Title the Family Pleosporaceae: Intergeneric

Total Page:16

File Type:pdf, Size:1020Kb

Title the Family Pleosporaceae: Intergeneric The family Pleosporaceae: intergeneric relationships and Title phylogenetic perspectives based on sequence analyses of partial 28S rDNA Kodsueb, R; Vijaykrishna, D; Aptroot, A; Lumyong, S; Mckenzie, Author(s) EHC; Hyde, KD; Jeewon, R Citation Mycologia, 2006, v. 98 n. 4, p. 571-583 Issued Date 2006 URL http://hdl.handle.net/10722/57253 This work is licensed under a Creative Commons Attribution- Rights NonCommercial-NoDerivatives 4.0 International License. Mycologia, 98(4), 2006, pp. 571–583. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA Rampai Kodsueb niothelia, which is probably polyphyletic. Anamorphic Department of Biology, Faculty of Science, Chiang Mai characters appear to be significant (especially in University, Chiang Mai, Thailand Cochliobolus) while ascospore morphologies, such as Vijaykrishna Dhanasekaran shape and color and substrate occurrence are poor Centre for Research in Fungal Diversity, Department of indicators of phylogenetic relationships among these Ecology & Biodiversity, The University of Hong Kong, loculoascomycetes. Pokfulam Road, Hong Kong Key words: anamorphs, ascospore morphology, Andre´ Aptroot Loculoascomycetes, phylogeny, Pleospora, polyphy- Centraalbureau voor Schimmelcultures, P.O. Box letic, ribosomal DNA 85167, 3508 AD Utrecht, The Netherlands Saisamorn Lumyong INTRODUCTION Department of Biology, Faculty of Science, Chiang Mai The largest family within the Pleosporales, Pleospor- University, Chiang Mai, Thailand aceae, comprises 17 genera and 111 species (Kirk et al Eric H.C. McKenzie 2001). Species are parasites or saprobes on wood and Landcare Research, Private Bag 92170, Auckland, dead herbaceous stems or leaves (Sivanesan 1984). New Zealand The classification in the Pleosporaceae has been Kevin D. Hyde based primarily on the Pleospora type of centrum Rajesh Jeewon1 development (Dong et al 1998) and asci that are Centre for Research in Fungal Diversity, Department of interspersed with pseudoparaphyses in the asco- Ecology & Biodiversity, The University of Hong Kong, stroma. These pseudoparaphyses originate above the Pokfulam Road, Hong Kong hymenial layer and grow downward among the asci to fuse at the base of the locule (Wehmeyer 1975). Ascomata are perithecial, initially immersed and Abstract: The Pleosporaceae is an important locu- become erumpent and are usually black and some- loascomycete family. There has been disagreement, times hairy or setose. Asci are fissitunicate, cylindrical, however, regarding the taxonomic placement of with an ocular chamber and pseudoparaphyses are many genera within this family. This study investigates cellular. Ascospores are usually brown and phragmo- phylogenetic relationships among the genera Cochlio- sporous or dictyosporous (Dong et al 1998, Kirk et al bolus, Kirschsteiniothelia, Leptosphaerulina, Macroven- 2001). Many pleosporaceous taxa are important turia, Pleospora, Pyrenophora, and Wettsteinina. Partial plant pathogens. For instance Cochliobolus heterostro- 28S rDNA sequences from taxa within these genera phus causes southern corn leaf blight and Pyrenophora were analyzed with maximum parsimony, likelihood graminea is the causal agent of barley leaf stripe and Bayesian methods. Cochliobolus can be segregated (Agrios 2005). Their anamorphs are usually hypho- broadly into two groups as previously proposed. mycetes and also have been reported to cause plant Pleospora is polyphyletic in its current sense. Taxa disease in cereals (e.g. Bipolaris maydis, Exserohilum with Stemphylium anamorphs are closely related to turcicum and Helminthosporium oryzae) (Farr et al Cochliobolus and fit within the Pleosporaceae, whereas 1989, Berbee 1996, Krupinsky et al 2004, Agrios the affinities of Pleospora herbarum and P. ambigua are 2005). still ambiguous. Pyrenophora constitutes a monophy- The Pleosporaceae historically was placed in the letic group within the