Developmental Characteristics of Pearl Oyster Pinctada Fucata Martensii

Total Page:16

File Type:pdf, Size:1020Kb

Developmental Characteristics of Pearl Oyster Pinctada Fucata Martensii Zheng et al. BMC Genomics (2019) 20:122 https://doi.org/10.1186/s12864-019-5505-8 RESEARCH ARTICLE Open Access Developmental characteristics of pearl oyster Pinctada fucata martensii: insight into key molecular events related to shell formation, settlement and metamorphosis Zhe Zheng1,2, Ruijuan Hao1,2, Xinwei Xiong1,2, Yu Jiao1,2, Yuewen Deng1,2* and Xiaodong Du1,2* Abstract Background: Marine bivalves undergo complex development processes, such as shell morphology conversion and changes of anatomy and life habits. In this study, the transcriptomes of pearl oyster Pinctada fucata martensii and Pacific oyster Crassostrea gigas at different development stages were analyzed to determine the key molecular events related to shell formation, settlement and metamorphosis. Result: According to the shell matrix proteome, biomineralization-related genes exhibited a consensus expression model with the critical stages of shell formation. Differential expression analysis of P. f. martensii, revealed the negative regulation and feedback of extracellular matrixs as well as growth factor pathways involved in shell formation of larvae, similar to that in C. gigas. Furthermore, neuroendocrine pathways in hormone receptors, neurotransmitters and neuropeptide receptors were involved in shell formation, settlement and metamorphosis. Conclusion: Our research demonstrated the main clusters of regulation elements related to shell formation, settlement and metamorphosis. The regulation of shell formation and metamorphosis could be coupled forming the neuroendocrine- biomineralization crosstalk in metamorphosis. These findings could provide new insights into the regulation in bivalve development. Keywords: Shell formation, Settlement, Metamorphosis, Molecular events Backgrounds (the dissoconch), even with different calcium carbonate Bivalves comprise millions of species that are widely crystal products, could function on mechanical stability, distributed in the world as common benthic community physical protection and even chemical defence [2, 3]. As in coastal areas. Marine bivalves undergo complex life the shells of bivalves undergo the big change in the de- development processes, such as shell morphology con- velopment stage, such as the crystal polymorph transi- version as well as changes of anatomy and life habits [1]. tion that happens need special physical conditions in At these stages, larvae are sensitive and perishable. Many nature, the formation and regulation mechanisms of bi- endogenous physiological processes and exogenous valve shells are important to the development of bioma- physical and chemical elements could affect their terials. And the mechanisms by which larvae shells are survival. fabricated and conversed in the development processes Bivalve shells are the typical biomineralization prod- along with the morphological metamorphosis are im- ucts, with multiple morphological structure and special portant to understand the evolution and regulation of stress. The symbolic bivalves’ shells covering the body mineralization in biological organisms [4]. Complex or- surface in both larvae (the protoconch) and adults stages ganic macromolecules compounded by mantle tissue cells harnessing the processes of nucleation along with haemocyte have been developed for mediating the * Correspondence: [email protected]; [email protected] 1Fishery College, Guangdong Ocean University, Zhanjiang 524088, China process of shell formation [5, 6]. Recently, the main Full list of author information is available at the end of the article © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Zheng et al. BMC Genomics (2019) 20:122 Page 2 of 11 biomolecular components in several shellfish, such as from GigaDB (http://gigadb.org/search/new?keyword=Pinc- bivalves and gastropods species, have been identified [7– tada+fucata+martensii). The transcriptome and genome 11]. Some regulation pathways and transcriptional fac- data of C. gigas at different development stages and tors involved in shell formation have been elucidated its shell matrix proteome data were downloaded from [12–14]. Most of them are homologues of regulators in https://www.nature.com/articles/nature11413,supplementary the operation of endoskeleton system construction. tables [21]. However, the vital regulation factors in shell morphology construction remain unclear. Different expression analysis and function enrichment of Metamorphosis of bivalve species is a significant physio- P. f. martensii at different development stages logical process from free-living larva to sessile juvenile that Target genes (TGs) that differently expressed with the includes loss of the velum, development of tissues, such as condition (|log2 Ratio| > 1, FDR < 0.001) were selected gills and foot, and production of adult shell [15]. The grad- for the function enrichment at different development ual covering of protoconch accompanied with the veliger stages. We performed functional enrichment analysis of stage, which represents the changes of digestive and swim- our TGs with the commonly used Gene Ontology (GO) ming behaviors. Adult dissoconch is one of the indicators and KEGG databases. GO provides three ontologies: mo- of the transition of free-swimming larvae to benthic and lecular function, cellular component and biological often