Domesticated Honeybees Are a Source of Pathogens for Wild

Total Page:16

File Type:pdf, Size:1020Kb

Domesticated Honeybees Are a Source of Pathogens for Wild Anamın əziz xatirəsinə. Dedicated to the loving memory of my beloved mother Agida Mammadova (1951-2011). Promoters: Prof. dr. ir. Guy Smagghe Department of Crop Protection, Faculty of Bioscience Bngineering Ghent University, Belgium Dr. Ivan Meeus Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Belgium Prof. Dr. Dirk de Graaf Department of Physiology Faculty of Sciences, Ghent University, Belgium The examination committee: Chairman: Prof. dr. ir. Peter Bossier Faculty of Bioscience Engineering, Ghent University, Belgium Secretary Prof. dr. Daisy Vanrompay Faculty of Bioscience Engineering, Ghent University, Belgium Prof. dr. Denis Michez Université de Mons, Belgium Prof. dr. Felix Wäckers R&D director Biobest, Belgium Dean: Prof. dr. ir. Guido Van Huylenbroeck Rector: Prof. dr. Anne De Paepe Potential for spillover of protozoan parasites from domesticated honeybees and reared bumblebees towards wild bumblebees Ir. Jafar Maharramov Thesis submitted in fulfillment of the requirements for the degree of Doctor (PhD) in Applied Biological Sciences Dutch translation of the title: Potentieel voor overdracht van protozoaire ziektes van gedomesticeerde honingbijen en gekweekte hommels naar wilde hommels. Please refer to this thesis as: Maharramov J.H., 2015. Potential for spillover of protozoan parasites from domesticated honeybees and reared bumblebees towards wild bumblebees. PhD thesis. Ghent University, Ghent, Belgium. ISBN-number: 978-90-5989-767-0 Cover photo: On top: Bombus terrestris and Apis mellifera on Hylotelephium spectabile. On the next raws from left to right: Bombus dahlbomii, Bombus terrestris, Bombus pascuorum and Apis mellifera on Cirsium vulgare. The author and promoters give the authorization to consult and to copy parts of this work for personal use only. Every other use is subject to the copyright laws. Permission to reproduce any material contained in this work should be obtained from the author. iv Contents Contents ............................................................................................................................... v Scope and objectives of the study.............................................................................................. ix Chapter I: Introduction ..................................................................................................................1 1. Wild bees and their role in preserving biodiversity of nature .............................................2 2. Bumblebees and their pollination service ..............................................................................2 2.1. Bumblebee biology ...................................................................................................... 5 2.2. Bombus terrestris ......................................................................................................... 8 2.3. Bombus pascuorum ...................................................................................................... 9 2.4. Bombus dahlbomii ...................................................................................................... 10 3. Plight of bumblebee populations. ..........................................................................................11 3.1. Current status of pollinator declines........................................................................... 11 3.2. Causes of pollinator declines...................................................................................... 12 3.3. Spillover from managed bees to wild life. ................................................................. 13 3.4. Threat of spillover ...................................................................................................... 15 4. Overview of bee parasites ......................................................................................................16 4.1. Protozoa ...................................................................................................................... 16 4.2. Microsporidia ............................................................................................................. 17 4.3. Spiroplasmas .............................................................................................................. 18 5. Apicystis bombi ........................................................................................................................19 5.1. Introduction ................................................................................................................ 19 5.2. Life cycle .................................................................................................................... 19 5.3. Pathology .................................................................................................................... 20 6. Dynamics of multihost parasites ...........................................................................................21 6.1. Host-parasite interaction ............................................................................................ 21 Contents 6.2. One host and one parasite .......................................................................................... 22 6.3. Multihost parasites ..................................................................................................... 23 6.3.1. Virulence of multihost parasites .............................................................................. 