Pleosporaceae, whereas Lepto- Sphaeriales (e.g. Winter 1887, Ellis and Everhart sphaerulina and Macroventuria appear to share 1892, Lindau 1897) based on immersed perithecia phylogenetic affinities with the Leptosphaeriaceae containing paraphyses (Wehmeyer 1975). The family and Phaeosphaeriaceae. Phylogenies indicate that then was transferred to the Pseudosphaeriaceae, Wettsteinina should be excluded from the Pleospor- which was later raised to ordinal rank as the Pseudo- aceae. Similar findings are reported for Kirschstei- sphaeriales (Theissen and Sydow 1917, Wehmeyer 1975). Luttrell (1955) treated the name Pseudo- Accepted for publication 30 May 2006. 1 Corresponding author. E-mail: [email protected], rjeewon@ sphaeriales as a synonym of the Dothideales and graduate.hku.hk suggested that pseudoparaphyses were important in 571 572 MYCOLOGIA their taxonomy. He considered the Pseudosphaer- Lophiostoma caulium, Massarina ramunculicola, Phaeo- iales as synonym of the Pleosporales and assigned sphaeria vegans and Venturia carpophila) were selected the Pleosporaceae, Venturiaceae and Lophiostomata- for this study. Species names and accession numbers of ceae, to the Pleosporales. Such a scheme largely was the isolates in this study are listed (TABLE II). For each isolate, pure cultures were plated on potato dextrose accepted by other mycologists (e.g. Wehmeyer 1975). agar and incubated at 25 C 10–20 d before DNA Wehmeyer (1975) pointed out that the family extraction. Genomic DNA was extracted from fresh Pleosporaceae has never been clearly delimited fungal mycelia following a protocol as outlined by following Luttrell’s concept and as a result taxa with Jeewon et al (2002, 2003, 2004) and Cai et al (2005). ascostromata of many different types, which pre- Briefly, mycelia were scraped off from the surface of viously were placed in other families, were placed the plate. The mycelia were ground with 200 mg of arbitrarily in the Pleosporaceae. sterilized quartz sand and 600 mLof23 CTAB The family Pleosporaceae is a heterogeneous extraction buffer (2% w/v CTAB, 100 mM Tris-HCL, group of bitunicate ascomycetes with genera pri- 1.4 M NaCl, 20 mM EDTA, pH 8) in a 1.5 mL Eppen- dorf tube. The contents were incubated at 60 C in marily included based on ascospore characteristics, a water bath 40 min with gentle swirling every 10 min. including shape, color, septation, pigmentation and The solution was extracted three times with an equal presence or absence of mucilaginous sheaths (Lut- volume of phenol:chloroform (1:1) at 13 000 g 30 min trell 1955, 1973; Wehmeyer 1961, 1975; Eriksson until no interface was visible. The upper aqueous phase 1981; Sivanesan 1984; Barr 1987b; Abler 2003). Other containing the DNA was precipitated by addition of families, such as the Leptosphaeriaceae, Melanom- 2.5 volumes of absolute ethanol and kept at 220 C mataceae, Phaeosphaeriaceae and Sporormiaceae, overnight. The precipitated DNA was washed two times however, also possess morphological characters sim- with 70% ethanol, dried under vacuum and suspended ilar to those of the Pleosporaceae, and this has in TE buffer (1 mM EDTA, 10 mM Tris-HCl, pH 8.0) resulted in considerable ambiguity and confusion and treated with RNase (1 mg/mL) before DNA amplification. in intergeneric and familial classification (Luttrell 1955, 1973; Wehmeyer 1961, 1975; von Arx and DNA amplification and sequencing of 28S rDNA.—Approx- Mu¨ller 1975; Sivanesan 1984; Barr 1987a, b; Eriksson imately 900 nucleotides at the 59 end of the 28S rDNA and Hawksworth 1986, 1991). Most genera in these region were amplified by primer pairs LROR/LRO5 families have morphological characters that overlap (Vilgalys and Hester 1990). PCR was carried out in m m in many respects and the taxonomic organization 50 L reaction volume containing 31.7 L sterile water, 5 mLof103 Mg free PCR buffer, 3 mLof25mMMgCl , among them has been modified on several occasions 2 4 mL of 2.5 mM deoxyribonucleotide triphosphate (TABLE I). Barr (1987b) redefined the Pleosporaceae (dNTPs), 1.5 mL of each 10 mM primers (LROR and to include Clathrospora (5Comoclathris), Kirschstei- LRO5), 3 mL of DNA template, 0.3 mL of 2.5 units of niothelia, Lewia and Pleospora and grouped Cochliobo- Taq DNA polymerase (Promega, Madison, Wisconsin). lus, Pyrenophora and Setosphaeria into the family Typical amplification parameters were: initial denatur- Pyrenophoraceae. Berbee (1996) disagreed, suggest- ation of 95 C for 3 min; 35 cycles of denaturation at ing that all those genera belong to the Pleosporaceae. 