Analysis of Nuclear Markers in Two Species with Highly Divergent Mtdna Lineages in Iceland

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of Nuclear Markers in Two Species with Highly Divergent Mtdna Lineages in Iceland Analysis of nuclear markers in two species with highly divergent mtDNA lineages in Iceland ITS in Crangonyx islandicus EF alpha in Apatania zonella May 2010 Sonia Sanz Muñoz LÍF016M Research project in biology for foreign students Teacher: Snæbjörn Pálsson University of Iceland Life and Environmental Sciences 1. Abstract This project is a study of variation in two nuclear markers in two arthropods (Crangonyx islandicus and Apatania zonella). Both species have been found to have highly divergent mtDNA lineages within Iceland. Crangonyx islandicus is an endemic groundwater amphipod species recently discovered in Iceland. Based on variation in mtDNA genes, COI and 16S RNA, Kornobis et al, (2010) concluded that this species had survived glaciations periods in sub-glacial refugia. The mtDNA variation defined several monophyletic groups, restricted to different geographic regions in Iceland and which have diverged in Iceland for up to 4 – 5 Million years. This was supported by a correlation between genetic and geographic distances among species. In this study we look at the internal transcribed spacer (ITS) gene, a piece of non-functional RNA situated between structural ribosomal RNAs (rRNA). The results show different patterns from the mtDNA results in Kornobis et al. (2010), with a major split between two populations, between north and southern Iceland, and different partition among samples in southern populations. The main difference is characterized by a large size difference of the ITS1 region due to insertion or deletion, a highly variable microsatellite was funs within this region. The second part of the project is based in the study of Apatania zonella, a caddisflie (Trichoptera), a circumpolar species which lives at high latitudes, in cold-clear water, streams, lakes and marshes. This study is a continuation of a previous study “Mitochondrial variation of the caddisflies Apatania zonella and Potamphylax cingulatus” (Sanz, 2010). The former study showed that Iceland acts as a zone of admixture, where two populations of A. zonella with distinct mtDNA types have arrived, from both ends of its range distribution, one from North America and the other from Europe. In this study we use a nuclear marker, EF alpha, in order to know whether the structure obtained by mtDNA in North America and Europe, is reflected in a nuclear marker and also to verify whether individuals in Iceland of different geographic origin as defined by mtDNA have interbred in Iceland. The results show less clear structure with EF alpha than found in mtDNA. Populations could be sexual or asexual depending on the country. Moreover, results show the rate of evolution of EF alpha is slower than COI’s rate. i 2. Table of contents 1. Abstract .............................................................................................................. i 2. List of contents .................................................................................................. ii 3. List of figures ................................................................................................... iv 4. List of tables ..................................................................................................... vi ITS in Crangonyx islandicus ................................................................................... 1 5. Introduction ....................................................................................................... 2 6. Material and methods ........................................................................................ 6 6.1. Samples .......................................................................................................... 6 6.2.Laboratory protocols ....................................................................................... 7 6.2.1. DNA extraction.................................................................................... 7 6.2.2. Polymerase Chain Reaction ................................................................. 7 6.2.3. Cloning ................................................................................................ 7 6.2.4. Sequencing........................................................................................... 9 6.2.5. Ethanol precipitation ............................................................................ 9 6.3.Sequence variation ........................................................................................ 10 7. Results ............................................................................................................. 11 7.1.Crangonyx islandicus ................................................................................... 11 7.2.Crymostygius thingvallensis ......................................................................... 22 7.3.Stygobromus stegerorum .............................................................................. 23 7.4.Unknow sequences ....................................................................................... 24 8. Discussion ....................................................................................................... 30 8.1.Crangonyx islandicus ................................................................................... 30 8.2.Crymostygius thingvallensis ......................................................................... 33 8.3.Unknow sequences ....................................................................................... 34 EF alpha in Apatania zonella ................................................................................ 