Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) Under Aerobic Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) Under Aerobic Conditions Hindawi Publishing Corporation International Journal of Microbiology Volume 2009, Article ID 731786, 17 pages doi:10.1155/2009/731786 Research Article Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) under Aerobic Conditions Abdeljabbar Hedi,1, 2 Najla Sadfi,1 Marie-Laure Fardeau,2 Hanene Rebib,1 Jean-Luc Cayol,2 Bernard Ollivier,2 and Abdellatif Boudabous1 1 Laboratoire Microorganismes et Biomol´ecules Actives, Facult´e des Sciences de Tunis, Universit´e de Tunis El Manar, 2092 Tunis, Tunisia 2 Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds, UMR180, IRD, Universit´es de Provence et de la M´editerran´ee, ESIL case 925, 13288 Marseille cedex 9, France Correspondence should be addressed to Jean-Luc Cayol, [email protected] Received 8 April 2009; Accepted 27 August 2009 Recommended by Thomas L. Kieft Bacterial and archaeal aerobic communities were recovered from sediments from the shallow El-Djerid salt lake in Tunisia, and their salinity gradient distribution was established. Six samples for physicochemical and microbiological analyses were obtained from 6 saline sites in the lake for physico-chemical and microbiological analyses. All samples studied were considered hypersaline with NaCl concentration ranging from 150 to 260 g/L. A specific halophilic microbial community was recovered from each site, and characterization of isolated microorganisms was performed via both phenotypic and phylogenetic approaches. Only one extreme halophilic organism, domain Archaea, was isolated from site 4 only, whereas organisms in the domain Bacteria were recovered from the five remaining sampling sites that contained up to 250 g/L NaCl. Members of the domain Bacteria belonged to genera Salicola, Pontibacillus, Halomonas, Marinococcus,andHalobacillus, whereas the only member of domain Archaea isolated belonged to the genus Halorubrum. The results of this study are discussed in terms of the ecological significance of these microorganisms in the breakdown of organic matter in Lake El-Djerid and their potential for industry applications. Copyright © 2009 Abdeljabbar Hedi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 1. Introduction brines of Wadi Natrun (Egypt), and Lake Magadi (Kenya) [7–9]. It is noteworthy that low taxonomic biodiversity is Hypersaline environments are found in a wide variety of observed in all these saline environments [10, 11], most aquatic and terrestrial ecosystems. They are inhabited by probably due to the highly salt concentrations measured in halotolerant microorganisms but also halophilic microor- these environments. ganisms ranging from moderate halophiles with higher To adapt to high saline conditions, halophilic microor- growth rates in media containing between 0.5 M and 2.5 M ganisms have developed various biochemical strategies, NaCl to extreme halophiles with higher growth rates in including compatible solute synthesis to maintain cell struc- media containing over 2.5 M NaCl [1]. Aerobic, anaerobic, ture and function [12–14]. These solutes (e.g., ecto¨ıne) plus and facultative anaerobic microbes belonging to domains other compounds (bacteriorhodopsins, exopolysaccharides, Archaea and Bacteria have been recovered from these extreme hydrolases, biosurfactants) produced by halophilic microbes ecosystems, where they participate in overall organic matter are clearly of industrial interest. Besides these metabolical oxidation [2–6]. and physiological features, halophilic microorganisms are Moderate and extreme halophiles have been isolated not known to play important roles in