The Family Pleosporaceae: Intergeneric Relationships and Phylogenetic Perspectives Based on Sequence Analyses of Partial 28S Rdna

Total Page:16

File Type:pdf, Size:1020Kb

The Family Pleosporaceae: Intergeneric Relationships and Phylogenetic Perspectives Based on Sequence Analyses of Partial 28S Rdna Mycologia, 98(4), 2006, pp. 571–583. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 The family Pleosporaceae: intergeneric relationships and phylogenetic perspectives based on sequence analyses of partial 28S rDNA Rampai Kodsueb niothelia, which is probably polyphyletic. Anamorphic Department of Biology, Faculty of Science, Chiang Mai characters appear to be significant (especially in University, Chiang Mai, Thailand Cochliobolus) while ascospore morphologies, such as Vijaykrishna Dhanasekaran shape and color and substrate occurrence are poor Centre for Research in Fungal Diversity, Department of indicators of phylogenetic relationships among these Ecology & Biodiversity, The University of Hong Kong, loculoascomycetes. Pokfulam Road, Hong Kong Key words: anamorphs, ascospore morphology, Andre´ Aptroot Loculoascomycetes, phylogeny, Pleospora, polyphy- Centraalbureau voor Schimmelcultures, P.O. Box letic, ribosomal DNA 85167, 3508 AD Utrecht, The Netherlands Saisamorn Lumyong INTRODUCTION Department of Biology, Faculty of Science, Chiang Mai The largest family within the Pleosporales, Pleospor- University, Chiang Mai, Thailand aceae, comprises 17 genera and 111 species (Kirk et al Eric H.C. McKenzie 2001). Species are parasites or saprobes on wood and Landcare Research, Private Bag 92170, Auckland, dead herbaceous stems or leaves (Sivanesan 1984). New Zealand The classification in the Pleosporaceae has been Kevin D. Hyde based primarily on the Pleospora type of centrum Rajesh Jeewon1 development (Dong et al 1998) and asci that are Centre for Research in Fungal Diversity, Department of interspersed with pseudoparaphyses in the asco- Ecology & Biodiversity, The University of Hong Kong, stroma. These pseudoparaphyses originate above the Pokfulam Road, Hong Kong hymenial layer and grow downward among the asci to fuse at the base of the locule (Wehmeyer 1975). Ascomata are perithecial, initially immersed and Abstract: The Pleosporaceae is an important locu- become erumpent and are usually black and some- loascomycete family. There has been disagreement, times hairy or setose. Asci are fissitunicate, cylindrical, however, regarding the taxonomic placement of with an ocular chamber and pseudoparaphyses are many genera within this family. This study investigates cellular. Ascospores are usually brown and phragmo- phylogenetic relationships among the genera Cochlio- sporous or dictyosporous (Dong et al 1998, Kirk et al bolus, Kirschsteiniothelia, Leptosphaerulina, Macroven- 2001). Many pleosporaceous taxa are important turia, Pleospora, Pyrenophora, and Wettsteinina. Partial plant pathogens. For instance Cochliobolus heterostro- 28S rDNA sequences from taxa within these genera phus causes southern corn leaf blight and Pyrenophora were analyzed with maximum parsimony, likelihood graminea is the causal agent of barley leaf stripe and Bayesian methods. Cochliobolus can be segregated (Agrios 2005). Their anamorphs are usually hypho- broadly into two groups as previously proposed. mycetes and also have been reported to cause plant Pleospora is polyphyletic in its current sense. Taxa disease in cereals (e.g. Bipolaris maydis, Exserohilum with Stemphylium anamorphs are closely related to turcicum and Helminthosporium oryzae) (Farr et al Cochliobolus and fit within the Pleosporaceae, whereas 1989, Berbee 1996, Krupinsky et al 2004, Agrios the affinities of Pleospora herbarum and P. ambigua are 2005). still ambiguous. Pyrenophora constitutes a monophy- The Pleosporaceae historically was placed in the letic group within the Pleosporaceae, whereas Lepto- Sphaeriales (e.g. Winter 1887, Ellis and Everhart sphaerulina and Macroventuria appear to share 1892, Lindau 1897) based on immersed perithecia phylogenetic affinities with the Leptosphaeriaceae containing paraphyses (Wehmeyer 1975). The family and Phaeosphaeriaceae. Phylogenies indicate that then was transferred to the Pseudosphaeriaceae, Wettsteinina should be excluded from the Pleospor- which was later raised to ordinal rank as the Pseudo- aceae. Similar findings are reported for Kirschstei- sphaeriales (Theissen and Sydow 1917, Wehmeyer 1975). Luttrell (1955) treated the name Pseudo- Accepted for publication 30 May 2006. 