95 C 1 min, annealing at 52 C 50 s and extension at Given the considerable taxonomic confusion, this 72 C 1 min and final extension of 72 C 10 min. Double- TM study, based on phylogenetic analyses of rDNA stranded DNA products were purified with GFX PCR DNA and Gel Band Purification Kit (Amersham sequence data, was undertaken to (i) verify the Biosciences, catalogue No. 27-9602-01) following man- familial placement of these genera and assess whether ufacturer’s protocol. Sequencing reactions were per- they represent natural groups, (ii) determine which formed and sequences determined automatically in an morphological characters are phylogenetically signi- Applied Biosystem 3730 Genetic Analyzer/Sequencer ficant and therefore are useful for generic delinea- (Genome Research Center, The University of Hong tion and (iii) assess whether phylogenies based on Kong) using PCR primers mentioned above. molecular characters are concordant with any of the Phylogenetic analyses.—Fifty-four
Recommended publications
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Two Pleosporalean Root-Colonizing Fungi, Fuscosphaeria Hungarica Gen
    Mycological Progress (2021) 20:39–50 https://doi.org/10.1007/s11557-020-01655-8 ORIGINAL ARTICLE Two pleosporalean root-colonizing fungi, Fuscosphaeria hungarica gen. et sp. nov. and Delitschia chaetomioides, from a semiarid grassland in Hungary Alexandra Pintye1 & Dániel G. Knapp2 Received: 15 May 2020 /Revised: 14 November 2020 /Accepted: 29 November 2020 # The Author(s) 2020 Abstract In this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grass- lands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the
    [Show full text]
  • Revision of Agents of Black-Grain Eumycetoma in the Order Pleosporales
    Persoonia 33, 2014: 141–154 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684744 Revision of agents of black-grain eumycetoma in the order Pleosporales S.A. Ahmed1,2,3, W.W.J. van de Sande 4, D.A. Stevens 5, A. Fahal 6, A.D. van Diepeningen 2, S.B.J. Menken 3, G.S. de Hoog 2,3,7 Key words Abstract Eumycetoma is a chronic fungal infection characterised by large subcutaneous masses and the pres- ence of sinuses discharging coloured grains. The causative agents of black-grain eumycetoma mostly belong to the Madurella orders Sordariales and Pleosporales. The aim of the present study was to clarify the phylogeny and taxonomy of mycetoma pleosporalean agents, viz. Madurella grisea, Medicopsis romeroi (syn.: Pyrenochaeta romeroi), Nigrograna mackin­ Pleosporales nonii (syn. Pyrenochaeta mackinnonii), Leptosphaeria senegalensis, L. tompkinsii, and Pseudochaetosphaeronema taxonomy larense. A phylogenetic analysis based on five loci was performed: the Internal Transcribed Spacer (ITS), large Trematosphaeriaceae (LSU) and small (SSU) subunit ribosomal RNA, the second largest RNA polymerase subunit (RPB2), and transla- tion elongation factor 1-alpha (TEF1) gene. In addition, the morphological and physiological characteristics were determined. Three species were well-resolved at the family and genus level. Madurella grisea, L. senegalensis, and L. tompkinsii were found to belong to the family Trematospheriaceae and are reclassified as Trematosphaeria grisea comb. nov., Falciformispora senegalensis comb. nov., and F. tompkinsii comb. nov. Medicopsis romeroi and Pseu­ dochaetosphaeronema larense were phylogenetically distant and both names are accepted. The genus Nigrograna is reduced to synonymy of Biatriospora and therefore N.