fermenting fish sauces and only from hypersaline ecosystems (salt lakes, marine salterns in transforming and degrading waste and organic pollutants and saline soils) but also from alkaline ecosystems (alkaline in saline wastewaters [15–17]. lakes). The most widely studied ecosystems are the Great Southern Tunisia features numerous ecosystems includ- Salt Lake (Utah, USA), the Dead Sea (Israel),¨ the alkaline ing extreme (hypersaline) environments in which microbial 2 International Journal of Microbiology S1 S2 S3 S4 S5 S6 2.3. Enrichment and Isolation. Enrichment cultures and isolation procedures to recover aerobic or facultatively anaer- obic moderately to extremely halophilic microorganisms GAFSA were performed in medium containing (per liter): NaCl, 250 g; MgCl2 6H2O, 13 g; MgSO4 7H2O, 20 g; KCl, 4 g; CaCl2 2H2O,1g;NaBr,0.5g;NaHCO3, 0.2 g; yeast extract, 5 g; GABES tryptone, 8 g; and glucose, 1 g. pH was adjusted to 7.2 with S1S2 S3 10 M NaOH before autoclaving. Enrichment cultures were S4 S5 subcultured several times under the same conditions. Strains S6 were grown in 100 mL of medium in 250-mL Erlenmeyer flasks in a rotary shaker at 37◦C under agitation at 150 rpm. Aliquots (100 μl) of 10−1–10−4 dilutions were plated onto agar medium. After two weeks of incubation at 37◦C, there were red, orange-red, pale-pink, yellowish, cream, white, 15 Km and transparent colonies. Different colonies were picked and restreaked several times to obtain pure cultures. Microbial ◦ Figure 1: Site map of the El-Djerid lake (Tunisia) and sampling cultures were stored at −80 C in the isolation medium points. supplemented with 50% glycerol. 2.4. Characterization and Identification of Isolates. Among ff diversity has been poorly studied. El-Djerid Sebkha, the the 130 strains isolated, only 36 showed di erent phenotypic largest saline lake (5000 km2) in southern Tunisia, is an characteristics and phylogenetic signatures (ARDRA, 16S important source of salt for food, but its microbial diversity rRNA gene sequences). These were chosen for further has never yet been studied. Given its economic value for characterization. Isolates were examined for colony and the region as a salt source, we conducted a microbial survey cell morphology and motility. Colonial morphologies were to gain better knowledge of the microbial diversity thriving described using standard microbiological criteria, with spe- in this extreme ecosystem. The purpose of this research cial emphasis on pigmentation, diameter, colonial elevation, was to chemically analyse salt and brine samples collected consistency, and opacity [19]. These characteristics were from the lake, isolate any novel extremely halophilic aero- described for cultures grown at optimum temperature, pH, bic or facultative anaerobic microorganisms, and examine and salt concentration. For biochemical tests, the strains were grown in flasks their phenotypic features and physiological and biochemical ◦ characteristics with a view to screening for metabolites and cultures were incubated at 37 C. The optimal ionic of industrial interest produced by the novel halophilic content (per liter: 4 g of KCl, 13 g of MgCl2 6H2O, 1 g of isolates. CaCl2 2H2O, 20 g of MgSO4 7H2O, 0.5 g of NaBr, 0.2 g of NaHCO3, 250 g of NaCl) was used in all the biochemical test media. Oxidase reaction was performed according to Kovacs 2. Material and Methods (1956) [20]. Catalase was determined by adding 10 volumes of H2O2 to each strain culture (after 18 hour incubation 2.1. Sample Collections. The studied strains were isolated at 37◦C) on solid medium. Gelatinase, β-galactosidase, from water and sediments of the El-Djerid Sebkha, a urease, indol production, and Voges-Proskauer