1 Corresponding author. E-mail: [email protected], rjeewon@ sphaeriales as a synonym of the Dothideales and graduate.hku.hk suggested that pseudoparaphyses were important in 571 572 MYCOLOGIA their taxonomy. He considered the Pseudosphaer- Lophiostoma caulium, Massarina ramunculicola, Phaeo- iales as synonym of the Pleosporales and assigned sphaeria vegans and Venturia carpophila) were selected the Pleosporaceae, Venturiaceae and Lophiostomata- for this study. Species names and accession numbers of ceae, to the Pleosporales. Such a scheme largely was the isolates in this study are listed (TABLE II). For each isolate, pure cultures were plated on potato dextrose accepted by other mycologists (e.g. Wehmeyer 1975). agar and incubated at 25 C 10–20 d before DNA Wehmeyer (1975) pointed out that the family extraction. Genomic DNA was extracted from fresh Pleosporaceae has never been clearly delimited fungal mycelia following a protocol as outlined by following Luttrell’s concept and as a result taxa with Jeewon et al (2002, 2003, 2004) and Cai et al (2005). ascostromata of many different types, which pre- Briefly, mycelia were scraped off from the surface of viously were placed in other families, were placed the plate. The mycelia were ground with 200 mg of arbitrarily in the Pleosporaceae. sterilized quartz sand and 600 mLof23 CTAB The family Pleosporaceae is a heterogeneous extraction buffer (2% w/v CTAB, 100 mM Tris-HCL, group of bitunicate ascomycetes with genera pri- 1.4 M NaCl, 20 mM EDTA, pH 8) in a 1.5 mL Eppen- dorf tube. The contents were incubated at 60 C in marily included based on ascospore characteristics, a water bath 40 min with gentle swirling every 10 min. including shape, color, septation, pigmentation and The solution was extracted three times with an equal presence or absence of mucilaginous sheaths (Lut- volume of phenol:chloroform (1:1) at 13 000 g 30 min trell 1955, 1973; Wehmeyer 1961, 1975; Eriksson until no interface was visible. The upper aqueous phase 1981; Sivanesan 1984; Barr 1987b; Abler 2003). Other containing the DNA was precipitated by addition of families, such as the Leptosphaeriaceae, Melanom- 2.5 volumes of absolute ethanol and kept at 220 C mataceae, Phaeosphaeriaceae and Sporormiaceae, overnight. The precipitated DNA was washed two times however, also possess morphological characters sim- with 70% ethanol, dried under vacuum and suspended ilar to those of the Pleosporaceae, and this has in TE buffer (1 mM EDTA, 10 mM Tris-HCl, pH 8.0) resulted in considerable ambiguity and confusion and treated with RNase (1 mg/mL) before DNA amplification. in intergeneric and familial classification (Luttrell 1955, 1973; Wehmeyer 1961, 1975; von Arx and DNA amplification and sequencing of 28S rDNA.—Approx- Mu¨ller 1975; Sivanesan 1984; Barr 1987a, b; Eriksson imately 900 nucleotides at the 59 end of the 28S rDNA and Hawksworth 1986, 1991). Most genera in these region were amplified by primer pairs LROR/LRO5 families have morphological characters that overlap (Vilgalys and Hester 1990). PCR was carried out in m m in many respects and the taxonomic organization 50 L reaction volume containing 31.7 L sterile water, 5 mLof103 Mg free PCR buffer, 3 mLof25mMMgCl , among them has been modified on several occasions 2 4 mL of 2.5 mM deoxyribonucleotide triphosphate (TABLE I). Barr (1987b) redefined the Pleosporaceae (dNTPs), 1.5 mL of each 10 mM primers (LROR and to include Clathrospora (5Comoclathris), Kirschstei- LRO5), 3 mL of DNA template, 0.3 mL of 2.5 units of niothelia, Lewia and Pleospora and grouped Cochliobo- Taq DNA polymerase (Promega, Madison, Wisconsin). lus, Pyrenophora and Setosphaeria into the family Typical amplification parameters were: initial denatur- Pyrenophoraceae. Berbee (1996) disagreed, suggest- ation of 95 C for 3 min; 35 cycles of denaturation at ing that all those genera belong to the Pleosporaceae. 