35 9. Introduction ..................................................................................................... 36 10. Material and methods ...................................................................................... 37 10.1. Samples ............................................................................................... 37 10.2. Laboratory protocols .......................................................................... 39 10.2.1. DNA extraction.................................................................................. 39 10.2.2. Polymerase Chain Reaction ............................................................... 39 10.2.3. Exosap reaction .................................................................................. 39 ii 10.2.4. Cloning .............................................................................................. 39 10.2.5. Sequencing......................................................................................... 40 10.2.6. Ethanol precipitation .......................................................................... 40 10.3. Sequence variation .............................................................................. 41 11. Results ............................................................................................................. 42 12. Discussion ....................................................................................................... 45 13. Acknowledgements ......................................................................................... 47 14. References ....................................................................................................... 48 15. Appendix ......................................................................................................... 50 iii 3. List of figures ITS1 in Crangonyx islandicus Figure 1. Amphipods anatomy ................................................................................ 3 Figure 2. Sampling locations of groundwater amphipods in Iceland ...................... 4 Figure 3. Organization of the rRNA gene ............................................................... 4 Figure 4. Samples sites of C. islandicus in Iceland ................................................. 6 Figure 5. Map of pNEB206A vector. ...................................................................... 8 Figure 6. Location of the primers used in PCR and sequencing ............................ 9 Figure 7. Agarose gel electrophoresis of DNA fragment of C. islandicus ........... 11 Figure 8. Schematic figure of the 18S rRNA gene, ITS1, 5.8S rRNA gene, ITS2 and 28S rRNA gene ............................................................................... 12 Figure 9. Part of the sequence where number 1, 2 and 3 are shown the insert and the original sequences ................................................................... 12 Figure 10. Network based on 300bp insert within South population ................... 15 Figure 11. Geographical patterns according to the number of repeats ................. 16 Figure 12. ITS1 allele’s network .......................................................................... 18 Figure 13. Geographic distribution of the alleles groups ...................................... 18 Figure 14. ITS2 allele’s network ........................................................................... 19 Figure 15. Allele’s netwrol based on the complete sequence .............................. 20 Figure 16. Network based on part of 28S rRNA gene ......................................... 23 Figure 17. Agarose electrophoresis gel of DNA fragment using ITSF/28SR ...... 24 Figure 18. Network of phylogeny based on 5.8S rRNA gene sequence ............... 28 Figure 19. Schematic figure of how could appear the duplication ........................ 30 Figure 20. Hypothesis of how duplication appears in lineage ............................. 31 Figure 21. Bayesian phylogenetic
Recommended publications
  • Zootaxa: Crangonyx Islandicus Sp. Nov., a Subterranean Freshwater
    Zootaxa 1365: 1–17 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1365 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) Crangonyx islandicus sp. nov., a subterranean freshwater amphipod (Crustacea, Amphipoda, Crangonyctidae) from springs in lava fields in Iceland JÖ R U N D U R S VAVA R S SO N 1 & BJARNI K. KRISTJÁNSSON2 1Institute of Biology, University of Iceland, Askja-Natural Science Building, Sturlugata 7, 101 Reykjavík, Ice- land. E-mail: [email protected] 2Holar University College, 551 Skagafjörður, Iceland. E-mail: [email protected] Abstract Crangonyx islandicus sp. nov. (Crustacea, Amphipoda, Crangonyctidae) is described from Iceland. This is the second species of freshwater, subterranean, gammaridean amphipods found in Iceland and the first species of the family Crangonyctidae. Crangonyx islandicus sp. nov. can be distinguished from other species of the genus Crangonyx by combination of the following characters: the number of spines on the outer and inner lobes of the maxillipedal palp, the presence of a spine at the base of the unguis of the dactylus of gnathopods 1 and 2, stout and short uropod 3, and by a short and wide telson. The species was recorded in South, Southwest, West and Northeast Iceland from numerous springs emerging from relatively young (<10 000 years), porous lavas. The species has apparently survived Pliocene and Pleistocene glaciations in groundwater of porous lava fields and may have persisted in Iceland for several million years. Key words: Amphipoda, Crangonyx, Crangonyctidae, Crangonyctoidea, Iceland, glaciations, subterranean, groundwater, subarctic Introduction Subterranean waters hold a variety of organisms of most animal phyla (see Botosaneanu 1986).
