protoporphyrin IX in an ATP-dependent these transformants, when combined in vitro, are highly active manner.
    [Show full text]
  • Supporting Information Degradation
    Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021 Supporting Information Degradation Pathways of a highly active iron(III) tetra-NHC Epoxidation Catalyst Florian Dyckhoff, Jonas F. Schlagintweit, Marco A. Bernd, Christian H. G. Jakob, Tim P. Schlachta, Benjamin J. Hofmann, Robert M. Reich and Fritz E. Kühn* Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85748 Garching bei München, Germany. [*] Corresponding author: Prof. Dr. Fritz E. Kühn, E-Mail: [email protected] Table of Contents 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy 2 2. 1H-NMR Spectroscopic Studies 5 3. Synthesis and Characterization of compound 2-d8 7 4. ESI-MS Decomposition Studies 27 5. DFT Calculations 31 6. References 34 1 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy All batch and time-dependent reactions were conducted in a cryostat (Julabo FP-50) with a total reaction volume of 2.0 mL. The catalyst (0.05 mol%, 0.067 µmol) was added from a preformed stock solution (4.0 mg/mL in the respective nitrile, i.e. acetonitrile, tert-butylnitrile or benzonitrile) according to the appropriate stoichiometry to a solution of cis-cyclooctene (100 mol%, 134.5 µmol), the respective additive (0.5 mol%, 0.67 µmol) and H2O2 (150 mol%, 202 µmol, 50% solution in H2O) in the appropriate solvent. The reaction was initiated upon addition of H2O2. The reaction was aborted by adding electrolytically precipitated activated MnO2 as a H2O2 decomposition agent.
    [Show full text]
  • Global Analysis of Methionine Oxidation Provides a Census of Folding Stabilities for the Human Proteome
    bioRxiv preprint doi: https://doi.org/10.1101/467290; this version posted November 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome Ethan J. Walker1,2, John Q. Bettinger1, Kevin A. Welle3, Jennifer R. Hryhorenko3, Sina Ghaemmaghami1,3* 1Department of Biology, University of Rochester, NY, 14627, USA 2Department of Biochemistry, University of Rochester Medical Center, NY, 14627, USA 3University of Rochester Mass Spectrometry Resource Laboratory, NY, 14627, USA *Correspondence: [email protected] (S.G.) 1 bioRxiv preprint doi: https://doi.org/10.1101/467290; this version posted November 9, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY The stability of proteins influences their tendency to aggregate, undergo degradation or become modified in cells. Despite their significance to understanding protein folding and function, quantitative analyses of thermodynamic stabilities have been mostly limited to soluble proteins in purified systems. We have used a highly multiplexed proteomics approach, based on analyses of methionine oxidation rates, to quantify stabilities of ~10,000 unique regions within ~3,000 proteins in human cell extracts. The data identify lysosomal and extracellular proteins as the most stable ontological subsets of the proteome.
    [Show full text]
  • Manual for Sugar Fortification with Vitamin a Part 3
    Manual for Sugar Fortification with Vitamin A Part 3 Analytical Methods for the Control and Evaluation of Sugar Fortification with Vitamin A Omar Dary, Ph.D. Guillermo Arroyave, Ph.D. with Hernando Flores, Ph.D., Florisbela A. C. S. Campos, and Maria Helena C. B. Lins Dr. Omar Dary is a research biochemist at the Institute of Nutrition of Central America and Panama (INCAP), Guatemala. Dr. Guillermo Arroyave is an international consultant in micronutrients residing in San Diego, California. Dr. Hernando Flores, Ms. Campos, and Ms. Lins are biochemists at the Universidad de Pernambuco, Brazil. MANUAL FOR SUGAR FORTIFICATION PART 3 TABLE OF CONTENTS ACKNOWLEDGMENTS ........................................................... v FOREWORD ...................................................................vii I. INTRODUCTION .......................................................... 1 II. PROPERTIES OF RETINOL AND RETINOL COMPOUNDS USED IN SUGAR FORTIFICATION .......................................................... 3 III. PRINCIPLES FOR DETERMINING RETINOL IN VITAMIN A PREMIX AND FORTIFIED SUGAR .................................................................. 5 A. Spectrophotometric method ............................................. 5 B. Colorimetric method .................................................. 6 IV. SPECTROPHOTOMETRIC DETERMINATION OF RETINOL IN PREMIX ........... 7 A. References .......................................................... 7 B. Principle ............................................................ 7 C. Critical
    [Show full text]
  • Characterization of a Novel Methionine Sulfoxide Reductase a from Tomato (Solanum Lycopersicum), and Its Protecting Role in Escherichia Coli
    BMB reports Characterization of a novel methionine sulfoxide reductase A from tomato (Solanum lycopersicum), and its protecting role in Escherichia coli Changbo Dai1, Naresh Kumar Singh2 & Myungho Park3,* 1Department of Medical Biotechnology, College of Biomedical Science, 2Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon 200-701, 3Department of Mechanical Engineering, Kangwon National University, Samcheok 245-711, Korea Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme onstrated that overexpression of rice (Oryza sativa) plastidial that has been demonstrated to reduce the S enantiomer of methio- MSRA4 in yeast and rice enhanced the levels of protection against nine sulfoxide (MetSO) to methionine (Met) and can protect cells H2O2-(hydrogen peroxide) and NaCl-mediated oxidative stress, against oxidative damage. In this study, we isolated a novel MSRA respectively (6). In Arabidopsis thaliana, MSRA2-disrupted plants (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. exhibited reduced growth under long night conditions (7). MSRAs Micro-Tom) and characterized it by subcloning the coding se- have been reported to exist in nature as a multigenic family (5). quence into a pET expression system. Purified recombinant pro- Five MSRAs have been reported to be present in the genome of tein was assayed by HPLC after expression and refolding. This anal- A. thaliana with different functions (5). Five types of MSRAs were ysis revealed the absolute specificity for methionine-S-sulfoxide identified in O. sativa, and were grouped based on their local- and the enzyme was able to convert both free and protein-bound ization such as cytosol (MSRA2.1 and MSRA2.2), plastids MetSO to Met in the presence of DTT.
    [Show full text]