95 C 1 min, annealing at 52 C 50 s and extension at Given the considerable taxonomic confusion, this 72 C 1 min and final extension of 72 C 10 min. Double- TM study, based on phylogenetic analyses of rDNA stranded DNA products were purified with GFX PCR DNA and Gel Band Purification Kit (Amersham sequence data, was undertaken to (i) verify the Biosciences, catalogue No. 27-9602-01) following man- familial placement of these genera and assess whether ufacturer’s protocol. Sequencing reactions were per- they represent natural groups, (ii) determine which formed and sequences determined automatically in an morphological characters are phylogenetically signi- Applied Biosystem 3730 Genetic Analyzer/Sequencer ficant and therefore are useful for generic delinea- (Genome Research Center, The University of Hong tion and (iii) assess whether phylogenies based on Kong) using PCR primers mentioned above. molecular characters are concordant with any of the Phylogenetic analyses.—Fifty-four taxa from different traditional morphology-based classification schemes. fungal families were aligned initially with the computer program Bioedit (Hall 1999) and Clustal X (Thompson MATERIALS AND METHODS et al 1997) with default parameter settings, and alignments were manually edited by inserting gaps for DNA extraction.—Twenty isolates of Pleosporaceae (Co- optimization using Se-Al (Rambaut 1996). Phylogenetic chliobolus [two species], Kirschsteiniothelia
Recommended publications
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Two Pleosporalean Root-Colonizing Fungi, Fuscosphaeria Hungarica Gen
    Mycological Progress (2021) 20:39–50 https://doi.org/10.1007/s11557-020-01655-8 ORIGINAL ARTICLE Two pleosporalean root-colonizing fungi, Fuscosphaeria hungarica gen. et sp. nov. and Delitschia chaetomioides, from a semiarid grassland in Hungary Alexandra Pintye1 & Dániel G. Knapp2 Received: 15 May 2020 /Revised: 14 November 2020 /Accepted: 29 November 2020 # The Author(s) 2020 Abstract In this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grass- lands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the
    [Show full text]
  • Revision of Agents of Black-Grain Eumycetoma in the Order Pleosporales
    Persoonia 33, 2014: 141–154 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158514X684744 Revision of agents of black-grain eumycetoma in the order Pleosporales S.A. Ahmed1,2,3, W.W.J. van de Sande 4, D.A. Stevens 5, A. Fahal 6, A.D. van Diepeningen 2, S.B.J. Menken 3, G.S. de Hoog 2,3,7 Key words Abstract Eumycetoma is a chronic fungal infection characterised by large subcutaneous masses and the pres- ence of sinuses discharging coloured grains. The causative agents of black-grain eumycetoma mostly belong to the Madurella orders Sordariales and Pleosporales. The aim of the present study was to clarify the phylogeny and taxonomy of mycetoma pleosporalean agents, viz. Madurella grisea, Medicopsis romeroi (syn.: Pyrenochaeta romeroi), Nigrograna mackin­ Pleosporales nonii (syn. Pyrenochaeta mackinnonii), Leptosphaeria senegalensis, L. tompkinsii, and Pseudochaetosphaeronema taxonomy larense. A phylogenetic analysis based on five loci was performed: the Internal Transcribed Spacer (ITS), large Trematosphaeriaceae (LSU) and small (SSU) subunit ribosomal RNA, the second largest RNA polymerase subunit (RPB2), and transla- tion elongation factor 1-alpha (TEF1) gene. In addition, the morphological and physiological characteristics were determined. Three species were well-resolved at the family and genus level. Madurella grisea, L. senegalensis, and L. tompkinsii were found to belong to the family Trematospheriaceae and are reclassified as Trematosphaeria grisea comb. nov., Falciformispora senegalensis comb. nov., and F. tompkinsii comb. nov. Medicopsis romeroi and Pseu­ dochaetosphaeronema larense were phylogenetically distant and both names are accepted. The genus Nigrograna is reduced to synonymy of Biatriospora and therefore N.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Genetic Diversity and Population Structure of Corollospora Maritima Sensu Lato: New Insights from Population Genetics
