Tremorgenic Mycotoxicosis in Dogs

Total Page:16

File Type:pdf, Size:1020Kb

Tremorgenic Mycotoxicosis in Dogs 3 CE Credits Tremorgenic Mycotoxicosis in Dogs Andrew K. Barker, DVM Chase Stahl, BS Steve M. Ensley, DVM, PhD Nick D. Jeffery, BVSc, PhD, DECVS, DECVN Iowa State University Abstract: Ingestion of tremorgenic mycotoxins formed in spoiled food can cause an acute tremor syndrome, the severity of which can range from mild to life-threatening. Swift recognition of the likely cause is required for accurate prognostication and rapid institution of appropriate therapy, which leads to complete resolution in most cases. Clinical Signs 19687). Experimental intoxication of mice and rats produced dose- Tremorgenic mycotoxicosis in dogs typically presents as an acute dependent signs, including tremors, behavioral changes, seizures, onset of generalized tremors, sometimes of sufficient severity to and death. Examination of different isolates of P. crustosum found resemble a seizure; animals occasionally present in status epilepticus.1 that 100% produced penitrem A in addition to roquefortine.8 Such cases usually present as emergencies. Affected animals may Roquefortine is mainly produced by Penicillium roqueforti (the also salivate, pant excessively, be pyrexic (body temperature may same species used in making Roquefort cheese) but may also be exceed 107°F [41.7°C]), and show mydriasis, nystagmus, and hyper- produced by several other types of Penicillium fungi, including P. sensitivity to noise and touch.2–5 The time to onset of convulsions or crustosum.6 tremors after ingestion varies from ~30 minutes to several hours.1,4 Nonneurologic signs can include vomiting, diarrhea, flatulence, and Mode of Action tachycardia,4 and severely affected animals may be recumbent and The mode of action of the tremorgenic mycotoxins is variable unable or unwilling to raise their head. At presentation, it can be and not fully understood, although access to the brain across the difficult to elicit an accurate history from owners, but, occasionally, blood-brain barrier is facilitated by their lipophilia.6 Rats injected access to garbage or other sources of decaying food is known. Access with penitrem A show marked increases in the release of glutamate, to rotten material is significant because there are few reports of GABA, and aspartate at cerebrocortical synapses.9 A similar inter- tremorgenic mycotoxicosis, despite the ubiquity of mycotoxin- ference with neurotransmission within the cerebellum is thought to producing molds in the environment. cause the characteristic tremor.4 Penitrem A also increases gastric smooth muscle activity in vitro,10 probably through sensitizing it to Etiology acetylcholine, and similar effects may also occur within the central Ingestion of a variety of moldy foods, including grains, walnuts, nervous system. almonds, and peanuts, as well as nonspecific garbage, has been In one study, focal tremors developed within 7 to 10 minutes of associated with tremorgenic mycotoxicosis.2 Dogs are more intraperitoneal injection of penitrem A in rats11 and changes were commonly affected than other species of domestic animals, detected only within the cerebellum at necropsy. Initial changes were probably because of their tendency to scavenge6; intoxication of seen as ischemic changes several dogs within the same household has also been reported.5 in Purkinje cells. Animals The most common sources of tremorgenic mycotoxins are that were not euthanized Key Points fungi of the genus Penicillium,7,8 which are found in decomposing returned to near-normal • The propensity of dogs to ingest food and vegetable matter. Many tremorgenic compounds are behavior within 1 week.11 rotting material exposes them to the known, including penitrems, thomitrems, aflatrem, cyclopiazonic Areas of necrosis within risk of tremorgenic mycotoxicosis. acid, and roquefortine. It is believed that different tremorgenic the cerebellar granule cell mycotoxins produce clinical signs of varying severity, but con- layer and vacuolization of • Rotting foodstuffs often consist of sumption of more than one toxin is common in clinical cases.3 the molecular layer have many different potential fungal The major tremorgens in domestic dogs are penitrem A and also been reported.12 growth substrates and may contain roquefortine, with Penicillium crustosum contamination the most The