24 7. Emerging infectious diseases and the implication for wild bumblebee populations ......25 Chapter II: Risk assessment of spillover: prevalence and transmission ...............................27 Part 1. Monitoring managed bees ..............................................................................................28 1. Introduction ..............................................................................................................................28 2. Material and methods ..............................................................................................................30 2.1 Monitoring of honeybee hives..................................................................................... 30 2.2. Monitoring of reared bumblebee colonies ................................................................. 30 3. Results .......................................................................................................................................33 3.1. Parasite prevalence in honeybee hives ....................................................................... 33 3.2. Screening of reared bumblebee colonies .................................................................... 34 4. Discussion ................................................................................................................................34 Part 2. Protozoan and microsporidian parasites of bumblebees have the ability to perform horizontal transmission ...............................................................................................................37 5. Introduction ..............................................................................................................................37 6. Material methods .....................................................................................................................37 6.1. Experimental setup ..................................................................................................... 37 6.2. Parasite free bumblebee colonies ............................................................................... 38 7. Results .......................................................................................................................................39 8. Discussion ................................................................................................................................40 Chapter III: Molecular haplotyping to identify intra-specific variations of Apicystis bombi and to study parasite spillover ....................................................................................................43 Part 1. Development of molecular tools for the screening of protozoan parasites in bees 44 1. Introduction ..............................................................................................................................44 vi Contents 2. Material and methods ..............................................................................................................47 3. Results .......................................................................................................................................49 Part 2. Genetic variability of the neogregarine Apicystis bombi, an etiological agent of an emergent bumblebee disease. .....................................................................................................53 1. Introduction ..............................................................................................................................53 2. Materials and Methods ...........................................................................................................55 2.1. Origin of Infected Apicystis bombi species ................................................................ 55 2.2. Ethics statement.......................................................................................................... 57 2.3. Haplotyping of Apicystis bombi ................................................................................. 57 2.4. Genetic variation and structuring of Apicystis
Recommended publications
  • Implications of Habitat Restoration for Bumble Bee Population Dynamics, Foraging Ecology, and Epidemiology
    IMPLICATIONS OF HABITAT RESTORATION FOR BUMBLE BEE POPULATION DYNAMICS, FORAGING ECOLOGY, AND EPIDEMIOLOGY By Knute Baldwin Gundersen A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology—Doctor of Philosophy Ecology, Evolutionary Biology and Behavior—Dual Major 2018 ABSTRACT IMPLICATIONS OF HABITAT RESTORATION FOR BUMBLE BEE POPULATION DYNAMICS, FORAGING ECOLOGY, AND EPIDEMIOLOGY By Knute Baldwin Gundersen Many insects provide valuable ecosystem services, including those that support our food supply. Beneficial insects such as pollinators fulfill part of this role by contributing to approximately one third of the global food crop production. Over the past few decades, pollinators have faced declining populations due to a variety of factors such as agricultural intensification, lack of floral and nesting resources, and disease. One method used in agricultural settings to help sustain pollinator populations is designating unfarmed habitat such as ditches and field margins for habitat enhancement in the form of hedgerows and wildflower strips. These floristically rich areas can be tailored to bloom both before and after crop bloom to help sustain pollinators during the time when crops are not in bloom. In turn, bee populations can benefit from the consistent availability of resources in these areas of habitat enhancement. This dissertation explores how habitat enhancement affects nesting density of a common wild pollinator, Bombus impatiens . Further, this research also aims to determine how foraging preferences change and how bumble bee disease transmission and prevalence respond to habitat enhancement. Research was conducted at 15 commercial highbush blueberry ( Vaccinium corymbosum ) fields in southwest Michigan containing either no restoration, a newly planted restoration, or a mature (5-8 year old) restoration in the field margin from 2015 to 2017.