    [Show full text]
  • Additions to and Revisions of the Amphipod (Crustacea: Amphipoda) Fauna of South Africa, with a List of Currently Known Species from the Region
    Additions to and revisions of the amphipod (Crustacea: Amphipoda) fauna of South Africa, with a list of currently known species from the region Rebecca Milne Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa & Charles L. Griffiths* Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa E-mail: [email protected] (with 13 figures) Received 25 June 2013. Accepted 23 August 2013 Three species of marine Amphipoda, Peramphithoe africana, Varohios serratus and Ceradocus isimangaliso, are described as new to science and an additional 13 species are recorded from South Africa for the first time. Twelve of these new records originate from collecting expeditions to Sodwana Bay in northern KwaZulu-Natal, while one is an introduced species newly recorded from Simon’s Town Harbour. In addition, we collate all additions and revisions to the regional amphipod fauna that have taken place since the last major monographs of each group and produce a comprehensive, updated faunal list for the region. A total of 483 amphipod species are currently recognized from continental South Africa and its Exclusive Economic Zone . Of these, 35 are restricted to freshwater habitats, seven are terrestrial forms, and the remainder either marine or estuarine. The fauna includes 117 members of the suborder Corophiidea, 260 of the suborder Gammaridea, 105 of the suborder Hyperiidea and a single described representative of the suborder Ingolfiellidea.
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]
  • A New Species of the Genus Pseudocrangonyx (Crustacea, Amphipoda, Pseudocrangonyctidae) from Korea
    A peer-reviewed open-access journal ZooKeys 735: 27–44 (2018) New Pseudocrangonyx from Korea 27 doi: 10.3897/zookeys.735.21697 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of the genus Pseudocrangonyx (Crustacea, Amphipoda, Pseudocrangonyctidae) from Korea Chi-Woo Lee1,*, Ko Tomikawa2,*, Takafumi Nakano2,3, Gi-Sik Min1 1 Department of Biological Sciences, Inha University, Incheon 22212, South Korea 2 Department of Science Edu- cation, Graduate School of Education, Hiroshima University, Higashihiroshima 739-8524, Japan 3 Present ad- dress: Department of Zoology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan Corresponding author: Gi-Sik Min ([email protected]) Academic editor: A. Myers | Received 17 October 2017 | Accepted 22 January 2018 | Published 6 February 2018 http://zoobank.org/502338A6-6CF7-4D4E-9B54-8B3615053149 Citation: Lee C-W, Tomikawa K, Nakano T, Min G-S (2018) A new species of the genus Pseudocrangonyx (Crustacea, Amphipoda, Pseudocrangonyctidae) from Korea. ZooKeys 735: 27–44. https://doi.org/10.3897/zookeys.735.21697 Abstract A new subterranean species of pseudocrangonyctid amphipod, Pseudocrangonyx daejeonensis sp. n. is de- scribed from the interstitial waters in Daejeon, Korea. Pseudocrangonyx daejeonensis sp. n. is distinguished from three morphologically similar congeners, P. coreanus Uéno, 1966, P. febras Sidorov, 2009, and P. gudariensis Tomikawa & Sato, 2016, by the characteristics of antenna 1, antenna 2, mandible, gnathopod 2, pleopods, uropods 1–2, and telson. Molecular phylogenetic analyses based on nuclear 28S rRNA and histone H3, and mitochondrial cytochrome c oxidase subunit I and 16S rRNA genes revealed that P. dae- jeonensis is a sister species of the unnamed Pseudocrangonyx sp.