minimum oral toxic a variety of fungal toxins. commonly identified source (first reported by Wilson et al in dose of penitrem A, aflatrem, Vetlearn.com | February 2013 | Compendium: Continuing Education for Veterinarians® E1 ©Copyright 2013 Vetstreet Inc. This document is for internal purposes only. Reprinting or posting on an external website without written permission from Vetlearn is a violation of copyright laws. Tremorgenic Mycotoxicosis in Dogs Box 1. Common Etiologies of Tremors in Dogs Primary neurologic disorders Toxin ingestion • Amphetamines/pseudoephedrine • Steroid-responsive tremor syndrome • Tremorgenic mycotoxins • Paintballs (“little white shaker syndrome”) • Metaldehyde • Ethylene glycol • Episodic tremors (idiopathic) • Organophosphates/carbamates • Heavy metals (aluminum, lead) • Cerebellar disease • Strychnine • Xanthines (e.g., caffeine, theophylline, • Ivermectin • Congenital action-related tremors theobromine) Iatrogenic Endocrine/metabolic disorders • Bromethalin • Blood transfusion reactions • Hypoglycemia • Macadamia nuts Infectious diseases • Hypocalcemia/eclampsia • Marijuana • Distemper • Hepatic encephalopathy • Cocaine • Rabies or roquefortine has not been determined; however, since the conditions can be differentiated from acute toxicoses based on amount of the compounds ingested cannot be quantified in practice, history, clinical progression of the disease, and routine blood it is not possible to determine if a dog has ingested a toxic dose. tests. For instance, hypoglycemia and hypocalcemia are easily recognized during routine investigation of emergency patients, Differential Diagnosis and while eclampsia can cause acute tremors,15 the signalment Tremors are a nonspecific clinical sign; the Cornell University (pregnancy or lactation) should aid recognition. Idiopathic Veterinary Consultant Web site (www.vet.cornell.edu/consultant/ tremor syndrome (previously called little white shaker syndrome) consult.asp) lists almost 200 different causes of tremors in dogs. is the most prominent diagnostic differential for a small-breed Some of the more common causes are listed in BOX 1. Therefore, dog with acute-onset tremors and no other significant clinical a detailed history and typical additional clinical signs (e.g., vomiting, signs. Although most common in young members of small, white seizures) associated with mycotoxin ingestion may be helpful in breeds, idiopathic tremor syndrome can occur in many dog breeds. rapid identification of the etiology (FIGURE 1). Importantly, affected animals have normal neurologic and physical In view of the acute onset of nonspecific signs and history of these examination findings apart from the tremors, which can be acute patients, toxicosis is often suspected. Common toxins resulting in onset but frequently become progressively severe over a period in tremors, seizures, and similar neurologic signs include metal- of days, which aids in differential diagnosis. In addition, tremors dehyde (slug bait), organophosphates and carbamates, strych- usually occur only when the animal is stimulated and affected nine, xanthines, and bromethalin. Strychnine toxicosis cannot always Suspected mycotoxin ingestion be differentiated from tremor- genic mycotoxicosis based on clinical signs,13 although it is Seizure No seizure generally associated with tetanic Administer anticonvulsant spasms rather than tremor, and No tremors exposure is relatively rare. Similar Tremors No response Induce emesis Administer muscle relaxant considerations apply in ruling out Administer second (methocarbamol) exposure to bromethalin (ro- anticonvulsant denticide), xanthines (caffeine, theophylline, theobromine), and No response Adequate control Inadequate control 14 Induce general anesthesia Repeat methocarbamol macadamia nuts. administration In dogs in which a nontoxic etiology of tremors merits con- sideration, the differential diag- nosis includes idiopathic tremor Monitor for changes in status Provide supportive care syndromes, hypoglycemia, hypo- calcemia, eclampsia, and cere- Figure 1. Diagnostic tree for acute tremors in dogs, based on initial assessment and emergency/cage-side tests. bellar disorders. Many of these Figure 1. Diagnostic tree for acute tremors in dogs, based on initial assessment and emergency/cage-side tests. Vetlearn.com | February 2013 | Compendium: Continuing Education for