tests were shallow lake located in southern Tunisia. According to in performed using standard procedures. Other phenotypic situ physico-chemical conditions and level of wastewater characteristics were determined using API 20E and API 20NE pollutants, the Sebkha was divided into six experimental sites kits (BioMerieux,´ Marcy l’Etoile, France) according to Logan (Figure 1). The samples were collected in February 2006. and Berkeley (1984) [21]. Water and sediment samples were collected at the surface and at various depths (0.1, 0.2, 0.3 m) in each site. All samples were collected into sterile bottles and stored in ice boxes in 2.5. PCR Amplification of 16S rDNA. The DNA from bac- the laboratory. terial cultures was extracted using a Wizard Genomic DNA Purification Kit. The 16S rRNA gene of the isolate strain was amplified by adding 1 μL of cell culture to a thermocycler 2.2. Physicochemical Analysis of the Samples. pH, moisture microtube containing 5 μLof10× taq buffer, 0.5 μLofeach + + 2+ 2+ − μ content, and Na ,K,Ca ,Mg ,andCl content of 50 nM Fd1 and Rd1 primers, 5 Lof25mMMgCl2 6H2O, the salt and sediment samples were measured according to 0.5 μLof25mMdNTPs,0.5μL of Taq polymerase (5U μL−1), − standard methods of Trussel et al. [18]; Cl was quantified and 38 μL of sterilized distilled water. Universal primers 2+ by titration with AgNO3,Mg was quantified by atomic Fd1andRd1(Fd1,5-AGAGTTTGATCCTGGCTCAG-3 absorption spectrophotometry, Na+ was quantified by flame and Rd1, 5-AAGGAGGTGATCCAGCC-3) were used to spectrophotometry, and Ca2+ was quantified by complexom- obtain a PCR product of ∼1.5 kb corresponding to base etry using EDTA. Temperature and pH were measured in positions 8-1542 based on Escherichia coli numbering of the situ. 16S rRNA gene [22]. The sample was placed in a hybrid International Journal of Microbiology 3 10% Halobacillus trueperi DSM 10404T Halobacillus aidingensis JCM 12771T Halobacillus karajensis DSM 14948T Halobacillus dabanensis JCM 12772T Halobacillus yeomjeoni DSM 17110T Halobacillus litoralis DSM 10405T Halobacillus locisalis
Recommended publications
  • Bacillus Crassostreae Sp. Nov., Isolated from an Oyster (Crassostrea Hongkongensis)
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 1561–1566 DOI 10.1099/ijs.0.000139 Bacillus crassostreae sp. nov., isolated from an oyster (Crassostrea hongkongensis) Jin-Hua Chen,1,2 Xiang-Rong Tian,2 Ying Ruan,1 Ling-Ling Yang,3 Ze-Qiang He,2 Shu-Kun Tang,3 Wen-Jun Li,3 Huazhong Shi4 and Yi-Guang Chen2 Correspondence 1Pre-National Laboratory for Crop Germplasm Innovation and Resource Utilization, Yi-Guang Chen Hunan Agricultural University, 410128 Changsha, PR China [email protected] 2College of Biology and Environmental Sciences, Jishou University, 416000 Jishou, PR China 3The Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, Yunnan University, 650091 Kunming, PR China 4Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA A novel Gram-stain-positive, motile, catalase- and oxidase-positive, endospore-forming, facultatively anaerobic rod, designated strain JSM 100118T, was isolated from an oyster (Crassostrea hongkongensis) collected from the tidal flat of Naozhou Island in the South China Sea. Strain JSM 100118T was able to grow with 0–13 % (w/v) NaCl (optimum 2–5 %), at pH 5.5–10.0 (optimum pH 7.5) and at 5–50 6C (optimum 30–35 6C). The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. The predominant respiratory quinone was menaquinone-7 and the major cellular fatty acids were anteiso-C15 : 0, iso-C15 : 0,C16 : 0 and C16 : 1v11c. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown glycolipid and an unknown phospholipid. The genomic DNA G+C content was 35.9 mol%.