    [Show full text]
  • Updates to the Sporadic Knowledge On
    A peer-reviewed open-access journal SubterraneanUpdates Biology to 33:the 71–85 sporadic (2020) knowledge on microsporidian infections in groundwater amphipods 71 doi: 10.3897/subtbiol.33.48633 RESEARCH ARTICLE Subterranean Published by http://subtbiol.pensoft.net The International Society Biology for Subterranean Biology Updates to the sporadic knowledge on microsporidian infections in groundwater amphipods (Crustacea, Amphipoda, Niphargidae) Daniel Grabner1, Dieter Weber2, Alexander M. Weigand3 1 University of Duisburg-Essen, Aquatic Ecology and Centre for Water and Environmental Research, Univer- sitätsstr. 5, 45141 Essen, Germany 2 Université Libre de Bruxelles, Evolutionary Biology & Ecology group, Avenue F.D. Roosevelt 50, B-1050 Brussels, Belgium 3 Musée National d'Histoire Naturelle Luxembourg, 25 Rue Munster, 2160 Luxembourg, Luxembourg Corresponding author: Alexander M. Weigand ([email protected]) Academic editor: O. T. Moldovan | Received 20 November 2019 | Accepted 20 January 2020 | Published 13 February 2020 http://zoobank.org/78CFBE17-0918-455A-8813-C92324DBFCFE Citation: Grabner D, Weber D, Weigand AM (2020) Updates to the sporadic knowledge on microsporidian infections in groundwater amphipods (Crustacea, Amphipoda, Niphargidae). Subterranean Biology 33: 71–85. https://doi. org/10.3897/subtbiol.33.48633 Abstract A set of 69 specimens from 19 groundwater species of the genera Niphargus, Niphargellus, Microniphargus and Crangonyx was genetically screened for microsporidian infections. Samples mostly originated from groundwater-dependent spring environments (71%), natural caves (9%) and artificial caverns/tunnels (13%). Amphipod hosts were identified by morphology and/or molecular data, whereas microsporidian parasites were characterised by a genetic screening assay targeting a section of the small subunit rRNA gene. Five microsporidian species (Dictyocoela duebenum; Nosema sp.; Hyperspora aquatica and two unde- scribed Microsporidium spp.) were revealed from 13 host specimens (Niphargus schellenbergi; N.
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Relationship Between the Flagellates Andthe Ciliates
    MICROBIOLOGICAL REVIEWS, Dec. 1992, p. 529-542 Vol. 56, No. 4 0146-0749/92/040529-14$02.00/0 Copyright © 1992, American Society for Microbiology Relationship between the Flagellates and the Ciliates ROBERT EDWARD LEE'* AND PAUL KUGRENS2 Department ofAnatomy and Neurobiologyl* and Department ofBiology, 2 Colorado State University, Fort Collins, Colorado 80523 INTRODUCTION ....................................................................... 529 COMPARISONS BASED ON MORPHOLOGICAL AND CYTOLOGICAL STRUCTURES .................529 Dinoflagellates and Ciliates ....................................................................... 529 Comparison of dinoflagellates and ciliates ....................................................................... 531 (i) Cortical alveoli ....................................................................... 531 (ii) Mitochondrial cristae ........................................................................ 531 (iii) Structures of cilia, flagella, and associated structures .....................................................532 (a) Grouping and number of cilia and flagela....................................................................532 (b) Surface and subsurface of cilia and flagela ........................................ ...................532 (c) Basal body structure ....................................................................... 533 (d) Type of ciliaryn ecklace .......................................................................533 (e) Type of ciliary and flagelar roots ......................................................................