sessile and attached juveniles. And larvae at this stage process. By comparing with the background of all genes, aresensitivetotheenvironmentandeasytodie.Inbivalves, enrichment analysis provides all terms (GO term, path- larval responses to environmental cues, including salinity, way ID) that are significantly enriched in the TGs. We depth, temperature and light, and the main biophysical developed a strict algorithm for the analysis, with cues, such as neuroendocrine compounds and appropriate p-value defined as: ion concentrations, influence their subsequent settlement and metamorphosis. Recently, specific neurotransmitters ÀÁÀÁ Xm−1 M N−M and chemicals have been found to induce specific responses − P ¼ 1− i ÀÁn i in initiating bivalve metamorphosis [16–18]. As many of bi- N i¼0 n valvespeciesaretheimportanteconomicspeciessuchas oysters, finding the regulation mechanisms of metamor- Where N is the count of all genes with functional an- phosis in bivalves could contribute to improve the rate of notation; n is the count of TGs in N; M is the count of survival and promote relative industries. In addition, several all genes that are annotated to certain functional terms; neuroendocrine factors and pathways across invertebrate and m represents the count of TGs in M. The calculated and vertebrate species are evolutionarily conserved and an- p-value was subjected to Bonferroni Correction, taking cient origins [19]. While, recently, a series of artificial in- corrected p-value ≤0.05 as the significantly enriched. ducers, such as neurotransmitters and analogues used as Functional terms fulfilling this condition were defined as pesticide or anticorrosive paint, act as marine pollutants significantly enriched functional terms in TGs. and influence larval settlement and metamorphosis of mar- ine invertebrates [20]. Therefore, exploring the intrinsic Identification of specifically expressed genes in mantle neuroendocrine pathways in bivalves could contribute to edge (ME) and mantle pallial (MP) marine environmental protection and species conservation. According to the published transcriptome data [22], we In this study, we selected pearl oyster Pinctada fucata mar- selected the specifically expressed genes that were highly tensii as well as Pacific oyster Crassostrea gigas with high pre- expressed in one tissue (ME or MP), compared to all cision genomic data, intact developmental transcriptome data other tissues including in the adductor muscle, hemo- and shell matrix proteome [21, 22].Thesedatawerereana- cyte, foot, gill, gonad, hepatopancreas, with criteria that lyzed to explore the key molecular events related to shell for- reads per kilobase of exon per million fragments mapped mation, settlement and metamorphosis. We also determined (RPKM) ratio of ≥4 fold (upregulated) and false discov- the important molecular events involved in shell formation ery rate (FDR) of ≤0.05. and proposed the neuroendocrine-biomineralization crosstalk in metamorphosis. Identification of gene expression patterns Given that the expression of different genes in the differ- Methods ent samples showed considerable difference, we normal- Collection of supported data of the pearl oyster P. f. ized each gene in all samples. Based on normalized martensii and the Pacific oyster C. gigas expressed values of genes, we used hierarchical cluster- The genome data and transcriptome of P. f. martensii at ing of R package with default parameters to identify the different development stages and in different tissues, as gene families with the same expression patterns, and well as the shell matrix proteome data were downloaded then divided the gene tree into a series of sub-trees Zheng et al. BMC
Recommended publications
  • Impacts of Ocean Acidification on Marine Shelled Molluscs
    Mar Biol DOI 10.1007/s00227-013-2219-3 ORIGINAL PAPER Impacts of ocean acidification on marine shelled molluscs Fre´de´ric Gazeau • Laura M. Parker • Steeve Comeau • Jean-Pierre Gattuso • Wayne A. O’Connor • Sophie Martin • Hans-Otto Po¨rtner • Pauline M. Ross Received: 18 January 2013 / Accepted: 15 March 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract Over the next century, elevated quantities of ecosystem services including habitat structure for benthic atmospheric CO2 are expected to penetrate into the oceans, organisms, water purification and a food source for other causing a reduction in pH (-0.3/-0.4 pH unit in the organisms. The effects of ocean acidification on the growth surface ocean) and in the concentration of carbonate ions and shell production by juvenile and adult shelled molluscs (so-called ocean acidification). Of growing concern are the are variable among species and even within the same impacts that this will have on marine and estuarine species, precluding the drawing of a general picture. This organisms and ecosystems. Marine shelled molluscs, which is, however, not the case for pteropods, with all species colonized a large latitudinal gradient and can be found tested so far, being negatively impacted by ocean acidifi- from intertidal to deep-sea habitats, are economically cation. The blood of shelled molluscs may exhibit lower and ecologically important species providing essential pH with consequences for several physiological processes (e.g. respiration, excretion, etc.) and, in some cases, increased mortality in the long term. While fertilization Communicated by S. Dupont. may remain unaffected by elevated pCO2, embryonic and Fre´de´ric Gazeau and Laura M.