    [Show full text]
  • Following the Cold
    Systematic Entomology (2018), 43, 200–217 DOI: 10.1111/syen.12268 Following the cold: geographical differentiation between interglacial refugia and speciation in the arcto-alpine species complex Bombus monticola (Hymenoptera: Apidae) BAPTISTE MARTINET1 , THOMAS LECOCQ1,2, NICOLAS BRASERO1, PAOLO BIELLA3,4, KLÁRA URBANOVÁ5,6, IRENA VALTEROVÁ5, MAURIZIO CORNALBA7,JANOVE GJERSHAUG8, DENIS MICHEZ1 andPIERRE RASMONT1 1Laboratory of Zoology, Research Institute of Biosciences, University of Mons, Mons, Belgium, 2Research Unit Animal and Functionalities of Animal Products (URAFPA), University of Lorraine-INRA, Vandoeuvre-lès-Nancy, France, 3Faculty of Science, Department of Zoology, University of South Bohemia, Ceskéˇ Budejovice,ˇ Czech Republic, 4Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i., Institute of Entomology, Ceskéˇ Budejovice,ˇ Czech Republic, 5Academy of Sciences of the Czech Republic, Institute of Organic Chemistry and Biochemistry, Prague, Czech Republic, 6Faculty of Tropical AgriSciences, Department of Sustainable Technologies, Czech University of Life Sciences, Prague, Czech Republic, 7Department of Mathematics, University of Pavia, Pavia, Italy and 8Norwegian Institute for Nature Research, Trondheim, Norway Abstract. Cold-adapted species are expected to have reached their largest distribution range during a part of the Ice Ages whereas postglacial warming has led to their range contracting toward high-latitude and high-altitude areas. This has resulted in an extant allopatric distribution of populations and possibly to trait differentiations (selected or not) or even speciation. Assessing inter-refugium differentiation or speciation remains challenging for such organisms because of sampling difficulties (several allopatric populations) and disagreements on species concept. In the present study, we assessed postglacial inter-refugia differentiation and potential speciation among populations of one of the most common arcto-alpine bumblebee species in European mountains, Bombus monticola Smith, 1849.
    [Show full text]
  • The Mite-Y Bee: Factors Affecting the Mite Community of Bumble Bees (Bombus Spp., Hymenoptera: Apidae)
    The Mite-y Bee: Factors Affecting the Mite Community of Bumble Bees (Bombus spp., Hymenoptera: Apidae) By Stephanie Margaret Haas Thesis submitted to the Faculty of Graduate and Postdoctoral Studies, University of Ottawa, in partial fulfillment of the requirements for M.Sc. Degree in the Ottawa-Carleton Institute of Biology Thèse soumise à la Faculté des études supérieures et postdoctorales, Université d’Ottawa en vue de l’obtention de la maîtrise en sciences de l’Institut de Biologie d’Ottawa-Carleton © Stephanie Haas, Ottawa, Canada, 2017 Abstract Parasites and other associates can play an important role in shaping the communities of their hosts; and their hosts, in turn, shape the community of host-associated organisms. This makes the study of associates vital to understanding the communities of their hosts. Mites associated with bees have a range of lifestyles on their hosts, acting as anything from parasitic disease vectors to harmless scavengers to mutualistic hive cleaners. For instance, in Apis mellifera (the European honey bee) the parasitic mite Varroa destructor has had a dramatic impact as one of the causes of colony-collapse disorder. However, little is known about mites associated with bees outside the genus Apis or about factors influencing the makeup of bee- associated mite communities. In this thesis, I explore the mite community of bees of the genus Bombus and how it is shaped by extrinsic and intrinsic aspects of the bees' environment at the individual bee, bee species, and bee community levels. Bombus were collected from 15 sites in the Ottawa area along a land-use gradient and examined for mites.