    [Show full text]
  • The Classification of Lower Organisms
    The Classification of Lower Organisms Ernst Hkinrich Haickei, in 1874 From Rolschc (1906). By permission of Macrae Smith Company. C f3 The Classification of LOWER ORGANISMS By HERBERT FAULKNER COPELAND \ PACIFIC ^.,^,kfi^..^ BOOKS PALO ALTO, CALIFORNIA Copyright 1956 by Herbert F. Copeland Library of Congress Catalog Card Number 56-7944 Published by PACIFIC BOOKS Palo Alto, California Printed and bound in the United States of America CONTENTS Chapter Page I. Introduction 1 II. An Essay on Nomenclature 6 III. Kingdom Mychota 12 Phylum Archezoa 17 Class 1. Schizophyta 18 Order 1. Schizosporea 18 Order 2. Actinomycetalea 24 Order 3. Caulobacterialea 25 Class 2. Myxoschizomycetes 27 Order 1. Myxobactralea 27 Order 2. Spirochaetalea 28 Class 3. Archiplastidea 29 Order 1. Rhodobacteria 31 Order 2. Sphaerotilalea 33 Order 3. Coccogonea 33 Order 4. Gloiophycea 33 IV. Kingdom Protoctista 37 V. Phylum Rhodophyta 40 Class 1. Bangialea 41 Order Bangiacea 41 Class 2. Heterocarpea 44 Order 1. Cryptospermea 47 Order 2. Sphaerococcoidea 47 Order 3. Gelidialea 49 Order 4. Furccllariea 50 Order 5. Coeloblastea 51 Order 6. Floridea 51 VI. Phylum Phaeophyta 53 Class 1. Heterokonta 55 Order 1. Ochromonadalea 57 Order 2. Silicoflagellata 61 Order 3. Vaucheriacea 63 Order 4. Choanoflagellata 67 Order 5. Hyphochytrialea 69 Class 2. Bacillariacea 69 Order 1. Disciformia 73 Order 2. Diatomea 74 Class 3. Oomycetes 76 Order 1. Saprolegnina 77 Order 2. Peronosporina 80 Order 3. Lagenidialea 81 Class 4. Melanophycea 82 Order 1 . Phaeozoosporea 86 Order 2. Sphacelarialea 86 Order 3. Dictyotea 86 Order 4. Sporochnoidea 87 V ly Chapter Page Orders. Cutlerialea 88 Order 6.
    [Show full text]
  • Crustacea: Amphipoda: Pseudocrangonyctidae)
    The complete mitochondrial genome of Pseudocrangonyx Title daejeonensis (Crustacea: Amphipoda: Pseudocrangonyctidae) Lee, Chi-Woo; Nakano, Takafumi; Tomikawa, Ko; Min, Gi- Author(s) Sik Citation Mitochondrial DNA Part B (2018), 3(2): 823-824 Issue Date 2018-7-31 URL http://hdl.handle.net/2433/233039 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.; This is an Open Access article distributed under the terms of the Creative Commons Right Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University MITOCHONDRIAL DNA PART B 2018, VOL. 3, NO. 2, 823–824 https://doi.org/10.1080/23802359.2018.1495116 MITOGENOME ANNOUNCEMENT The complete mitochondrial genome of Pseudocrangonyx daejeonensis (Crustacea: Amphipoda: Pseudocrangonyctidae) Chi-Woo Leea , Takafumi Nakanob , Ko Tomikawac and Gi-Sik Mina aDepartment of Biological Sciences, Inha University, Incheon, Korea; bDepartment of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan; cDepartment of Science Education, Graduate School of Education, Hiroshima University, Higashihiroshima, Japan ABSTRACT ARTICLE HISTORY The complete mitogenome sequence of a subterranean pseudocrangonyctid amphipod, Received 16 May 2018 Pseudocrangonyx daejeonensis, was determined. The complete mitogenome of P. daejeonensis was Accepted 18 June 2018 15,069 bp in length with the typical 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 riboso- KEYWORDS mal RNAs (rRNAs), and a control region (CR). This is the first complete mitogenome sequence in the Complete mitogenome; family Pseudocrangonyctidae. Interestingly, gene arrangements of most amphipod species were almost Amphipoda; identical to the typical pan-crustacean ground pattern, whereas two PCGs, both of rRNAs and CR were Pseudocrangonyx daejeonen- translocated in P.
