Relationship Between the Flagellates Andthe Ciliates

Total Page:16

File Type:pdf, Size:1020Kb

Relationship Between the Flagellates Andthe Ciliates MICROBIOLOGICAL REVIEWS, Dec. 1992, p. 529-542 Vol. 56, No. 4 0146-0749/92/040529-14$02.00/0 Copyright © 1992, American Society for Microbiology Relationship between the Flagellates and the Ciliates ROBERT EDWARD LEE'* AND PAUL KUGRENS2 Department ofAnatomy and Neurobiologyl* and Department ofBiology, 2 Colorado State University, Fort Collins, Colorado 80523 INTRODUCTION ....................................................................... 529 COMPARISONS BASED ON MORPHOLOGICAL AND CYTOLOGICAL STRUCTURES .................529 Dinoflagellates and Ciliates ....................................................................... 529 Comparison of dinoflagellates and ciliates ....................................................................... 531 (i) Cortical alveoli ....................................................................... 531 (ii) Mitochondrial cristae ........................................................................ 531 (iii) Structures of cilia, flagella, and associated structures .....................................................532 (a) Grouping and number of cilia and flagela....................................................................532 (b) Surface and subsurface of cilia and flagela ........................................ ...................532 (c) Basal body structure ....................................................................... 533 (d) Type of ciliaryn ecklace .......................................................................533 (e) Type of ciliary and flagelar roots ....................................................................... 533 (I) Summary of similarities in cilia and flageUla of the ciliates and dinoflagellates .......................533 (iv) Parasomal sac and pusule ....................................................................... 533 (v) Extrusive organelles ........................................................................ 533 (vi) Feeding apparatus ....................................................................... 534 (vii) Nucleus ....................................................................... 535 Summary of the similarities between dinoflagellates and ciliates ................................................535 Comparison of Colponema loxodes and Ciliates ........................................................................ 535 Similarity between Suctorian Ciliates and the Flagellate Katablepharis ...........................................535 Characteristics of Katablepharis spp........................................................................535 Characteristics of suctorian ciliates ....................................................................... 535 Comparison of suctorian ciliates and Katablephars spp ...........................................................536 COMPARISONS BASED ON MOLECULAR STRUCTURE ..........................................................537 rRNA Nucleotide Sequencing .......................................................................538 Use of mRNA Codons ....................................................................... 538 CONCLUSION ....................................................................................... 539 INTRODUCTION dence, for the close relationship between the ciliates and the flagellates. The ciliates have long been recognized as a distinct group of organisms (26, 79, 114). The following classical features distinguish the ciliates from other organisms. (i) They exhibit COMPARISONS BASED ON MORPHOLOGICAL AND nuclear dualism (the possession of two types of nuclei). They CYTOLOGICAL STRUCTURES have a germ line diploid micronucleus, which is transcrip- The dinoflagellates and two genera of uncertain taxonomic tionally inactive, and a vegetative polyploid macronucleus, position, Colponema and Katablepharis, are the flagellates which is responsible for transcription in the cell. (ii) They with morphological and cytological structures most similar possess cilia at some stage in their life history. Each cilium to those of the ciliates. A comparison of each of these with has a kinetosome (basal body) with characteristic fibrillar the ciliates is presented. structures in the cytoplasm associated with it. (iii) They