    [Show full text]
  • ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central
    ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central Texas with an Assessment of Fitness Costs in Erythemis simplicicollis Jason L. Locklin, Ph.D. Mentor: Darrell S. Vodopich, Ph.D. Dragonfly parasites are widespread and frequently include gregarines (Phylum Apicomplexa) in the gut of the host. Gregarines are ubiquitous protozoan parasites that infect arthropods worldwide. More than 1,600 gregarine species have been described, but only a small percentage of invertebrates have been surveyed for these apicomplexan parasites. Some consider gregarines rather harmless, but recent studies suggest otherwise. Odonate-gregarine studies have more commonly involved damselflies, and some have considered gregarines to rarely infect dragonflies. In this study, dragonfly populations were surveyed for gregarines and an assessment of fitness costs was made in a common and widespread host species, Erythemis simplicicollis. Adult dragonfly populations were surveyed weekly at two reservoirs in close proximity to one another and at a flow-through wetland system. Gregarine prevalences and intensities were compared within host populations between genders, among locations, among wing loads, and through time. Host fitness parameters measured included wing load, egg size, clutch size, and total egg count. Of the 37 dragonfly species surveyed, 14 species (38%) hosted gregarines. Thirteen of those species were previously unreported as hosts. Gregarine prevalences ranged from 2% – 52%. Intensities ranged from 1 – 201. Parasites were aggregated among their hosts. Gregarines were found only in individuals exceeding a minimum wing load, indicating that gregarines are likely not transferred from the naiad to adult during emergence. Prevalence and intensity exhibited strong seasonality during both years at one of the reservoirs, but no seasonal trend was detected at the wetland.
    [Show full text]
  • Abou-Shaara, Hossam I Am Assistant Lecturer at Faculty of Agriculture
    Abou‐Shaara, Hossam I am assistant lecturer at Faculty of Agriculture, Department of Pest Control and Environmental Protection, Alexandria University,Damanhour Branch, Egypt. The title of my Master’s thesis is “Morphometric, Biological, Behavioral studies on some honey bee races at El‐Behera governorate.” I currently have four papers in preparation for publication and I have patented seven beekeeping inventions. I maintain my own apiary in Damanhour city and I am a member in Beekeeping association Alexandria governorate, Egypt. Dept. of Pest Control & Environmental Protection, Faculty of Agriculture, Damanhour Branch, Alexandria University, El‐Goumhoria St., PO Box 22516, Damanhour, El‐Behra Governorate, EGYPT Phone: 002‐019‐634‐9607, Fax: 002‐045‐331‐6535, Email: [email protected] Adams, Eldridge S. Dept. Ecol. and Evol. Biol., University of Connecticut, 75 N. Eagleville Rd., U‐43, Storrs, CT 06269‐3043, USA Phone: 860‐486‐5894, Fax: 860‐486‐6364, Email: [email protected] Homepage: http://hydrodictyon.eeb.uconn.edu/people/adams/ Adams, Rachelle M.M. My research interests encompass the integration of three fields, chemical ecology, behavioral ecology and evolutionary biology. Using the Megalomyrmex ant genus as a model system, I study the evolution of social parasitic behavior and colony infiltration strategies. Centre for Social Evolution, Department of Biology, University of Copenhagen Universitetsparken 15 DK‐ 2100 Copenhagen, Denmark Smithsonian Institute, PO Box 37012, MRC 188, Washington, DC, 20013‐7012, USA Phone: 202‐633‐1002, Email: [email protected] Homepage: http://www1.bio.ku.dk/english/research/oe/cse/ and http://entomology.si.edu/StaffPages/AdamsRMM.html Al‐Ghamdi, Ahmad Al Khazim Bee Research Unit, Plant Protection Department, Faculty of Science of Food and Agriculture, King Saud University, P.O.