    Botanica Marina 2016; 59(5): 307–320 Patricia Veleza,*, Jaime Gasca-Pinedab, Akira Nakagiri, Richard T. Hanlin and María C. González Genetic diversity and population structure of Corollospora maritima sensu lato: new insights from population genetics DOI 10.1515/bot-2016-0058 Received 22 June, 2016; accepted 24 August, 2016; online first proven to decrease genetic diversity, a conservation genet- 26 September, 2016 ics approach to assess this matter is urgent. Our results revealed the occurrence of five genetic lineages with dis- Abstract: The study of genetic variation in fungi has been tinctive environmental preferences and an overlapping poor since the development of the theoretical underpin- geographical distribution, agreeing with previous studies nings of population genetics, specifically in marine taxa. reporting physiological races within this species. Corollospora maritima sensu lato is an abundant cosmo- Keywords: dispersal; gene flow; ITS rDNA; marine Asco- politan marine fungus, playing a crucial ecological role in mycota; molecular ecology. the intertidal environment. We evaluated the extent and distribution of the genetic diversity in the nuclear riboso- mal internal transcribed spacer region of 110 isolates of this ascomycete from 19 locations in the Gulf of Mexico, Introduction Caribbean Sea and Pacific Ocean. The diversity estimates Sandy beach ecosystems harbor a unique biodiversity, demonstrated that C. maritima sensu lato possesses a high which is highly adapted to endure dynamic and extreme genetic diversity compared to other cosmopolitan fungi, conditions. This biodiversity performs critical habitat with the highest levels of variability in the Caribbean Sea. functions, providing a range of ecological services not Globally, we registered 28 haplotypes, out of which 11 available through other ecosystems (McLachlan and were specific to the Caribbean Sea, implying these popu- Brown 2006, Schlacher and Connolly 2009).
    [Show full text]
  • A New Species of Bipolaris from Heliconia Rostrata in India
    Current Research in Environmental & Applied Mycology 6 (3): 231–237(2016) ISSN 2229-2225 www.creamjournal.org Article CREAM Copyright © 2016 Online Edition Doi 10.5943/cream/6/3/11 A new species of Bipolaris from Heliconia rostrata in India Singh R1 and Kumar S2 1Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi – 221005, Uttar Pradesh, India 2Department of Forest Pathology, Kerala Forest Research Institute, Peechi- 680653, Kerala, India Singh R, Kumar S 2016 − A new species of Bipolaris from Heliconia rostrata in India. Current Research in Environmental & Applied Mycology 6(3), 231– 237, Doi 10.5943/cream/6/3/11 Abstract Bipolaris rostratae, a new foliicolous anamorphic fungus discovered on living leaves of Heliconia rostrata (Heliconiaceae), is described and illustrated. The species was compared with closely related species of Bipolaris and similar fungi recorded on Heliconia spp. This species is different from other Bipolaris spp. reported on Heliconia due to its shorter, thinner and less septate conidia. A key is provided to all species of Bipolaris reported on Heliconia. Key words − fungal diversity – morphotaxonomy – Foliicolous fungi – Bipolaris – new species Introduction After several taxonomic refinements, graminicolous Helminthosporium were segregated into several genera including Bipolaris, Curvularia, Drechslera and Exserohilum (Sivanesan 1987). These genera belong to Ascomycota, Dothideomycetes, Pleosporales, Pleosporaceae. These genera can be distinguished on the basis of characters such as conidial shape and size, hilum morphology, origin of the germ tubes from the basal or other conidial cells, and the location and sequence in the development of the conidial septa. Illustrations of different hilum morphologies in graminicolous Helminthosporium species were given by Alcorn (1988).