    [Show full text]
  • Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Parasitology, Harold W. Manter Laboratory of Laboratory of Parasitology 3-2002 Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett .F Edgerton James Cook University, [email protected] Louis H. Evans Curtin University of Technology Frances J. Stephens Curtin University of Technology Robin M. Overstreet Gulf Coast Research Laboratory, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Aquaculture and Fisheries Commons, and the Parasitology Commons Edgerton, Brett .;F Evans, Louis H.; Stephens, Frances J.; and Overstreet, Robin M., "Synopsis of Freshwater Crayfish Diseases and Commensal Organisms" (2002). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 884. https://digitalcommons.unl.edu/parasitologyfacpubs/884 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Aquaculture 206:1–2 (March 2002), pp. 57–135; doi: 10.1016/S0044-8486(01)00865-1 Copyright © 2002 Elsevier Science. Creative Commons Attribution Non-Commercial No Deriva- tives License. Accepted October 18, 2001; published online November 30, 2001. Synopsis of Freshwater Crayfish Diseases and Commensal Organisms Brett F. Edgerton,1 Louis H. Evans,2 Frances J. Stephens,2 and Robin M. Overstreet3 1. Department of Microbiology and Immunology, James Cook University, Townsville, QLD 4810, Australia 2.
    [Show full text]
  • Conservation Assessment for Packard's Cave Amphipod
    Conservation Assessment for Packard’s Cave Amphipod (Crangonyx packardi) (Zhang, 1997) USDA Forest Service, Eastern Region October 2002 Julian J. Lewis, Ph.D. J. Lewis & Associates, Biological Consulting 217 W. Carter Avenue Clarksville, IN 47129 [email protected] This Conservation Assessment was prepared to compile the published and unpublished information on Crangonyx packardi. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject community and associated taxa, please contact the Eastern Region of the Forest Service Threatened and Endangered Species Program at 310 Wisconsin Avenue, Milwaukee, Wisconsin 53203. Conservation Assessment for Packard’s Cave Amphipod (Crangonyx packardi) 2 Table of Contents EXECUTIVE SUMMARY .......................................................................... 4 NOMENCLATURE AN DTAXONOMY .................................................. 4 DESCRIPTION OF SPECIES .................................................................... 4 LIFE HISTORY............................................................................................ 5 HABITAT ...................................................................................................... 5 DISTRIBUTION AND ABUNDANCE .....................................................
    [Show full text]
  • Arctic Biodiversity Assessment
    566 Arctic Biodiversity Assessment The lesser snow goose Chen c. caerulescens shows an approximate east-west cline in their Nearctic breeding distribution in frequency of pale or dark morphs, with blue morphs most common in the east. Although studies of fitness components failed to uncover any adaptive advantage associated with either morph, geese show strong mating preference based on the color of their parents, leading to assortative mating. Queen Maud Gulf Bird Sanctuary, Nunavut, Canada. Photo: Gustaf Samelius. 567 Chapter 17 Genetics Lead Author Joseph A. Cook Contributing Authors Christian Brochmann, Sandra L. Talbot, Vadim B. Fedorov, Eric B. Taylor, Risto Väinölä, Eric P. Hoberg, Marina Kholodova, Kristinn P. Magnusson and Tero Mustonen Contents Summary ..............................................................568 17.5. Recommendations and conservation measures ������������������582 17.1. Introduction .....................................................568 17.5.1. Call for immediate development of freely available, specimen-based archives ...................................582 17.2. Systematics, phylogenetics and phylogeography ................569 17.5.1.1. Build European, Asian and North American 17.2.1. Systematics ................................................569 tissue archives .....................................582 17.2.1.1. Phylogenetics and taxonomy �����������������������569 17.5.2. Expand biodiversity informatics ............................582 17.2.1.2. Systematics and phylogenetics in Arctic species ....569 17.5.2.1. Connect GenBank, EMBL and DDJB to Archives .....582 17.2.2. Phylogeography – setting the stage for interpreting 17.5.2.2. Connect GenBank (Genomics) to GIS applications ..583 changing environmental conditions ........................571 17.5.2.3. Stimulate emerging pathogen investigations 17.2.2.1. Influence of dynamic climates on structuring through integrated inventories ���������������������583 Arctic diversity .....................................571 17.5.2.4. Develop educational interfaces and portals for 17.2.2.2.
    [Show full text]