    [Show full text]
  • Genetic Diversity and Population Structure of Corollospora Maritima Sensu Lato: New Insights from Population Genetics
    Botanica Marina 2016; 59(5): 307–320 Patricia Veleza,*, Jaime Gasca-Pinedab, Akira Nakagiri, Richard T. Hanlin and María C. González Genetic diversity and population structure of Corollospora maritima sensu lato: new insights from population genetics DOI 10.1515/bot-2016-0058 Received 22 June, 2016; accepted 24 August, 2016; online first proven to decrease genetic diversity, a conservation genet- 26 September, 2016 ics approach to assess this matter is urgent. Our results revealed the occurrence of five genetic lineages with dis- Abstract: The study of genetic variation in fungi has been tinctive environmental preferences and an overlapping poor since the development of the theoretical underpin- geographical distribution, agreeing with previous studies nings of population genetics, specifically in marine taxa. reporting physiological races within this species. Corollospora maritima sensu lato is an abundant cosmo- Keywords: dispersal; gene flow; ITS rDNA; marine Asco- politan marine fungus, playing a crucial ecological role in mycota; molecular ecology. the intertidal environment. We evaluated the extent and distribution of the genetic diversity in the nuclear riboso- mal internal transcribed spacer region of 110 isolates of this ascomycete from 19 locations in the Gulf of Mexico, Introduction Caribbean Sea and Pacific Ocean. The diversity estimates Sandy beach ecosystems harbor a unique biodiversity, demonstrated that C. maritima sensu lato possesses a high which is highly adapted to endure dynamic and extreme genetic diversity compared to other cosmopolitan fungi, conditions. This biodiversity performs critical habitat with the highest levels of variability in the Caribbean Sea. functions, providing a range of ecological services not Globally, we registered 28 haplotypes, out of which 11 available through other ecosystems (McLachlan and were specific to the Caribbean Sea, implying these popu- Brown 2006, Schlacher and Connolly 2009).
    [Show full text]
  • AR TICLE One Fungus = One Name: DNA and Fungal Nomenclature
    GRLLPDIXQJXV IMA FUNGUS · VOLUME 2 · NO 2: 113–120 One Fungus = One Name: DNA and fungal nomenclature twenty years after ARTICLE PCR -RKQ:7D\ORU 8QLYHUVLW\RI&DOLIRUQLD%HUNHOH\.RVKODQG+DOO%HUNHOH\&$86$HPDLOMWD\ORU#EHUNHOH\HGX Abstract: 6RPHIXQJLZLWKSOHRPRUSKLFOLIHF\FOHVVWLOOEHDUWZRQDPHVGHVSLWHPRUHWKDQ\HDUVRIPROHFXODU Key words: SK\ORJHQHWLFVWKDWKDYHVKRZQKRZWRPHUJHWKHWZRV\VWHPVRIFODVVL¿FDWLRQWKHDVH[XDO³'HXWHURP\FRWD´ $PVWHUGDP'HFODUDWLRQ DQGWKHVH[XDO³(XP\FRWD´0\FRORJLVWVKDYHEHJXQWRÀRXWQRPHQFODWRULDOUHJXODWLRQVDQGXVHMXVWRQHQDPH (1$6 IRU RQH