have alveoli in the cortical cytoplasm. An alveolus consists of a Dinoflagellates and Ciliates single flattened membrane cistemum that usually occurs beneath the plasma membrane and commonly has rows of Historically, the dinoflagellates have generally been con- microtubules under it. There are ciliates that lack one or sidered to be the most likely ancestors of the ciliates. In the more of the above characteristics. However, the vast major- 1800s, it was thought that the beating waves of the trans- ity of ciliates have these three features. verse flagellum encircling the cell in the cingulum of di- The flagellates have been considered to be the closest noflagellates was actually produced by the waves of closely relatives of the ciliates, with their unicellular nature and the packed cilia (23, 27, 68). This observation resulted in the similarity in the structure of cilia and flagella providing the inclusion of the dinoflagellates in the phylum Cilioflagellata basis of this relationship (20, 22, 27, 80, 113, 115, 120, 121). with the ciliates. In the following review, we will present first the morpholog- More recently, Taylor (120, 121, 122) (Fig. 1) presented a ical and cytological evidence, and then the molecular evi- phylogenetic tree with the ciliates arising from a branch just above the dinoflagellates. The resemblance between the cortical structures of the ciliates and dinoflagellates was * Corresponding author. presented as the strongest argument for the closeness of the 529 530 LEE AND KUGRENS MICROBIOL. REV. TUBULAR CRISTAE IN TAYLOR MITOCHONDRIA Oomycetes ,'Hyphochytrids ' FLATTENED CRISTAE !N MITOCHONDRIA / : SMALL AND LYNN Bodonids ! , Euglenoids TTrypanosomes ', Chromophyte Cryptophytes Choanoflagellates, Postciliodesmata .... Charophytes Algae Rhabdophora Cyrtophora Chiorophytes Chytrids Prasinophytes * #,l0.... Ciliates Dinophytes8 Zygomycetes . - ---"'''%\ Basidiomycete$ Colponema i oRhodophytes..yt.Ascomycetes Dinoflagellates8- Corticoflagellate Animals CAVALIER-SMITH Fungi. CRYPTISTA CHROMOBIOTA PLANTS (Cryptophytes)aN(Chromophytelgae) Two membranes of endoplasmic Chlrllstbnlalchloroplasttubular CILIOPHORACiiCiliaLOpHrAepresent(ieites(Ciliates) reticulum,flagellar hairs DINOZOA (Dinoflagellates) Cortical alveoli (OxyrrhiCHOANOZOA OPALOZOA Tubular mitochondrial cristae, no cortical alveoli no tubular flagellar hairs (Heteromita) PARABASALIA EUGLENOZOA (Euglenoids) Hydrogenosomes as respiratory Two flagella, specialized Z.- . organelles instead of feeding apparatus (Bodo) mitochondria (Trichomonas) PERCOLOZA Commonly with four flagella, discoid mitochondrial cristae, peroxisomes (Percolomonas, Naegleria, Tetramitus, Stephanopogon) t M ETAMONADA Four flagella, non-amoeboid, no mitochondria, no peroxisome, no dictyosomes (Hexamita) ARCHAMOEBAE Uniflagellate amoebae, no mitochondria, no peroxisome, no dictyosomes (Mastigamoeba) FIG. 1. Portions of evolutionary schemes that have involved the relationship between the dinoflagellates and the ciliates. two groups. Other authors have derived the ciliates from the by mitosis followed by only partial cytokinesis. Such a dinoflagellates through the dinoflagellate Polykrikos sp. (20, multiplication of the nuclei and flagella within a single cell 92, 113). Polykrikos sp. is a multinucleate and multiflagellate has been considered a first step toward the multinucleate and dinoflagellate that consists basically of a number of di- multiciliated condition in the ciliates. noflagellate cells stacked one on top of another and fused to Cavalier-Smith also believed that the ciliates evolved from produce a single cell. This dinoflagellate probably evolved the dinoflagellates (20-22) (Fig. 1) and placed both in the VOL. 56, 1992 FLAGELLATE-CILIATE RELATIONSHIP 531 Posterior Anterior FIG. 2. Structure of a cell of a typical ciliate. subphylum Corticoflagellata. The Corticoflagellata is char- (i) Cortical alveoli. The cortical alveoli in the ciliates are acterized by a highly developed cortical microtubular sys- flattened membrane sacs that lie just beneath the plasma tem, a phagocytic mode of nutrition, a strong tendency to membrane and above the epiplasm (Fig. 2; see also Fig. 4) evolve repeated cortical structures and multiple nuclei, (26, 79, 115). A row of microtubules frequently occurs genomes or cells, and the absence of the transitional region beneath the alveoli. The dinoflagellates