    [Show full text]
  • Statistical Comparison of Excystation Methods in Cryptosporidium Parvum Oocysts
    MASARYK UNIVERSITY FACULTY OF SCIENCE DEPT . OF BOTANY AND ZOOLOG Y BIOLOGICAL LY ACTIVE COMPOUNDS WIT H POTENTIAL ANTIPARASI TIC EFFECT AND THEIR IMPACT ON THE COURSE OF SELECTED PARASITOSES Ph.D. Dissertation Radka Pecková Supervisor: MVDr. Ivona Foitová, Ph.D . Brno 2018 Bibliographic Entry Author Mgr. Radka Pecková Faculty of Science, Masaryk University Department of Botany and Zoology Biological ly active compounds with potential Title of Thesis: antiparasitic effect and their impact on the processes of selected parasitoses Degree programme: Biology Field of Study: Parasitology Supervisor: MVDr. Ivona Foitová, Ph.D. Academic Year: 2017/2018 Number of Pages: 139 Keywords: Giardia intestinalis ; Cryptosporidium ; Anti - protozoal activity; Plant extracts; Drug of Choice; Natural Antiparasitics; Parasites; Archidendron fagifolium ; Diospyros sumatrana ; Piper betle ; Shorea sumatrana Bibliografický záznam Autor: Mgr. Radka Pecková Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Biologicky aktivní látky s potencionálním Název práce: antiparazitárním účinkem a jejich působení na průběh vybraných parazitóz Studijní program: Biologie Studijní obor: Parazitologie Vedoucí práce: MVDr. Ivona Foitová, Ph.D. Akademický rok: 2017/2018 Počet stran: 139 Klíčová slova: Giardia intestinalis ; Cryptosporidium ; Antiprotozoární aktivita; Rostlinné extrakty; Alternativní léčiva; Přírodní antiparazitika; Paraziti; Archidendron fagifolium ; Diospyros sumatrana ; Piper betle ; Shorea sumatrana ABSTRAK T ABSTRACT This thesis deals with the study of the influence of extracts of selected plants from Indonesia on parasites Giardia intestinalis (Lambl) Alexeieff, 1914 and Cryptosporidium proliferans Kváč, Havrdová, Hlásková, Daňková, Kanděra, Ježková, Vítovec, Sak, Ortega, Xiao, Modrý, Jesudoss Chelladural, Prantlová & McEvoy, 2016 . Tested plants were selected based on behavioural data and the ability to reduce the intensity of parasitic infection in Sumatran orangutans.
    [Show full text]
  • Catálogo De Las Abejas Del Género Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) De Guatemala
    Instituto de Investigaciones Químicas y Biológicas . Facultad de Ciencias Químicas y Farmacia . Universidad de San Carlos de Guatemala Catálogo de las abejas del género Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) de Guatemala Catalogue of the bees of the genus Bombus Latreille, 1802 (Hymenoptera: Apoidea: Apidae) in Guatemala María J. Dardón1, Carmen L. Yurrita 2 y Mabel Vásquez 3 1 Instituto de Investigaciones Químicas y Biológicas 2 Unidad para el Conocimiento, Uso y Valoración de la Biodiversidad, 3Centro de Estudios Conservacionistas, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala (USAC) [email protected], [email protected] Recibido: enero, 2016 . Aceptado: marzo, 2016 Resumen Este catálogo contiene un inventario actualizado de las especies del género Bombus que han sido citadas para Guatemala. Se presentan los datos taxonómicos, incluyendo sinonimias, de un total de 13 especies. Además, para cada especie se indica su distribución geográfica y las regiones bióticas de Guatemala en las que se ha recolectado. Este trabajo es la base para la posterior revisión del género Bombus en Guatemala. Palabras clave: Abejorros, biomas, taxonomía, Neotropical. Abstract This catalog contains an updated list of the species of the genus Bombus registered for Guatemala. Taxonomic data are presented for a total of 13 species, including synonyms and their geographical distribution, with emphasis in Guatemala. This work is the basis for the subsequent revision of the genus Bombus in Guatemala. Keywords: Bumblebees, biomes, taxonomy, Neotropical. Revista Científica| Vol. 26 No. 1 | Año 2016 9 Instituto de Investigaciones Químicas y Biológicas . Facultad de Ciencias Químicas y Farmacia . Universidad de San Carlos de Guatemala Introducción Las abejas del género Bombus Latreille, 1802 se espera mayor información para determinar se encuentran distribuidas principalmente su estatus (Williams, 2016).