Veterinarians® E2 Tremorgenic Mycotoxicosis in Dogs mycotoxicosis. Known ingestion Primary neurologic disorder of, or possible access to, moldy Results of blood tests normal Toxin ingestion food, garbage, or compost is highly suggestive. Hepatic encephalopathy Definitive diagnosis is made by Tremors alone analysis of vomitus or stomach Hypoglycemia contents, blood, urine, or the (rule out primary vs. Results of blood tests insulinoma) suspected contaminated material. abnormal (suspect metabolic cause) Hypocalcemia Analytic methods include iden- (rule out primary vs. tification of the mold through Acute-onset tremors eclampsia) culture of the organism or detec- Other 1,4,17 tion of the toxins themselves, Congenital although the presence of mold Neoplasia does not necessarily mean my- Cerebellar signs Idiopathic tremor cotoxin will be present. Liquid Other Other neurologic signs chromatography–mass
Recommended publications
  • Penitrem and Thomitrem Formation by Penicillium Crustosum
    Mycopathologia 157: 349–357, 2004. 349 © 2004 Kluwer Academic Publishers. Printed in the Netherlands. Penitrem and thomitrem formation by Penicillium crustosum Thomas Rundberget1, Ida Skaar1, Oloff O’Brien2 & Arne Flåøyen1 1National Veterinary Institute, PO Box 8156 Dep., 0033 Oslo, Norway; 2ARC Plant Protection, Research Institute, Private Bag X134, Pretoria 0001, South Africa Received 9 September 2002; accepted in final form 16 July 2003 Abstract The levels of penitrems A, B, C, D, E, F, roquefortine C and thomitrem A and E recovered from extracts of 36 Norwegian, 2 American and one each of Japanese, German, South African, Danish and Fijian isolates of Penicillum crustosum Thom were quantitatively determined using high performance liquid chromatography-mass spectrometry (HPLC-MS). Forty-two of the 44 isolates of penitrem-producing isolates grown on rice, afforded levels of thomitrem A and E comparable to that of penitrem A. Thomitrems A and E were also found, but at lower levels, when cultures were grown on barley. No thomitrems were found when the isolates were grown on liquid media. The effects of time and temperature on mycotoxin formation were studied on rice over a 4 week period at 10, 15 and 25 ◦C, respectively. No mycotoxins could be detected after 1 week at 10 ◦C, but after 2 weeks at 10 ◦C levels were similar to those produced at 15 and 25 ◦C. Higher levels of thomitrems A and E were detected when media were maintained at lower pH. The possibility that thomitrems A and E might be derived by acid promoted conversion of penitrems A and E was explored in stability trials performed at pH 2, 3, 4, 5 and 7 in the presence and absence of media.
    [Show full text]
  • (BK) Channel Antagonist Penitrem a As a Novel Breast Cancer-Targeted Therapeutic
    marine drugs Article The Maxi-K (BK) Channel Antagonist Penitrem A as a Novel Breast Cancer-Targeted Therapeutic Amira A. Goda 1, Abu Bakar Siddique 1 ID , Mohamed Mohyeldin 1,3, Nehad M. Ayoub 2 ID and Khalid A. El Sayed 1,* ID 1 Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA; [email protected] (A.A.G.); [email protected] (A.B.S.); [email protected] (M.M.) 2 Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan; [email protected] 3 Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt * Correspondence: [email protected]; Tel.: +1-318-342-1725 Received: 6 April 2018; Accepted: 9 May 2018; Published: 11 May 2018 Abstract: Breast cancer (BC) is a heterogeneous disease with different molecular subtypes. The high conductance calcium-activated potassium channels (BK, Maxi-K channels) play an important role in the survival of some BC phenotypes, via membrane hyperpolarization and regulation of cell cycle. BK channels have been implicated in BC cell proliferation and invasion. Penitrems are indole diterpene alkaloids produced by various terrestrial and marine Penicillium species. Penitrem A (1) is a selective BK channel antagonist with reported antiproliferative and anti-invasive activities against multiple malignancies, including BC. This study reports the high expression of BK channel in different BC subtypes. In silico BK channel binding affinity correlates with the antiproliferative activities of selected penitrem analogs. 1 showed the best binding fitting at multiple BK channel crystal structures, targeting the calcium-sensing aspartic acid moieties at the calcium bowel and calcium binding sites.