IXQJXV 7KH ,QWHUQDWLRQDO &RGH RI %RWDQLFDO 1RPHQFODWXUH ,&%1 PXVW FKDQJH WR DFFRPPRGDWH 0\FR&RGH FXUUHQWSUDFWLFHRUEHFRPHLUUHOHYDQW7KHIXQGDPHQWDOGLIIHUHQFHLQWKHVL]HRIIXQJLDQGSODQWVKDGDUROHLQ nomenclature WKHRULJLQRIGXDOQRPHQFODWXUHDQGFRQWLQXHVWRKLQGHUWKHGHYHORSPHQWRIDQ,&%1WKDWIXOO\DFFRPPRGDWHV pleomorphic fungi PLFURVFRSLFIXQJL$QRPHQFODWRULDOFULVLVDOVRORRPVGXHWRHQYLURQPHQWDOVHTXHQFLQJZKLFKVXJJHVWVWKDW PRVWIXQJLZLOOKDYHWREHQDPHGZLWKRXWDSK\VLFDOVSHFLPHQ0\FRORJ\PD\QHHGWREUHDNIURPWKH,&%1 DQGFUHDWHD0\FR&RGHWRDFFRXQWIRUIXQJLNQRZQRQO\IURPHQYLURQPHQWDOQXFOHLFDFLGVHTXHQFH LH(1$6 IXQJL Article info:6XEPLWWHG-XQH$FFHSWHG-XQH3XEOLVKHG-XO\ INTRODUCTION papaveracea and the other as an anamorph, Brachycladium papaveris ,QGHUELW]LQet al )LJ 7KH¿IWHHQRWKHU It has been a bit over two decades since the polymerase chain members of the committee, eleven academics and four very UHDFWLRQ 3&5 FKDQJHGHYROXWLRQDU\ELRORJ\LQJHQHUDODQG knowledgeable staff, stared at me in disbelief when I said that IXQJDO V\VWHPDWLFV LQ SDUWLFXODU
    [Show full text]
  • Journal of Agmcetmlesearch Vol
    JOURNAL OF AGMCETMLESEARCH VOL. 61 WASHINGTON, D. C, DECEMBER 15, 1940 No. 12 STEMPHYLIUM LEAF SPOT OF RED CLOVER AND ALFALFA1 By OLIVER F. SMITH Associate pathologist, Division of Forage Crops and Diseases, Bureau of Plant Industry, United States Department of Agriculture INTRODUCTION One of the foliage diseases of red clover {Trifolium pratense L.) and alfalfa {Medicago sativa L.) is caused by a fungus formerly known as a Macrosporium, but more recently as a species of Stemphylium. The causal fungus, which is characterized by echinulate conidia and has an ascigerous stage belonging in the genus Pleospora, has been known previously as a parasite of red clover and alfalfa, but unfortunately has sometimes been confused with Macrosporium sarcinaeforme Cav., a fungus that has smooth-walled conidia, has no known ascigerous stage, and is known to occur only on red clover in nature. The in- vestigation reported in this paper was designed to trace the life history of the echinulate-spored fungus and to clarify any confusion that may exist in the literature regarding its identity and relationship to M. sarcinaeforme and other similar fungi on red clover and alfalfa. Krakover (Oy and Horsfall (6) have shown that the fungus on red clover has smooth-walled conidia and corresponds very well with Cavarais original description of that species. Wiltshire (24-) has trans- ferred this fungus to the genus Stemphylium, and according to him, it should be known as S. sarcinaeforme (Cav.) Wiltshire. Gentner (ô) reported the echinulate-spored fungus to be the cause of a disease of both red clover and alfalfa in Germany, but he misidentified it as Macrosporium sarcinaeforme.