    [Show full text]
  • Global Trends in Bumble Bee Health
    EN65CH11_Cameron ARjats.cls December 18, 2019 20:52 Annual Review of Entomology Global Trends in Bumble Bee Health Sydney A. Cameron1,∗ and Ben M. Sadd2 1Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA; email: [email protected] 2School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:209–32 Keywords First published as a Review in Advance on Bombus, pollinator, status, decline, conservation, neonicotinoids, pathogens October 14, 2019 The Annual Review of Entomology is online at Abstract ento.annualreviews.org Bumble bees (Bombus) are unusually important pollinators, with approx- https://doi.org/10.1146/annurev-ento-011118- imately 260 wild species native to all biogeographic regions except sub- 111847 Saharan Africa, Australia, and New Zealand. As they are vitally important in Copyright © 2020 by Annual Reviews. natural ecosystems and to agricultural food production globally, the increase Annu. Rev. Entomol. 2020.65:209-232. Downloaded from www.annualreviews.org All rights reserved in reports of declining distribution and abundance over the past decade ∗ Corresponding author has led to an explosion of interest in bumble bee population decline. We Access provided by University of Illinois - Urbana Champaign on 02/11/20. For personal use only. summarize data on the threat status of wild bumble bee species across bio- geographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, oper- ating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality.
    [Show full text]
  • Evidence for and Against Deformed Wing Virus Spillover from Honey Bees to Bumble Bees: a Reverse Genetic Analysis Olesya N
    www.nature.com/scientificreports OPEN Evidence for and against deformed wing virus spillover from honey bees to bumble bees: a reverse genetic analysis Olesya N. Gusachenko1*, Luke Woodford1, Katharin Balbirnie‑Cumming1, Eugene V. Ryabov2 & David J. Evans1* Deformed wing virus (DWV) is a persistent pathogen of European honey bees and the major contributor to overwintering colony losses. The prevalence of DWV in honey bees has led to signifcant concerns about spillover of the virus to other pollinating species. Bumble bees are both a major group of wild and commercially‑reared pollinators. Several studies have reported pathogen spillover of DWV from honey bees to bumble bees, but evidence of a sustained viral infection characterized by virus replication and accumulation has yet to be demonstrated. Here we investigate the infectivity and transmission of DWV in bumble bees using the buf-tailed bumble bee Bombus terrestris as a model. We apply a reverse genetics approach combined with controlled laboratory conditions to detect and monitor DWV infection. A novel reverse genetics system for three representative DWV variants, including the two master variants of DWV—type A and B—was used. Our results directly confrm DWV replication in bumble bees but also demonstrate striking resistance to infection by certain transmission routes. Bumble bees may support DWV replication but it is not clear how infection could occur under natural environmental conditions. Deformed wing virus (DWV) is a widely established pathogen of the European honey bee, Apis mellifera. In synergistic action with its vector—the parasitic mite Varroa destructor—it has had a devastating impact on the health of honey bee colonies globally1,2.
    [Show full text]
  • Supplementary Figure 1 Multicenter Randomised Control Trial 2746 Randomised
    Supplementary Figure 1 Multicenter randomised control trial 2746 randomised 947 control 910 MNP without zinc 889 MNP with zinc 223 lost to follow up 219 lost to follow up 183 lost to follow up 34 refused 29 refused 37 refused 16 died 12 died 9 died 3 excluded 4 excluded 1 excluded 671 in follow-up 646 in follow-up 659 in follow-up at 24mo of age at 24mo of age at 24mo of age Selection for Microbiome sequencing 516 paired samples unavailable 469 paired samples unavailable 497 paired samples unavailable 69 antibiotic use 63 antibiotic use 67 antibiotic use 31 outside of WLZ criteria 37 outside of WLZ criteria 34 outside of WLZ criteria 6 diarrhea last 7 days 2 diarrhea last 7 days 7 diarrhea last 7 days 39 WLZ > -1 at 24 mo 10 WLZ < -2 at 24mo 58 WLZ > -1 at 24 mo 17 WLZ < -2 at 24mo 48 WLZ > -1 at 24 mo 8 WLZ < -2 at 24mo available for selection available for selection available for selection available for selection available for selection1 available for selection1 14 selected 10 selected 15 selected 14 selected 20 selected1 7 selected1 1 Two subjects (one in the reference WLZ group and one undernourished) had, at 12 months, no diarrhea within 1 day of stool collection but reported diarrhea within 7 days prior. Length, cm kg Weight, Supplementary Figure 2. Length (left) and weight (right) z-scores of children recruited into clinical trial NCT00705445 during the first 24 months of life. Median and quantile values are shown, with medians for participants profiled in current study indicated by red (undernourished) and black (reference WLZ) lines.