    [Show full text]
  • Veterinary Toxicology
    GINTARAS DAUNORAS VETERINARY TOXICOLOGY Lecture notes and classes works Study kit for LUHS Veterinary Faculty Foreign Students LSMU LEIDYBOS NAMAI, KAUNAS 2012 Lietuvos sveikatos moksl ų universitetas Veterinarijos akademija Neužkre čiam ųjų lig ų katedra Gintaras Daunoras VETERINARIN Ė TOKSIKOLOGIJA Paskait ų konspektai ir praktikos darb ų aprašai Mokomoji knyga LSMU Veterinarijos fakulteto užsienio studentams LSMU LEIDYBOS NAMAI, KAUNAS 2012 UDK Dau Apsvarstyta: LSMU VA Veterinarijos fakulteto Neužkre čiam ųjų lig ų katedros pos ėdyje, 2012 m. rugs ėjo 20 d., protokolo Nr. 01 LSMU VA Veterinarijos fakulteto tarybos pos ėdyje, 2012 m. rugs ėjo 28 d., protokolo Nr. 08 Recenzavo: doc. dr. Alius Pockevi čius LSMU VA Užkre čiam ųjų lig ų katedra dr. Aidas Grigonis LSMU VA Neužkre čiam ųjų lig ų katedra CONTENTS Introduction ……………………………………………………………………………………… 7 SECTION I. Lecture notes ………………………………………………………………………. 8 1. GENERAL VETERINARY TOXICOLOGY ……….……………………………………….. 8 1.1. Veterinary toxicology aims and tasks ……………………………………………………... 8 1.2. EC and Lithuanian legal documents for hazardous substances and pollution ……………. 11 1.3. Classification of poisons ……………………………………………………………………. 12 1.4. Chemicals classification and labelling ……………………………………………………… 14 2. Toxicokinetics ………………………………………………………………………...………. 15 2.2. Migration of substances through biological membranes …………………………………… 15 2.3. ADME notion ………………………………………………………………………………. 15 2.4. Possibilities of poisons entering into an animal body and methods of absorption ……… 16 2.5. Poison distribution
    [Show full text]
  • Incorporating Fermentation Into Undergraduate Laboratory Courses
    Athens Journal of Sciences- Volume 2, Issue 4 – Pages 257-264 Incorporating Fermentation into Undergraduate Laboratory Courses By Claire Gober Madeleine Joullie† Laboratory courses in universities have a responsibility to introduce current research practices and trends in scientific research to adequately prepare students for work in the field. One such research practice gaining popularity in recent years is that of green chemistry. Since the 1960s, increasing concern over the release of toxic chemicals into the environment has led to a push for more environmentally responsible chemistry. A growing faction of chemists has begun to adopt methods to eliminate chemical waste and support green chemistry. Fermentation is an ideal technique to demonstrate environmentally sustainable chemistry in an undergraduate laboratory class. Fermentation of complex natural products, as opposed to traditional organic synthesis, is beneficial as it supports a number of principles of green chemistry; it is conducted at ambient temperature and pressure, uses inexpensive and innocuous materials, makes use of renewable resources, and does not require a fume hood. Skills implemented during fermentation can be easily taught to upper-level Chemistry and Biochemistry undergraduate students, who typically have limited exposure to complex natural products in their coursework. Such a course would be interdisciplinary in nature, incorporating fungal biology and metabolism as well as organic chemistry. Students would learn a variety of skills, including growth media selection and preparation, inoculation of fungal cultures, extraction of natural products, and purification and characterization of metabolites. Experiments of this nature would allow for discussions of several areas of research: green chemistry, natural products and their application to medicine, identification of functional groups in complex molecules by spectroscopy, and introduction to biochemistry and metabolism.