    [Show full text]
  • Lignicolous Freshwater Ascomycota from Thailand: Phylogenetic And
    A peer-reviewed open-access journal MycoKeys 65: 119–138 (2020) Lignicolous freshwater ascomycota from Thailand 119 doi: 10.3897/mycokeys.65.49769 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Lignicolous freshwater ascomycota from Thailand: Phylogenetic and morphological characterisation of two new freshwater fungi: Tingoldiago hydei sp. nov. and T. clavata sp. nov. from Eastern Thailand Li Xu1, Dan-Feng Bao2,3,4, Zong-Long Luo2, Xi-Jun Su2, Hong-Wei Shen2,3, Hong-Yan Su2 1 College of Basic Medicine, Dali University, Dali 671003, Yunnan, China 2 College of Agriculture & Biolo- gical Sciences, Dali University, Dali 671003, Yunnan, China 3 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand4 Department of Entomology & Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand Corresponding author: Hong-Yan Su ([email protected]) Academic editor: R. Phookamsak | Received 31 December 2019 | Accepted 6 March 2020 | Published 26 March 2020 Citation: Xu L, Bao D-F, Luo Z-L, Su X-J, Shen H-W, Su H-Y (2020) Lignicolous freshwater ascomycota from Thailand: Phylogenetic and morphological characterisation of two new freshwater fungi: Tingoldiago hydei sp. nov. and T. clavata sp. nov. from Eastern Thailand. MycoKeys 65: 119–138. https://doi.org/10.3897/mycokeys.65.49769 Abstract Lignicolous freshwater fungi represent one of the largest groups of Ascomycota. This taxonomically highly diverse group plays an important role in nutrient and carbon cycling, biological diversity and ecosystem functioning. The diversity of lignicolous freshwater fungi along a north-south latitudinal gradient is cur- rently being studied in Asia.
    [Show full text]
  • 1 Research Article 1 2 Fungi 3 Authors: 4 5 6 7 8 9 10
    1 Research Article 2 The architecture of metabolism maximizes biosynthetic diversity in the largest class of 3 fungi 4 Authors: 5 Emile Gluck-Thaler, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 6 Sajeet Haridas, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 7 Laboratory, Berkeley, CA, USA 8 Manfred Binder, TechBase, R-Tech GmbH, Regensburg, Germany 9 Igor V. Grigoriev, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 10 Laboratory, Berkeley, CA, USA, and Department of Plant and Microbial Biology, University of 11 California, Berkeley, CA 12 Pedro W. Crous, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The 13 Netherlands 14 Joseph W. Spatafora, Department of Botany and Plant Pathology, Oregon State University, OR, USA 15 Kathryn Bushley, Department of Plant and Microbial Biology, University of Minnesota, MN, USA 16 Jason C. Slot, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 17 corresponding author: [email protected] 18 1 19 Abstract: 20 Background - Ecological diversity in fungi is largely defined by metabolic traits, including the 21 ability to produce secondary or "specialized" metabolites (SMs) that mediate interactions with 22 other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters 23 (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation 24 in BGC composition reflects the diversity of their SM products. Recent studies have documented 25 surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is 26 known about how this population-level variation is inherited across macroevolutionary 27 timescales.
    [Show full text]
  • Diversidade E Produção De Antimicrobianos Dos Fungos Decompositores De Madeira Submersa Em Lagos Da Região Do Baixo Rio Tapajós – Pará
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIODIVERSIDADE E BIOTECNOLOGIA DA REDE BIONORTE DIVERSIDADE E PRODUÇÃO DE ANTIMICROBIANOS DOS FUNGOS DECOMPOSITORES DE MADEIRA SUBMERSA EM LAGOS DA REGIÃO DO BAIXO RIO TAPAJÓS – PARÁ. EVELEISE SAMIRA MARTINS CANTO MANAUS - AM JUNHO/2020 EVELEISE SAMIRA MARTINS CANTO DIVERSIDADE E PRODUÇÃO DE ANTIMICROBIANOS DOS FUNGOS DECOMPOSITORES DE MADEIRA SUBMERSA EM LAGOS DA REGIÃO DO BAIXO RIO TAPAJÓS – PARÁ. Tese apresentada ao Programa de Pós- Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, na Universidade Federal do Amazonas, como requisito para a obtenção do título de Doutora em Biodiversidade e Biotecnologia, área de concentração, Biotecnologia. Orientador: Prof. Dr. João Vicente Braga de Souza MANAUS – AM JUNHO/2020 II III EVELEISE SAMIRA MARTINS CANTO DIVERSIDADE E PRODUÇÃO DE ANTIMICROBIANOS DOS FUNGOS DECOMPOSITORES DE MADEIRA SUBMERSA EM LAGOS DA REGIÃO DO BAIXO RIO TAPAJÓS – PARÁ Tese apresentada ao Programa de Pós- Graduação em Biodiversidade e Biotecnologia da Rede BIONORTE, na Universidade Federal do Amazonas, como requisito para a obtenção do título de Doutora em Biodiversidade e Biotecnologia, área de concentração Biotecnologia. Orientador: Prof. Dr. João Vicente Braga de Souza MANAUS JUNHO – 2020 IV Á meus filhos Luiza e Pedro Canto e ao meu esposo André Canto que são meus alicerces e o principal motivo de meu sucesso. Aos meus irmãos, e em especial minha mãe, Antônia do Socorro de Jesus Martins, pelo amor e incentivo em todos os momentos da minha vida; V AGRADECIMENTOS Á Deus, por me conduzir e me fortalecer em todos os momentos dessa caminhada; Ao Professor Dr. João Vicente Braga de Souza, meu orientador, pelas valiosas orientações, ensinamentos, compreensão e companheirismo não só na elaboração da tese mas também pela força nos momentos mais difíceis.