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF Sarah A. Maxfield-Taylor for the degree of Master of Science in Entomology presented on March 26, 2014. Title: Natural Enemies of Native Bumble Bees (Hymenoptera: Apidae) in Western Oregon Abstract approved: _____________________________________________ Sujaya U. Rao Bumble bees (Hymenoptera: Apidae) are important native pollinators in wild and agricultural systems, and are one of the few groups of native bees commercially bred for use in the pollination of a range of crops. In recent years, declines in bumble bees have been reported globally. One factor implicated in these declines, believed to affect bumble bee colonies in the wild and during rearing, is natural enemies. A diversity of fungi, protozoa, nematodes, and parasitoids has been reported to affect bumble bees, to varying extents, in different parts of the world. In contrast to reports of decline elsewhere, bumble bees have been thriving in Oregon on the West Coast of the U.S.A.. In particular, the agriculturally rich Willamette Valley in the western part of the state appears to be fostering several species. Little is known, however, about the natural enemies of bumble bees in this region. The objectives of this thesis were to: (1) identify pathogens and parasites in (a) bumble bees from the wild, and (b) bumble bees reared in captivity and (2) examine the effects of disease on bee hosts. Bumble bee queens and workers were collected from diverse locations in the Willamette Valley, in spring and summer. Bombus mixtus, Bombus nevadensis, and Bombus vosnesenskii collected from the wild were dissected and examined for pathogens and parasites, and these organisms were identified using morphological and molecular characteristics.
    [Show full text]
  • Colias Ponteni 47 Years of Investigation, Thought and Speculations Over a Butterfly
    Insectifera VOLUME 11 • YEAR 2019 2019 YEAR • SPECIAL ISSUE Colias ponteni 47 years of investigation, thought and speculations over a butterfly INSECTIFERA • YEAR 2019 • VOLUME 11 Insectifera December 2019, Volume 11 Special Issue Editor Pavel Bína & Göran Sjöberg Sjöberg, G. 2019. Colias ponteni Wallengren, 1860. 47 years of investigation, thought and speculations over a butterfly. Insectifera, Vol. 11: 3–100. Contents 4 Summary 4 My own reflections 5 The background to the first Swedish scientific sailing round the world, 1851–1853 16 Extreme sex patches – androconia and antennae 20 Colias ponteni in the collection of BMNH. Where do they come from? Who have collected them and where and when? 22 Two new Colias ponténi and a pupa! 24 Hawaii or Port Famine? Which locality is most likely to be an objective assessment? 25 Colias ponteni - a sensitive "primitive species". Is it extinct? 26 Cause of likely extinction 28 IRMS (Isotope Ratio Mass Spectrometer) isotope investigations 29 What more can suggest that Samuel Pontén's butterflies really were taken in Hawaii? 30 Can Port Famine or the surrounding areas be the right place for Colias ponteni? 34 Collection on Oahu 37 Is there more that suggests that Samuel Pontén found his Colias butterflies during this excursion on Oahu near Honolulu? 38 The background to my studies 39 Is there something that argues against Port Famine as a collection site for Colias ponteni? 39 Is it likely that the butterflies exist or may have been on Mt Tarn just south of Port Famine on the Strait of Magellan? 41
    [Show full text]