    [Show full text]
  • Tremorgenic Mycotoxin Intoxication by Mary M
    Tremorgenic mycotoxin intoxication by Mary M. Schell, DVM Dogs allowed to roam or get into the trash may ingest tremorgenic mycotoxins, which are neorotoxins that produce varying degrees of muscle tremors or seizures that can last for hours or days. Since 1998, the ASPCA Animal Poison Control Center (APCC) has consulted on 25 cases of suspected tremorgenic mycotoxin intoxication in dogs and one in a squirrel. Sources of tremorgenic mycotoxins for household pets have included moldy dairy foods, moldy walnuts or peanuts, stored grains, and moldy spaghetti. 1-7 These toxic secondary metabolites of many fungi vary in quantity and in their ability to produce clinical effects. Toxin production depends on seasonal growing conditions as well as the genus and species of the mold. At least 20 mycotoxins have been identified as tremorgens (compounds capable of inducing serious muscle tremor in one or more vertebrates), although only a few have been shown to have clinical relevance.3,8 Penicillium species are most often incriminated in producing tremorgenic mycotoxins; the most common are penitrem-A and roquefortine C.1,3,6,8 Intoxication with these mycotoxins has been documented in many animals, including dogs, cattle, sheep, rabbits, poultry, and rodents. Several mechanisms of action have been proposed, and the mechanism may vary both between toxins and the individual susceptible species. Penitrem-A inhibits the inhibitory neurotransmitter glycine in mice. Studies in mice have shown that drugs such as mephenesin or nalorphine, which increase glycine
    [Show full text]
  • Penitrem a Peer-Reviewed Journal Articles
    ________________________________________________________________________ ________________________________________________________________________ Penitrem A Peer-Reviewed Journal Articles Literature Review by Lisa Petrison, Ph.D. Neurotoxic Effects: Berntsen H. F., Wigestrand M. B., Bogen I. L., Fonnum F., Walaas S. I., Moldes-Anaya A.. Mechanisms of penitrem-induced cerebellar granule neuron death in vitro: possible involvement of GABAA receptors and oxidative processes. Neurotoxicology. 2013;35:129–136. Moldes-Anaya Angel, Rundberget Thomas, Fæste Christiane K., Eriksen Gunnar S., Bernhoft Aksel. Neurotoxicity of Penicillium crustosum secondary metabolites: tremorgenic activity of orally administered penitrem A and thomitrem A and E in mice. Toxicon. 2012;60:1428–1435. Moldes-Anaya Angel S., Fonnum Frode, Eriksen Gunnar S., Rundberget Thomas, Walaas S. Ivar, Wigestrand Mattis B.. In vitro neuropharmacological evaluation of penitrem-induced tremorgenic syndromes: importance of the GABAergic system. Neurochemistry international. 2011;59:1074–1081. Lu Hai-Xia X., Levis Hannah, Liu Yong, Parker Terry. Organotypic slices culture model for cerebellar ataxia: potential use to study Purkinje cell induction from neural stem cells. Brain research bulletin. 2011;84:169–173. Namiranian Khodadad, Lloyd Eric E., Crossland Randy F., et al. Cerebrovascular responses in mice deficient in the potassium channel, TREK-1. American journal of physiology. Regulatory, integrative and comparative physiology. 2010;299. Ohno Akitoshi, Ohya Susumu, Yamamura Hisao,
    [Show full text]
  • Roquefortine C (SML0406)
    Roquefortine C from Penicillium roqueforti Catalog Number SML0406 Storage Temperature –20 °C CAS RN 58735-64-1 Precautions and Disclaimer Synonym: Roquefortine This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices. Preparation Instructions Roquefortine C is soluble in methanol (10 mg/mL), DMSO (10 mg/mL), ethyl acetate (1 mg/mL), and chloroform (1 mg/mL). Storage/Stability Store the product sealed at –20 °C. Under these conditions the product is stable for at least 4 years. A DMSO solution (10 mg/mL) is stable for 3 months at Product Description –20 °C. Molecular formula: C22H23N5O2 Molecular weight: 389.45 References 1. Kopp-Holtwiesche, B., and Rehm, H.J., Roquefortine C is a paralytic neurotoxin with a Antimicrobial action of roquefortine. J. Environ. dioxopiperazine structure produced by a diverse range Pathol. Toxicol. Oncol., 10, 41-44 (1990). 1 of fungi, most notably Penicillium species. It has been 2. Wagener, R.E. et al., Penitrem A and Roquefortine 2 found in blue cheese and in many other food products Production by Penicillium commune. App. Environ. 3 due to natural occurrence and contamination. Microbiol., 39, 882-887 (1980). 3. Shangguan, N. et al., The total synthesis of Roquefortine C was found to be active on a wide range roquefortine C and a rationale for the of organisms. It inhibits the growth of Gram-positive thermodynamic stability of isoroquefortine C over bacteria, and cockerels treated with roquefortine lost roquefortine C. J. Am.