    [Show full text]
  • Stemphylium Revisited
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 87: 77–103 (2017). Stemphylium revisited J.H.C. Woudenberg1, B. Hanse2, G.C.M. van Leeuwen3, J.Z. Groenewald1, and P.W. Crous1,4,5* 1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2IRS, P.O. Box 32, 4600 AA Bergen op Zoom, The Netherlands; 3National Plant Protection Organization (NPPO-NL), P.O. Box 9102, 6700 HC, Wageningen, The Netherlands; 4Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; 5Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa *Correspondence: P.W. Crous, [email protected] Abstract: In 2007 a new Stemphylium leaf spot disease of Beta vulgaris (sugar beet) spread through the Netherlands. Attempts to identify this destructive Stemphylium sp. in sugar beet led to a phylogenetic revision of the genus. The name Stemphylium has been recommended for use over that of its sexual morph, Pleospora, which is polyphyletic. Stemphylium forms a well-defined monophyletic genus in the Pleosporaceae, Pleosporales (Dothideomycetes), but lacks an up-to-date phylogeny. To address this issue, the internal transcribed spacer 1 and 2 and intervening 5.8S nr DNA (ITS) of all available Stemphylium and Pleospora isolates from the CBS culture collection of the Westerdijk Institute (N = 418), and from 23 freshly collected isolates obtained from sugar beet and related hosts, were sequenced to construct an overview phylogeny (N = 350). Based on their phylogenetic informativeness, parts of the protein-coding genes calmodulin and glyceraldehyde-3-phosphate dehydro- genase were also sequenced for a subset of isolates (N = 149).
    [Show full text]
  • From Freshwater Habitats in Yunnan Province, China
    Phytotaxa 267 (1): 061–069 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.267.1.6 Lentithecium cangshanense sp. nov. (Lentitheciaceae) from freshwater habitats in Yunnan Province, China HONG-YAN SU1,2, ZONG-LONG LUO2,3, XIAO-YING LIU2,4, XI-JUN SU2, DIAN-MING HU5, DE-QUN ZHOU1*, ALI H. BAHKALI6 & KEVIN D. HYDE3,6 1Faculty of Environmental Sciences & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China. 2College of Agriculture & Biological Sciences, Dali University, Dali 671003, Yunnan, China. 3 Centre of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand. 4 College of Basic Medicine, Dali University, Dali 671000, Yunnan, China. 5College of Bioscience & Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China. 6Department of Botany & Microbiology, King Saud University, Riyadh, Saudi Arabia *Corresponding author: De-qun Zhou, email address: [email protected]. Abstract Lentithecium cangshanense sp. nov. (Lentitheciaceae, Dothideomycetes), was found on submerged decaying wood in a freshwater stream in Yunnan Province, China. The species is characterized by its black, semi-immersed to superficial, glo- bose ascomata, cylindrical or obclavate, short pedicellate, bitunicate asci and bi-seriate, fusiform, 1-septate, yellowish to brown ascospores. Phylogenetic analyses of combined LSU, SSU and RPB2 sequence data show that L. cangshanense be- longs in the family Lentitheciaceae, order Pleosporales and is a distinct species in the genus. The new species is introduced with an illustrated account and compared with morphologically and phylogenetically similar species.
    [Show full text]