have flattened thecal star and of tubular mastigonemes. Similarly, Small and Lynn vesicles under the plasma membrane (Fig. 3 and 4) (31, 32) (78, 115) (Fig. 1) derived the ciliates from a corticoflagellate that appear to be similar to the cortical alveoli of the ciliates. ancestor, with the dinoflagellates arising from a branch In the dinoflagellates, the thecal vesicles are commonly filled immediately under the ciliates. Corliss (24, 27) has reviewed with thecal plates. Like the cortical alveoli of the ciliates, the the relationship of the ciliates with the flagellates and has thecal vesicles often lie above a row of microtubules. Cav- also come to the conclusion that the dinoflagellates represent alier-Smith (22) argues that the thecal vesicles are an evolu- the most probable ancestor of the ciliates. tionary response to predation, with the thecal plates acting Comparison of dinoflagellates and ciliates. The dinoflagel-
Recommended publications
  • Handout Lec. 25
    Introduction to Biosystematics - Zool 575 Introduction to Biosystematics Confidence - Assessment of the Strength of Lecture 25 - Confidence - Assessment 2 the Phylogenetic Signal - part 2 1. Consistency Index 2. g1 statistic, PTP - test “Quantifying the uncertainty of a phylogenetic 3. Consensus trees estimate is at least as important a goal as obtaining the phylogenetic estimate itself.” 4. Decay index (Bremer Support) - Huelsenbeck & Rannala (2004) 5. Bootstrapping / Jackknifing 6. Statistical hypothesis testing (frequentist) 7. Posterior probability (see lecture on Bayesian) Derek S. Sikes University of Calgary Zool 575 Multiple optimal trees Multiple optimal trees • Many methods can yield multiple equally • If multiple optimal trees are found we know optimal trees that all of them are wrong except, possibly, (hopefully) one • We can further select among these trees with additional criteria, but • Some have argued against consensus tree methods for this reason • Typically, relationships common to all the optimal trees are summarized with • Debate over quest for true tree (point consensus trees estimate) versus quantification of uncertainty Consensus methods Strict consensus methods • A consensus tree is a summary of the agreement • Strict consensus methods require agreement among a set of fundamental trees across all the fundamental trees • There are many consensus methods that differ in: • They show only those relationships that are 1. the kind of agreement unambiguously supported by the data 2. the level of agreement • The commonest
    [Show full text]
  • Molecular Data and the Evolutionary History of Dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Un
    Molecular data and the evolutionary history of dinoflagellates by Juan Fernando Saldarriaga Echavarria Diplom, Ruprecht-Karls-Universitat Heidelberg, 1993 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES Department of Botany We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA November 2003 © Juan Fernando Saldarriaga Echavarria, 2003 ABSTRACT New sequences of ribosomal and protein genes were combined with available morphological and paleontological data to produce a phylogenetic framework for dinoflagellates. The evolutionary history of some of the major morphological features of the group was then investigated in the light of that framework. Phylogenetic trees of dinoflagellates based on the small subunit ribosomal RNA gene (SSU) are generally poorly resolved but include many well- supported clades, and while combined analyses of SSU and LSU (large subunit ribosomal RNA) improve the support for several nodes, they are still generally unsatisfactory. Protein-gene based trees lack the degree of species representation necessary for meaningful in-group phylogenetic analyses, but do provide important insights to the phylogenetic position of dinoflagellates as a whole and on the identity of their close relatives. Molecular data agree with paleontology in suggesting an early evolutionary radiation of the group, but whereas paleontological data include only taxa with fossilizable cysts, the new data examined here establish that this radiation event included all dinokaryotic lineages, including athecate forms. Plastids were lost and replaced many times in dinoflagellates, a situation entirely unique for this group. Histones could well have been lost earlier in the lineage than previously assumed.