    [Show full text]
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • Biodeterioration Risk Threatens the 3100 Year Old Staircase of Hallstatt (Austria): Possible Involvement of Halophilic Microorganisms
    RESEARCH ARTICLE Biodeterioration Risk Threatens the 3100 Year Old Staircase of Hallstatt (Austria): Possible Involvement of Halophilic Microorganisms Guadalupe Piñar1*, Dennis Dalnodar1, Christian Voitl1, Hans Reschreiter2, Katja Sterflinger1 1 Department of Biotechnology, VIBT-Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Vienna, Austria, 2 Prehistoric Department, Museum of Natural History, Vienna, Austria * [email protected] Abstract OPEN ACCESS Citation: Piñar G, Dalnodar D, Voitl C, Reschreiter H, Background Sterflinger K (2016) Biodeterioration Risk Threatens the 3100 Year Old Staircase of Hallstatt (Austria): The prosperity of Hallstatt (Salzkammergut region, Austria) is based on the richness of salt Possible Involvement of Halophilic Microorganisms. in the surrounding mountains and salt mining, which is documented as far back as 1500 PLoS ONE 11(2): e0148279. doi:10.1371/journal. years B.C. Substantial archaeological evidence of Bronze and Iron Age salt mining has pone.0148279 been discovered, with a wooden staircase (1108 B.C.) being one of the most impressive Editor: Christine Moissl-Eichinger, Medical University and well preserved finds. However, after its discovery, fungal mycelia have been observed Graz, AUSTRIA on the surface of the staircase, most probably due to airborne contamination after its find. Received: September 2, 2015 Accepted: January 15, 2016 Objective Published: February 17, 2016 As a basis for the further preservation of this valuable object, the active micro-flora was Copyright: © 2016 Piñar et al. This is an open examined to investigate the presence of potentially biodegradative microorganisms. access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any Results medium, provided the original author and source are credited.
    [Show full text]
  • Prokaryotic Biodiversity of Halophilic Microorganisms Isolated from Sehline Sebkha Salt Lake (Tunisia)
    Vol. 8(4), pp. 355-367, 22 January, 2014 DOI: 10.5897/AJMR12.1087 ISSN 1996-0808 ©2014 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Prokaryotic biodiversity of halophilic microorganisms isolated from Sehline Sebkha Salt Lake (Tunisia) Abdeljabbar HEDI1,2*, Badiaa ESSGHAIER1, Jean-Luc CAYOL2, Marie-Laure FARDEAU2 and Najla SADFI1 1Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Université de Tunis El Manar 2092, Tunisie. 2Laboratoire de Microbiologie et de Biotechnologie des Environnements Chauds UMR180, IRD, Université de Provence et de la Méditerranée, ESIL case 925, 13288 Marseille cedex 9, France. Accepted 7 February, 2013 North of Tunisia consists of numerous ecosystems including extreme hypersaline environments in which the microbial diversity has been poorly studied. The Sehline Sebkha is an important source of salt for food. Due to its economical importance with regards to its salt value, a microbial survey has been conducted. The purpose of this research was to examine the phenotypic features as well as the physiological and biochemical characteristics of the microbial diversity of this extreme ecosystem, with the aim of screening for metabolites of industrial interest. Four samples were obtained from 4 saline sites for physico-chemical and microbiological analyses. All samples studied were hypersaline (NaCl concentration ranging from 150 to 260 g/L). A specific halophilic microbial community was recovered from each site and initial characterization of isolated microorganisms was performed by using both phenotypic and phylogenetic approaches. The 16S rRNA genes from 77 bacterial strains and two archaeal strains were isolated and phylogenetically analyzed and belonged to two phyla Firmicutes and gamma-proteobacteria of the domain Bacteria.
    [Show full text]
  • Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production
    UC San Diego UC San Diego Previously Published Works Title Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production. Permalink https://escholarship.org/uc/item/6263h6gw Journal Chemistry & biology, 22(9) ISSN 1074-5521 Authors Choi, Eun Ju Nam, Sang-Jip Paul, Lauren et al. Publication Date 2015-09-01 DOI 10.1016/j.chembiol.2015.07.014 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Resource Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production Graphical Abstract Authors Eun Ju Choi, Sang-Jip Nam, Lauren Paul, ..., Christopher A. Kauffman, Paul R. Jensen, William Fenical Correspondence [email protected] In Brief Choi et al. illustrate that low-nutrient media and long incubation times lead to the isolation of rare, previously uncultured marine bacteria that produce new antibacterial metabolites. Their work demonstrates that unique marine bacteria are easier to cultivate than previously suggested. Highlights Accession Numbers d Simple methods allow the isolation of rare, previously JN703500 KJ572269 uncultured marine bacteria JN703501 KJ572270 JN703502 KJ572271 d Previously uncultured marine bacteria produce new JN703503 KJ572272 antibacterial metabolites JN368460 KJ572273 JN368461 KJ572274 KJ572262 KJ572275 KJ572263 KJ572264 KJ572265 KJ572266 KJ572267 KJ572268 Choi et al., 2015, Chemistry & Biology 22, 1–10 September 17, 2015 ª2015 Elsevier Ltd All rights reserved http://dx.doi.org/10.1016/j.chembiol.2015.07.014 Please cite this article in press as: Choi et al., Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production, Chemistry & Biology (2015), http://dx.doi.org/10.1016/j.chembiol.2015.07.014 Chemistry & Biology Resource Previously Uncultured Marine Bacteria Linked to Novel Alkaloid Production Eun Ju Choi,1,2,3 Sang-Jip Nam,1,2,4 Lauren Paul,1 Deanna Beatty,1 Christopher A.