    [Show full text]
  • Tremorgenic Mycotoxins: Structure Diversity and Biological Activity
    toxins Review Tremorgenic Mycotoxins: Structure Diversity and Biological Activity Priyanka Reddy 1,2, Kathryn Guthridge 1, Simone Vassiliadis 1 , Joanne Hemsworth 1, Inoka Hettiarachchige 1, German Spangenberg 1,2 and Simone Rochfort 1,2,* 1 Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; [email protected] (P.R.); [email protected] (K.G.); [email protected] (S.V.); [email protected] (J.H.); [email protected] (I.H.); [email protected] (G.S.) 2 School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia * Correspondence: [email protected] Received: 24 April 2019; Accepted: 22 May 2019; Published: 27 May 2019 Abstract: Indole-diterpenes are an important class of chemical compounds which can be unique to different fungal species. The highly complex lolitrem compounds are confined to Epichloë species, whilst penitrem production is confined to Penicillium spp. and Aspergillus spp. These fungal species are often present in association with pasture grasses, and the indole-diterpenes produced may cause toxicity in grazing animals. In this review, we highlight the unique structural variations of indole-diterpenes that are characterised into subgroups, including paspaline, paxilline, shearinines, paspalitrems, terpendoles, penitrems, lolitrems, janthitrems, and sulpinines. A detailed description of the unique biological activities has been documented where even structurally related compounds have displayed unique biological activities. Indole-diterpene production has been reported in two classes of ascomycete fungi, namely Eurotiomycetes (e.g., Aspergillus and Penicillium) and Sordariomycetes (e.g., Claviceps and Epichloë).
    [Show full text]
  • Ketabton.Com (C) Ketabton.Com: the Digital Library
    Ketabton.com (c) ketabton.com: The Digital Library ټوکسيکولوژي اثـــر: Hans Marquardt Siegfried G. Schafer Roger O. McClellan Frank Welsch ژباړن: عبدالکريم توتاخېل ۴۹۳۱ل کال (c) ketabton.com: The Digital Library د کتاب نوم: ټوکسيکولوژي ژباړن: عبدالکريم توتاخېل خـپرونـدی: د افغانستان ملي تحريک، فرهنګي څانګه وېــبپـاڼـه: www.melitahrik.com ډيـزايـنګر: ضياء ساپی پښتۍ ډيزاين: فياض حميد چــاپشمېـر: ۰۱۱۱ ټوکه چــاپـکـــال: ۰۹۳۱ ل کال/ ۵۱۰۲م د تحريک د خپرونو لړ: )۱۰( (c) ketabton.com: The Digital Library فهرست عنوان مخ مخکنۍ خبرې...................................................................................................الف د ژباړن سريزه.........................................................................................................ب لمړی فصل )کیمیاوي او بیولوژيکی عاملین(..............................................1 کیمیاوي عاملین ..............................................................................................1 بیولوژيکي عاملین ......................................................................................۲۶ دويم فصل )طبعي مرکبات(..........................................................................۵۸ پېژندنه ..............................................................................................................۵۸ د حیواناتو زهر)وينوم( او وينوم ..................................................................۵۲ د پروتوزوا او الجیانو توکسینونه...............................................................1۶۱ مايکوتوکسینونه .............................................................................................1۱۱
    [Show full text]
  • Occurrence and Properties of Thiosilvatins
    marine drugs Review Occurrence and Properties of Thiosilvatins Maria Michela Salvatore 1 , Rosario Nicoletti 2,3 , Marina DellaGreca 1 and Anna Andolfi 1,* 1 Department of Chemical Sciences, University of Naples ‘Federico II’, 80126 Naples, Italy; [email protected] (M.M.S.); [email protected] (M.D.) 2 Council for Agricultural Research and Economics, Research Centre for Olive, Citrus and Tree Fruit, 81100 Caserta, Italy; [email protected] 3 Department of Agriculture, University of Naples ‘Federico II’, 80055 Portici, Italy * Correspondence: andolfi@unina.it; Tel.: +39-081-2539179 Received: 27 September 2019; Accepted: 21 November 2019; Published: 26 November 2019 Abstract: The spread of studies on biodiversity in different environmental contexts is particularly fruitful for natural product discovery, with the finding of novel secondary metabolites and structural models, which are sometimes specific to certain organisms. Within the large class of the epipolythiodioxopiperazines, which are typical of fungi, thiosilvatins represent a homogeneous family that, so far, has been reported in low frequency in both marine and terrestrial contexts. However, recent observations indicate that these compounds have been possibly neglected in the metabolomic characterization of fungi, particularly from marine sources. Aspects concerning occurrence, bioactivities, structural, and biosynthetic properties of thiosilvatins are reviewed in this paper. Keywords: thiosilvatins; secondary metabolites; diketopiperazines; epipolythiodioxopiperazines; fungi; biological activities 1. Introduction A huge chapter on research on biodiversity is represented by studies concerning the biochemical properties of the manifold organisms which are part of natural ecosystems. Novel secondary metabolites are continuously discovered, disclosing a surprising chemodiversity in terms of both structural and biosynthetic aspects.