    [Show full text]
  • Geotaxis in the Ciliated Protozoon Loxodes
    J. exp. Biol. 110, 17-33 (1984) 17 d in Great Britain © The Company of Biologists Limited 1984 GEOTAXIS IN THE CILIATED PROTOZOON LOXODES BY T. FENCHEL Department of Ecology and Genetics, University ofAarhus, DK-8000 Aarhus, Denmark AND B. J. FINLAY Freshwater Biological Association, The Ferry House, Ambleside, Cumbria LA22 OLP, U.K. Accepted 14 November 1983 SUMMARY Geotaxis is demonstrated in the ciliated protozoon Loxodes. This behaviour is mediated by a mechanoreceptor which is probably the Muller body, an organelle characteristic of loxodid ciliates. The geotactic response is sensitive to dissolved oxygen tension: in anoxia or at very low O2 tensions the ciliates tend to swim up and at higher O2 tensions they tend to swim down. This behaviour, in conjunction with a kinetic response allows the ciliates to orientate themselves in vertical O2 gradients and to congregate in their optimum environment. In two appendices, models of the behaviour predicting vertical distribution patterns and considerations of the minimum size of a functional statocyst are offered. INTRODUCTION Many protozoa display a pronounced positive or negative geotaxis. The mechan- isms responsible for this have been the subject of a prolonged dispute (for references see Roberts, 1970). In the species studied so far, however, there is no evidence of mechanoreceptors. Rather, the geotactic behaviour can be explained as the result of the interactions between sinking velocity, swimming velocity, rate of random reorientation and the net result of gravitational and hydrodynamical forces. These tend passively to orientate the anterior end of the cells upwards. Through modulations of the swimming velocity and the rate of random reorientation, the cells can change their probability of moving upwards and hence their vertical distribution in the water column.
    [Show full text]
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Dinoflagelados (Dinophyta) De Los Órdenes Prorocentrales Y Dinophysiales Del Sistema Arrecifal Veracruzano, México
    Symbol.dfont in 8/10 pts abcdefghijklmopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ Symbol.dfont in 10/12 pts abcdefghijklmopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ Symbol.dfont in 12/14 pts abcdefghijklmopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ Dinoflagelados (Dinophyta) de los órdenes Prorocentrales y Dinophysiales del Sistema Arrecifal Veracruzano, México Dulce Parra-Toriz1,3, María de Lourdes Araceli Ramírez-Rodríguez1 & David Uriel Hernández-Becerril2 1. Facultad de Biología, Universidad Veracruzana, Circuito Gonzalo Beltrán s/n, Zona Universitaria, Xalapa, Veracruz, 91090 México; [email protected] 2. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM). Apartado Postal 70-305, México D.F. 04510 México; [email protected] 3. Posgrado en Ciencias del Mar. Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM). Apartado Postal 70-305, México D.F. 04510 México; [email protected] Recibido 12-III-2010. Corregido 24-VIII-2010. Aceptado 23-IX-2010. Abstract: Dinoflagellates (Dinophyta) of orders Dinophysiales and Prorocentrales of the Veracruz Reef System, Mexico. Dinoflagellates are a major taxonomic group in marine phytoplankton communities in terms of diversity and biomass. Some species are also important because they form blooms and/or produce toxins that may cause diverse problems. The composition of planktonic dinoflagellates of the orders Prorocentrales and Dinophysiales, in the Veracruz Reef System, were obtained during the period of October 2006 to January 2007. For this, samples were taken from the surface at 10 stations with net of 30µm mesh, and were analyzed by light and scanning electron microscopy. Each species was described and illustrated, measured and their dis- tribution and ecological data is also given. A total of nine species were found and identified, belonging to four genera: Dinophysis was represented by three species; Prorocentrum by three, Phalacroma by two, and only one species of Ornithocercus was detected.