    [Show full text]
  • Supplementary Table S1 18Jan 2021
    Supplementary Table S1. Accurate scientific names of plant pathogenic fungi and secondary barcodes. Below is a list of the most important plant pathogenic fungi including Oomycetes with their accurate scientific names and synonyms. These scientific names include the results of the change to one scientific name for fungi. For additional information including plant hosts and localities worldwide as well as references consult the USDA-ARS U.S. National Fungus Collections (http://nt.ars- grin.gov/fungaldatabases/). Secondary barcodes, where available, are listed in superscript between round parentheses after generic names. The secondary barcodes listed here do not represent all known available loci for a given genus. Always consult recent literature for which primers and loci are required to resolve your species of interest. Also keep in mind that not all barcodes are available for all species of a genus and that not all species/genera listed below are known from sequence data. GENERA AND SPECIES NAME AND SYNONYMYS DISEASE SECONDARY BARCODES1 Kingdom Fungi Ascomycota Dothideomycetes Asterinales Asterinaceae Thyrinula(CHS-1, TEF1, TUB2) Thyrinula eucalypti (Cooke & Massee) H.J. Swart 1988 Target spot or corky spot of Eucalyptus Leptostromella eucalypti Cooke & Massee 1891 Thyrinula eucalyptina Petr. & Syd. 1924 Target spot or corky spot of Eucalyptus Lembosiopsis eucalyptina Petr. & Syd. 1924 Aulographum eucalypti Cooke & Massee 1889 Aulographina eucalypti (Cooke & Massee) Arx & E. Müll. 1960 Lembosiopsis australiensis Hansf. 1954 Botryosphaeriales Botryosphaeriaceae Botryosphaeria(TEF1, TUB2) Botryosphaeria dothidea (Moug.) Ces. & De Not. 1863 Canker, stem blight, dieback, fruit rot on Fusicoccum Sphaeria dothidea Moug. 1823 diverse hosts Fusicoccum aesculi Corda 1829 Phyllosticta divergens Sacc. 1891 Sphaeria coronillae Desm.
    [Show full text]
  • ABSTRACT BELCHER, ARABY RUTH. the Physiology and Host Genetics
    ABSTRACT BELCHER, ARABY RUTH. The Physiology and Host Genetics of Quantitative Resistance in Maize to the Fungal Pathogen Cochliobolus heterostrophus. (Under the direction of Dr. Peter J. Balint-Kurti.) Quantitative disease resistance, despite widespread use, remains poorly understood. A previous project in the NCSU Maize Disease Resistance Genetics lab has generated 253 near-isogenic lines (NILs) in the background of the maize inbred line B73. B73 has excellent agronomic quality but is highly susceptible to a number of diseases. The NILs are genetically differentiated by combinations of 1-5 of 12 total introgressed regions from the multiple disease-resistant parent NC250P. These 12 NC250P introgressions were selected for study as, following an initial B73 x NC250P cross, they had been retained by a program of recurrent backcrossing to B73 and selection for resistance to the fungus Cochliobolus heterostrophus, causal agent of southern corn leaf blight (SLB). Prior research also evaluated the effect of each NC250P introgression in conferring resistance or susceptibility against SLB. Introgressions having an effect can be designated as disease quantitative trait loci, or “dQTLs”. Presented here is a 2-phase study with the ultimate aim of characterizing the physiological basis for the effect on disease severity of these NC250P-derived SLB dQTLs. The first phase attempts to determine more precisely how infection is altered by the two largest-effect introgressions, termed dQTL 3.04 and dQTL 6.01 (or 3B and 6A). To do so, growth chamber juvenile plant trials were used to compare the interactions between C. heterostrophus and 6 select lines - B73, the major-gene resistant line B73rhm1 (also a B73-background NIL), and four NILs with varying combinations of dQTLs 3.04 and 6.01 - by quantifying spore germination and penetration efficiency, hyphal growth, and host expression of the pathogenesis related genes PR1 and PR5.