    [Show full text]
  • A Novel Α-Amylase from Marine Bacterium Pontibacillus Amyz1
    Florida International University FIU Digital Commons Department of Chemistry and Biochemistry College of Arts, Sciences & Education 4-23-2019 AmyZ1: a novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches Wei Fang Saisai Xue Pengjun Deng Xuecheng Zhang Xiaotang Wang See next page for additional authors Follow this and additional works at: https://digitalcommons.fiu.edu/chemistry_fac Part of the Chemistry Commons This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Department of Chemistry and Biochemistry by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. Authors Wei Fang, Saisai Xue, Pengjun Deng, Xuecheng Zhang, Xiaotang Wang, Yazhong Xiao, and Zemin Fang Fang et al. Biotechnol Biofuels (2019) 12:95 https://doi.org/10.1186/s13068-019-1432-9 Biotechnology for Biofuels RESEARCH Open Access AmyZ1: a novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches Wei Fang1,2,3† , Saisai Xue1,2,3†, Pengjun Deng1,2,3, Xuecheng Zhang1,2,3, Xiaotang Wang4, Yazhong Xiao1,2,3* and Zemin Fang1,2,3* Abstract Background: Starch is an inexpensive and renewable raw material for numerous industrial applications. However, most starch-based products are not cost-efcient due to high-energy input needed in traditional enzymatic starch conversion processes. Therefore, α-amylase with high efciency to directly hydrolyze high concentration raw starches at a relatively lower temperature will have a profound impact on the efcient application of starch.
    [Show full text]
  • Increases in Soil Respiration Following Labile Carbon Additions Linked to Rapid Shifts in Soil Microbial Community Composition
    Biogeochemistry D O I 10.1007/S10533-006-9065-Z ORIGINAL PAPER Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition Cory C. Cleveland • Diana R. Nemergnt Steven K. Schmidt • Alan R. Townsend Received: 16 June 2006 / Accepted: 10 November 2006 © Springer Science+Business Media B.V. 2006 Abstract Organic matter decomposition and soil determined by constructing clone libraries of CO 2 efflux are both mediated by soil microorgan­ small-subunit ribosomal RNA genes (SSU rRNA) isms, but the potential effects of temporal varia­ extracted from the soil at the end of the incubation tions in microbial community composition are not experiment. In contrast to the subtle effects of considered in most analytical models of these adding water alone, additions of DOM caused a two important processes. However, inconsistent rapid and large increase in soil CO2 flux. DOM- relationships between rates of heterotrophic soil stimulated CO2 fluxes also coincided with pro­ respiration and abiotic factors, including temper­ found shifts in the abundance of certain members ature and moisture, suggest that microbial com­ of the soil microbial community. Our results munity composition may be an important regulator suggest that natural DOM inputs may drive high of soil organic matter (SOM) decomposition and rates of soil respiration by stimulating an opportu­ CO 2 efflux. We performed a short-term (12-h) nistic subset of the soil bacterial community, laboratory incubation experiment using tropical particularly members of the Gammaproteobacte- rain forest soil amended with either water (as a ria and Firmicutes groups. Our experiment indi­ control) or dissolved organic matter (DOM) cates that variations in microbial community leached from native plant litter, and analyzed the composition may influence SOM decomposition effects of the treatments on soil respiration and and soil respiration rates, and emphasizes the need microbial community composition.