    [Show full text]
  • 4/9/15 1 Alveolates
    4/9/15 Bayli Russ ALVEOLATES April 9, 2015 WHAT IS IT? ¡ Alveolates- Major superphylum of protists ¡ Group of single-celled eukaryotes that get their nutrition by predation, photoautotrophy, and intracellular parasitism ¡ Spherical basophilic organisms (6-9 µm diameter) ¡ Most notable shared characteristic is presence of cortical alveoli, flattened vesicles packed into linear layer supporting the membrane, typically forming a flexible pellicle (Leander, 2008) WHAT IS IT? ¡ 3 main subgroups: § Ciliatesà predators that inhabit intestinal tracts and flesh § Dinoflagellatesà mostly free living predators or photoautotrophs, release toxins § Apicomplexansà obligate parasite; invade host cells ¡ Several other lineages such as: § Colpodella § Chromera § Colponema § Ellobiopsids § Oxyrrhis § Rastrimonas § Parvilucifera § Perkinsus (Leander, 2008) 1 4/9/15 HOW DOES IT KILL AMPHIBIANS? ¡ Cause infection and disease in amphibian populations § Infection = parasite occurs in host; occupying intestinal lumen § Disease = advanced infection; presence of spores in tissues; occupying intestinal mucosa, liver, skin, rectum, mesentery, adipose tissue, pancreas, spleen, kidney, and somatic musculature ¡ Effects on organs § Filters into host’s internal organs in mass amounts § Causes organ enlargement and severe tissue alteration § Obliterates kidney and liver structure § System shut-down = DEATH ¡ How its introduced to environment § Birds § Insects ¡ How it spreads/transmission: § Ingestion of spores § Feces of infected individuals § Tissues from dead/dying
    [Show full text]
  • (Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
    J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson
    [Show full text]
  • Metagenomic Characterization of Unicellular Eukaryotes in the Urban Thessaloniki Bay
    Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay George Tsipas SCHOOL OF ECONOMICS, BUSINESS ADMINISTRATION & LEGAL STUDIES A thesis submitted for the degree of Master of Science (MSc) in Bioeconomy Law, Regulation and Management May, 2019 Thessaloniki – Greece George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ Student Name: George Tsipas SID: 268186037282 Supervisor: Prof. Dr. Savvas Genitsaris I hereby declare that the work submitted is mine and that where I have made use of another’s work, I have attributed the source(s) according to the Regulations set in the Student’s Handbook. May, 2019 Thessaloniki - Greece Page 2 of 63 George Tsipas ’’Metagenomic characterization of unicellular eukaryotes in the urban Thessaloniki Bay’’ 1. Abstract The present research investigates through metagenomics sequencing the unicellular protistan communities in Thermaikos Gulf. This research analyzes the diversity, composition and abundance in this marine environment. Water samples were collected monthly from April 2017 to February 2018 in the port of Thessaloniki (Harbor site, 40o 37’ 55 N, 22o 56’ 09 E). The extraction of DNA was completed as well as the sequencing was performed, before the downstream read processing and the taxonomic classification that was assigned using PR2 database. A total of 1248 Operational Taxonomic Units (OTUs) were detected but only 700 unicellular eukaryotes were analyzed, excluding unclassified OTUs, Metazoa and Streptophyta. In this research-based study the most abundant and diverse taxonomic groups were Dinoflagellata and Protalveolata. Specifically, the most abundant groups of all samples are Dinoflagellata with 190 OTUs (27.70%), Protalveolata with 139 OTUs (20.26%) Ochrophyta with 73 OTUs (10.64%), Cercozoa with 67 OTUs (9.77%) and Ciliophora with 64 OTUs (9.33%).
    [Show full text]
  • PROTISTS Shore and the Waves Are Large, Often the Largest of a Storm Event, and with a Long Period
    (seas), and these waves can mobilize boulders. During this phase of the storm the rapid changes in current direction caused by these large, short-period waves generate high accelerative forces, and it is these forces that ultimately can move even large boulders. Traditionally, most rocky-intertidal ecological stud- ies have been conducted on rocky platforms where the substrate is composed of stable basement rock. Projec- tiles tend to be uncommon in these types of habitats, and damage from projectiles is usually light. Perhaps for this reason the role of projectiles in intertidal ecology has received little attention. Boulder-fi eld intertidal zones are as common as, if not more common than, rock plat- forms. In boulder fi elds, projectiles are abundant, and the evidence of damage due to projectiles is obvious. Here projectiles may be one of the most important defi ning physical forces in the habitat. SEE ALSO THE FOLLOWING ARTICLES Geology, Coastal / Habitat Alteration / Hydrodynamic Forces / Wave Exposure FURTHER READING Carstens. T. 1968. Wave forces on boundaries and submerged bodies. Sarsia FIGURE 6 The intertidal zone on the north side of Cape Blanco, 34: 37–60. Oregon. The large, smooth boulders are made of serpentine, while Dayton, P. K. 1971. Competition, disturbance, and community organi- the surrounding rock from which the intertidal platform is formed zation: the provision and subsequent utilization of space in a rocky is sandstone. The smooth boulders are from a source outside the intertidal community. Ecological Monographs 45: 137–159. intertidal zone and were carried into the intertidal zone by waves. Levin, S. A., and R.