    [Show full text]
  • Australia Biodiversity of Biodiversity Taxonomy and and Taxonomy Plant Pathogenic Fungi Fungi Plant Pathogenic
    Taxonomy and biodiversity of plant pathogenic fungi from Australia Yu Pei Tan 2019 Tan Pei Yu Australia and biodiversity of plant pathogenic fungi from Taxonomy Taxonomy and biodiversity of plant pathogenic fungi from Australia Australia Bipolaris Botryosphaeriaceae Yu Pei Tan Curvularia Diaporthe Taxonomy and biodiversity of plant pathogenic fungi from Australia Yu Pei Tan Yu Pei Tan Taxonomy and biodiversity of plant pathogenic fungi from Australia PhD thesis, Utrecht University, Utrecht, The Netherlands (2019) ISBN: 978-90-393-7126-8 Cover and invitation design: Ms Manon Verweij and Ms Yu Pei Tan Layout and design: Ms Manon Verweij Printing: Gildeprint The research described in this thesis was conducted at the Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, Queensland, 4102, Australia. Copyright © 2019 by Yu Pei Tan ([email protected]) All rights reserved. No parts of this thesis may be reproduced, stored in a retrieval system or transmitted in any other forms by any means, without the permission of the author, or when appropriate of the publisher of the represented published articles. Front and back cover: Spatial records of Bipolaris, Curvularia, Diaporthe and Botryosphaeriaceae across the continent of Australia, sourced from the Atlas of Living Australia (http://www.ala. org.au). Accessed 12 March 2019. Taxonomy and biodiversity of plant pathogenic fungi from Australia Taxonomie en biodiversiteit van plantpathogene schimmels van Australië (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op donderdag 9 mei 2019 des ochtends te 10.30 uur door Yu Pei Tan geboren op 16 december 1980 te Singapore, Singapore Promotor: Prof.
    [Show full text]
  • Lignicolous Freshwater Ascomycota from Thailand: Phylogenetic And
    A peer-reviewed open-access journal MycoKeys 65: 119–138 (2020) Lignicolous freshwater ascomycota from Thailand 119 doi: 10.3897/mycokeys.65.49769 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Lignicolous freshwater ascomycota from Thailand: Phylogenetic and morphological characterisation of two new freshwater fungi: Tingoldiago hydei sp. nov. and T. clavata sp. nov. from Eastern Thailand Li Xu1, Dan-Feng Bao2,3,4, Zong-Long Luo2, Xi-Jun Su2, Hong-Wei Shen2,3, Hong-Yan Su2 1 College of Basic Medicine, Dali University, Dali 671003, Yunnan, China 2 College of Agriculture & Biolo- gical Sciences, Dali University, Dali 671003, Yunnan, China 3 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand4 Department of Entomology & Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand Corresponding author: Hong-Yan Su ([email protected]) Academic editor: R. Phookamsak | Received 31 December 2019 | Accepted 6 March 2020 | Published 26 March 2020 Citation: Xu L, Bao D-F, Luo Z-L, Su X-J, Shen H-W, Su H-Y (2020) Lignicolous freshwater ascomycota from Thailand: Phylogenetic and morphological characterisation of two new freshwater fungi: Tingoldiago hydei sp. nov. and T. clavata sp. nov. from Eastern Thailand. MycoKeys 65: 119–138. https://doi.org/10.3897/mycokeys.65.49769 Abstract Lignicolous freshwater fungi represent one of the largest groups of Ascomycota. This taxonomically highly diverse group plays an important role in nutrient and carbon cycling, biological diversity and ecosystem functioning. The diversity of lignicolous freshwater fungi along a north-south latitudinal gradient is cur- rently being studied in Asia.