    [Show full text]
  • Thermolongibacillus Cihan Et Al
    Genus Firmicutes/Bacilli/Bacillales/Bacillaceae/ Thermolongibacillus Cihan et al. (2014)VP .......................................................................................................................................................................................... Arzu Coleri Cihan, Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey Kivanc Bilecen and Cumhur Cokmus, Department of Molecular Biology & Genetics, Faculty of Agriculture & Natural Sciences, Konya Food & Agriculture University, Konya, Turkey Ther.mo.lon.gi.ba.cil’lus. Gr. adj. thermos hot; L. adj. Type species: Thermolongibacillus altinsuensis E265T, longus long; L. dim. n. bacillus small rod; N.L. masc. n. DSM 24979T, NCIMB 14850T Cihan et al. (2014)VP. .................................................................................. Thermolongibacillus long thermophilic rod. Thermolongibacillus is a genus in the phylum Fir- Gram-positive, motile rods, occurring singly, in pairs, or micutes,classBacilli, order Bacillales, and the family in long straight or slightly curved chains. Moderate alka- Bacillaceae. There are two species in the genus Thermo- lophile, growing in a pH range of 5.0–11.0; thermophile, longibacillus, T. altinsuensis and T. kozakliensis, isolated growing in a temperature range of 40–70∘C; halophile, from sediment and soil samples in different ther- tolerating up to 5.0% (w/v) NaCl. Catalase-weakly positive, mal hot springs, respectively. Members of this genus chemoorganotroph, grow aerobically, but not under anaer- are thermophilic (40–70∘C), halophilic (0–5.0% obic conditions. Young cells are 0.6–1.1 μm in width and NaCl), alkalophilic (pH 5.0–11.0), endospore form- 3.0–8.0 μm in length; cells in stationary and death phases ing, Gram-positive, aerobic, motile, straight rods. are 0.6–1.2 μm in width and 9.0–35.0 μm in length.
    [Show full text]
  • Isolation and Diversity of Sediment Bacteria in The
    bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Isolation and Diversity of Sediment Bacteria in the 2 Hypersaline Aiding Lake, China 3 4 Tong-Wei Guan, Yi-Jin Lin, Meng-Ying Ou, Ke-Bao Chen 5 6 7 Institute of Microbiology, Xihua University, Chengdu 610039, P. R. China. 8 9 Author for correspondence: 10 Tong-Wei Guan 11 Tel/Fax: +86 028 87720552 12 E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract A total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using 30 nine different media with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered 31 from the different media significantly varied, indicating the need to optimize the isolation conditions. 32 The results showed an unexpected level of bacterial diversity, with four phyla (Firmicutes, 33 Actinobacteria, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, 34 Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, 35 Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and 36 Streptosporangiales), including 17 families, 41 genera, and 71 species.
    [Show full text]
  • Isolation and Diversity of Sediment Bacteria in The
    bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Isolation and Diversity of Sediment Bacteria in the 2 Hypersaline Aiding Lake, China 3 4 Tong-Wei Guan, Yi-Jin Lin, Meng-Ying Ou, Ke-Bao Chen 5 6 7 Institute of Microbiology, Xihua University, Chengdu 610039, P. R. China. 8 9 Author for correspondence: 10 Tong-Wei Guan 11 Tel/Fax: +86 028 87720552 12 E-mail: [email protected] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/638304; this version posted May 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 29 Abstract A total of 343 bacteria from sediment samples of Aiding Lake, China, were isolated using 30 nine different media with 5% or 15% (w/v) NaCl. The number of species and genera of bacteria recovered 31 from the different media significantly varied, indicating the need to optimize the isolation conditions. 32 The results showed an unexpected level of bacterial diversity, with four phyla (Firmicutes, 33 Actinobacteria, Proteobacteria, and Rhodothermaeota), fourteen orders (Actinopolysporales, 34 Alteromonadales, Bacillales, Balneolales, Chromatiales, Glycomycetales, Jiangellales, Micrococcales, 35 Micromonosporales, Oceanospirillales, Pseudonocardiales, Rhizobiales, Streptomycetales, and 36 Streptosporangiales), including 17 families, 41 genera, and 71 species.