    [Show full text]
  • Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
    Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes.
    [Show full text]
  • A KEY to the COMMON PARASITIC PROTOZOANS of NORTH AMERICAN FISHES Thomas L. Wellborn, Jr. and Wilmer A. Rogers Zoology-Ent
    . A KEY to the COMMON PARASITIC PROTOZOANS of NORTH AMERICAN FISHES Thomas L. Wellborn, Jr. and Wilmer A. Rogers Zoology-Entomology Department Series Fisheries No. 4 AGRICULTURAL EXPERIMENT STATION AUBURN UNIVERSITY E. V. Smith, Director March 1966 Auburn, Alabama (Revised June 1970) A KEY TO THE COMMON PARASITIC PROTOZOANS 1 OF NORTH AMERICAN FISHES Thomas L. Wellborn, Jr. 2/— and Wilmer A. Rogers 3/— Private, state, and federal fish husbandry industries suffer great losses each year because of disease and parasites. The parasitic protozoans included in this key are the ones most commonly associated with fish mortalities. A total of 23 genera of parasitic protozoans may be identified by use of this key. The fish protozoan parasites are responsible for a large part of the mortalities that occur at fish hatcheries each year. This is because they are capable of building up tremendous populations within relatively short periods of time, and some are capable of causing extreme damage to fish. Proper treatment and control of the diseases caused by the various protozoans are impossible without knowing their identity. This key will be helpful to fishery workers in identifying the more common genera. It must be remembered, however, that a microscope and knowledge of its use are absolute prerequisites for identifying protozoans. Certain parasitic protozoans cannot be identified below the rank of Order - without use of special techniques; therefore, all known genera are not included in the herein reported key. Protozoans belonging to such Orders should be sent to a specialist for identification. 1/ Supported in part by Southeastern Cooperative Fish Parasite and Disease Project (Fish Restoration Funds).
    [Show full text]
  • Protistology an International Journal Vol
    Protistology An International Journal Vol. 10, Number 2, 2016 ___________________________________________________________________________________ CONTENTS INTERNATIONAL SCIENTIFIC FORUM «PROTIST–2016» Yuri Mazei (Vice-Chairman) Welcome Address 2 Organizing Committee 3 Organizers and Sponsors 4 Abstracts 5 Author Index 94 Forum “PROTIST-2016” June 6–10, 2016 Moscow, Russia Website: http://onlinereg.ru/protist-2016 WELCOME ADDRESS Dear colleagues! Republic) entitled “Diplonemids – new kids on the block”. The third lecture will be given by Alexey The Forum “PROTIST–2016” aims at gathering Smirnov (Saint Petersburg State University, Russia): the researchers in all protistological fields, from “Phylogeny, diversity, and evolution of Amoebozoa: molecular biology to ecology, to stimulate cross- new findings and new problems”. Then Sandra disciplinary interactions and establish long-term Baldauf (Uppsala University, Sweden) will make a international scientific cooperation. The conference plenary presentation “The search for the eukaryote will cover a wide range of fundamental and applied root, now you see it now you don’t”, and the fifth topics in Protistology, with the major focus on plenary lecture “Protist-based methods for assessing evolution and phylogeny, taxonomy, systematics and marine water quality” will be made by Alan Warren DNA barcoding, genomics and molecular biology, (Natural History Museum, United Kingdom). cell biology, organismal biology, parasitology, diversity and biogeography, ecology of soil and There will be two symposia sponsored by ISoP: aquatic protists, bioindicators and palaeoecology. “Integrative co-evolution between mitochondria and their hosts” organized by Sergio A. Muñoz- The Forum is organized jointly by the International Gómez, Claudio H. Slamovits, and Andrew J. Society of Protistologists (ISoP), International Roger, and “Protists of Marine Sediments” orga- Society for Evolutionary Protistology (ISEP), nized by Jun Gong and Virginia Edgcomb.
    [Show full text]