    [Show full text]
  • 1 Research Article 1 2 Fungi 3 Authors: 4 5 6 7 8 9 10
    1 Research Article 2 The architecture of metabolism maximizes biosynthetic diversity in the largest class of 3 fungi 4 Authors: 5 Emile Gluck-Thaler, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 6 Sajeet Haridas, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 7 Laboratory, Berkeley, CA, USA 8 Manfred Binder, TechBase, R-Tech GmbH, Regensburg, Germany 9 Igor V. Grigoriev, US Department of Energy Joint Genome Institute, Lawrence Berkeley National 10 Laboratory, Berkeley, CA, USA, and Department of Plant and Microbial Biology, University of 11 California, Berkeley, CA 12 Pedro W. Crous, Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The 13 Netherlands 14 Joseph W. Spatafora, Department of Botany and Plant Pathology, Oregon State University, OR, USA 15 Kathryn Bushley, Department of Plant and Microbial Biology, University of Minnesota, MN, USA 16 Jason C. Slot, Department of Plant Pathology, The Ohio State University Columbus, OH, USA 17 corresponding author: [email protected] 18 1 19 Abstract: 20 Background - Ecological diversity in fungi is largely defined by metabolic traits, including the 21 ability to produce secondary or "specialized" metabolites (SMs) that mediate interactions with 22 other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters 23 (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation 24 in BGC composition reflects the diversity of their SM products. Recent studies have documented 25 surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is 26 known about how this population-level variation is inherited across macroevolutionary 27 timescales.
    [Show full text]
  • Phytotoxin HC-Toxin (Cyclic Peptide Biosynthesis/Maize/Plant Disease) JONATHAN D
    Proc. Nati. Acad. Sci. USA Vol. 84, pp. 8444-8447, December 1987 Botany Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin (cyclic peptide biosynthesis/maize/plant disease) JONATHAN D. WALTON Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 Communicated by Anton Lang, August 24, 1987 (receivedfor review June 2, 1987) ABSTRACT Cochliobolus carbonum race 1 produces a C. carbonum (imperfect stage Helminthosporium carbo- cyclic tetrapeptide HC-toxin, which is necessary for its excep- num or Bipolaris zeicola) race 1 synthesizes the host- tional virulence on certain varieties of maize. Previous genetic selective toxin HC-toxin (8-12). HC-toxin is a cyclic peptide analysis of HC-toxin production by the fungus has indicated with the structure cyclo(D-Pro-L-Ala-D-Ala-L-AOE), where that a single genetic locus controls HC-toxin production. AOE stands for 2-amino-8-oxo-9,10-epoxidecanoic acid (Fig. Enzymes involved in the biosynthesis of HC-toxin have been 1). The unusual amino acid AOE has been reported in three sought by following the precedents established for the biosyn- other cyclic tetrapeptides from three unrelated filamentous thetic enzymes of cyclic peptide antibiotics. Two enzymatic fungi (13-15). Maize (Zea mays L.) that is homozygous activities from C. carbonum race 1 were found, a D-alanine- and recessive at the nuclear Hm locus is susceptible to C. an L-proline-dependent ATP/PPj exchange, which by biochem- carbonum race 1 and sensitive to HC-toxin. Non-toxin- ical and genetic criteria were shown to be involved in the producing isolates (races 2 and 3) of C.
    [Show full text]