    [Show full text]
  • Supplementary Figures and Tables Metavelvet-SL
    Supplementary Figures and Tables MetaVelvet-SL: An extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning Afiahayati 1 , Kengo Sato 1 and Yasubumi Sakakibara 1∗ Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan 1400000 1200000 1000000 MetaVelvet-SL (+ MetaPhlAn) ) p 800000 b MetaVelvet ( ) x ( IDBA-UD n 600000 e SOAPDenovo2 l - N Ray Meta 400000 Omega 200000 0 0 10M 20M 30M 40M 50M 60M 70M 80M 90M x (bp) Figure S1: The N-len(x) plots for the MH0012 dataset of human gut microbial data. 200000 180000 160000 140000 MetaVelvet-SL (+ MetaPhlAn) ) 120000 p b MetaVelvet ( ) 100000 x IDBA-UD ( n e l 80000 SOAPDenovo2 - N Ray Meta 60000 Omega 40000 20000 0 0 5M 10M 15M 20M 25M x(bp) Figure S2: The N-len(x) plots for the MH0047 dataset of human gut microbial data. 600000 500000 400000 MetaVelvet-SL (+ MetaPhlAn) ) p b MetaVelvet ( ) 300000 x IDBA-UD ( n e l SOAPDenovo2 - N 200000 Ray Meta Omega 100000 0 0 10M 20M 30M 40M 50M 60M 70M 80M 90M x (bp) Figure S3: The N-len(x) plots for the SRS017227 dataset of human gut microbial data. 800000 700000 600000 500000 MetaVelvet-SL (+ MetaPhlAn) ) p b MetaVelvet ( ) 400000 x IDBA-UD ( n e l SOAPDenovo2 - 300000 N Ray Meta 200000 Omega 100000 0 0 5M 10M 15M 20M 25M 30M 35M 40M 45M x (bp) Figure S4: The N-len(x) plots for the SRS018661 dataset of human gut microbial data. Formula to identify unique nodes in Velvet (Zerbino and Birney, 2008) ̄x2 ρ2− log2 2 F ( ̄x ,n,ρ )= +n 2 2 where ̄x = the coverage of node ρ = expected coverage of subgraph n = the length of node A node is “unique”, if its F > 5 .
    [Show full text]
  • Reorganising the Order Bacillales Through Phylogenomics
    Systematic and Applied Microbiology 42 (2019) 178–189 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm Reorganising the order Bacillales through phylogenomics a,∗ b c Pieter De Maayer , Habibu Aliyu , Don A. Cowan a School of Molecular & Cell Biology, Faculty of Science, University of the Witwatersrand, South Africa b Technical Biology, Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Germany c Centre for Microbial Ecology and Genomics, University of Pretoria, South Africa a r t i c l e i n f o a b s t r a c t Article history: Bacterial classification at higher taxonomic ranks such as the order and family levels is currently reliant Received 7 August 2018 on phylogenetic analysis of 16S rRNA and the presence of shared phenotypic characteristics. However, Received in revised form these may not be reflective of the true genotypic and phenotypic relationships of taxa. This is evident in 21 September 2018 the order Bacillales, members of which are defined as aerobic, spore-forming and rod-shaped bacteria. Accepted 18 October 2018 However, some taxa are anaerobic, asporogenic and coccoid. 16S rRNA gene phylogeny is also unable to elucidate the taxonomic positions of several families incertae sedis within this order. Whole genome- Keywords: based phylogenetic approaches may provide a more accurate means to resolve higher taxonomic levels. A Bacillales Lactobacillales suite of phylogenomic approaches were applied to re-evaluate the taxonomy of 80 representative taxa of Bacillaceae eight families (and six family incertae sedis taxa) within the order Bacillales.
    [Show full text]