    [Show full text]
  • Fungal Glossary
    FUNGAL GLOSSARY Absidia Natural Habitat ♦ Soil ♦ Decaying vegetation Suitable Substrates in the ♦ Often found in stored grains Indoor Environment ♦ Other foods Water Activity ♦ Unknown Mode of Dissemination ♦ Air / wind Allergenic Potential ♦ Recognized as an allergen Potential Opportunist ♦ In immunocompromised patients pulmonary invasions, the meninges (brain or or Pathogen spinal chord), and kidney infections can result from Absidia exposure ♦ Absidia may also cause zygomycosis in immunocompromised patients (AIDS) Industrial Uses ♦ Unknown Potential Toxins Produced ♦ Unknown Other Comments ♦ Absidia often causes food spoilage References ♦ Mohammed S, Sahoo TP, Jayshree RS, Bapsy PP, Hema S. Sino-oral zygomycosis due to Absidia corymbifera in a patient with acute leukemia. 2004. Med. Mycol. 42(5): 475-478. www.LATesting.com 1-800-303-0047 FUNGAL GLOSSARY Acremonium Natural Habitat ♦ Found in decaying or dead plant materials ♦ Soils Suitable Substrates in the ♦ Food Indoor Environment ♦ Commonly encountered in wet, cellulose-based building materials Water Activity ♦ Grows well indoors when there is high water content (>0.90 Aw). Mode of Dissemination ♦ Insect/water droplet ♦ Older spores can be dislodged by wind Allergenic Potential ♦ Type I (hay fever, asthma) ♦ Type III (hypersensitivity pneumonitis) Potential Opportunist ♦ Known to cause hyalohyphomycosis, keratitis, mycetoma, and onychomycosis or Pathogen ♦ Also known to cause infections in immunodeficient patients ♦ Causes infections in persons with wound injuries Industrial Uses
    [Show full text]
  • “Role of TRPA1 and TRPV1 in Propofol Induced Vasodilation”
    “Role of TRPA1 and TRPV1 in Propofol Induced Vasodilation” A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy By Sayantani Sinha November, 2013 Dissertation written by Sayantani Sinha B.S., University Of Calcutta, Kolkata, India, 2000 M.S., University Of Calcutta, Kolkata, India, 2002 M.Phil., Annamalai University, Tamil Nadu, India, 2006 Ph.D., Kent State University, Kent, Ohio, USA 2013 Approved by Chair, Doctoral Dissertation Committee Derek S. Damron, Ph.D. Member, Doctoral Dissertation Commitee Ian N. Bratz, Ph.D. Member, Doctoral Dissertation Committee Charles K. Thodeti, Ph.D. Member, Doctoral Dissertation Committee J. Gary Meszaros, Ph.D Graduate Faculty Representative Mao Hanbin, Ph.D. Accepted by Chair, School of Biomedical Sciences Eric Mintz, Ph.D. Dean, College of Arts and Sciences Janis H. Crowther, Ph.D. ii Table of Contents LIST OF FIGURES…………………………………………………………………………………........iv LIST OF TABLES…………………………………………………………………………....................vii DEDICATION……………………………………………………………………………………………viii ACKNOWLEDGEMENTS………………………………………………………………………............ix CHAPTER1: SPECIFIC AIMS & BACKGROUND….…………………………………………………1 Hypothesis…………………………………………………………………………………………………2 Background………………………………………………………………………………………………..4 CHAPTER 2: AIM 1: To determine the role of TRPA1 and TRPV1 in propofol induced depressor responses in-vivo Background and Rationale……………………………………………………………………………..34 Materials and Methods………………………………………………………………………………....37 Results……………………………………………………………………………………………………41
    [Show full text]