    [Show full text]
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • Histological Changes and Biochemical Parameters in the Hepatopancreas of Terrestrial Gastropod Helix Aspersa As Biomarkers of Neonicotinoid Insecticide Exposure
    African Journal of Biotechnology Vol. 11(96), pp. 16277-16283, 29 November, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB12.1696 ISSN 1684–5315 ©2012 Academic Journals Full Length Research Paper Histological changes and biochemical parameters in the hepatopancreas of terrestrial gastropod Helix aspersa as biomarkers of neonicotinoid insecticide exposure Smina Ait Hamlet1*, Samira Bensoltane1,2, Mohamed Djekoun3, Fatiha Yassi2 and Houria Berrebbah1 1Cellular Toxicology Laboratory, Department of Biology, Faculty of Sciences, Badji-Mokhtar University, Annaba, P.O. Box 12, 23000, Algeria. 2Faculty of Medicine, Badji-Mokhtar University, Annaba, 23000, Algeria. 3Department of Biology, Faculty of Sciences and the Universe, University of May 08th, 1945, Guelma, 24000, Algeria. Accepted 22 June, 2012 In this study, adult snails, Helix aspersa were used to estimate the effect of aneonicotinoid insecticide (thiametoxam) on biochemical parameters and histological changes in the hepatopancreas of this gastropod after a treatment of six weeks. During this period, snails were exposed by ingestion and contact to fresh lettuce leaves which were soaked with an insecticide solution. The thiametoxam test solutions were 0, 25, 50, 100 and 200 mg/L. The results of the biochemical dosages (total carbohydrates, total proteins and total lipids) showed significant decreases at two concentrations (100 and 200 mg/L) of thiametoxam. However, the histological examination of the hepatopancreas of the treated snails showed alterations as a response to all the treatments, and revealed the degeneration of the digestive tubules and the breakdown of the basement membrane in a dose-dependent manner, leading to a severe deterioration of the tissues in the concentration of 200 mg/L thiametoxam.
    [Show full text]
  • The Slit Bearing Nacreous Archaeogastropoda of the Triassic Tropical Reefs in the St
    Berliner paläobiologische Abhandlungen 10 5-47 Berlin 2009-11-11 The slit bearing nacreous Archaeogastropoda of the Triassic tropical reefs in the St. Cassian Formation with evaluation of the taxonomic value of the selenizone Klaus Bandel Abstract: Many Archaeogastropoda with nacreous shell from St. Cassian Formation have a slit in the outer lip that gives rise to a selenizone. The primary objective of this study is to analyze family level characters, provide a revision of some generic classifications and compare with species living today. Members of twelve families are recognized with the Lancedellidae n. fam., Rhaphistomellidae n. fam., Pseudowortheniellidae n. fam., Pseudoschizogoniidae n. fam., Wortheniellidae n. fam. newly defined. While the organization of the aperture and the shell structure is similar to that of the living Pleurotomariidae, morphology of the early ontogenetic shell and size and shape of the adult shell distinguish the Late Triassic slit bearing Archae- gastropoda from these. In the reef environment of the tropical Tethys Ocean such Archaeogastropoda were much more diverse than modern representatives of that group from the tropical Indo-Pacific Ocean. Here Haliotis, Seguenzia and Fossarina represent living nacreous gastropods with slit and are compared to the fossil species. All three have distinct shape and arrangement of the teeth in their radula that is not related to that of the Pleurotomariidae and also differs among each other. The family Fossarinidae n. fam. and the new genera Pseudowortheniella and Rinaldoella are defined, and a new species Campbellospira missouriensis is described. Zusammenfassung: In der St. Cassian-Formation kommen zahlreiche Arten der Archaeogastropoda vor, die eine perlmutterige Schale mit Schlitz in der Außenlippe haben, welcher zu einem Schlitzband führt.
    [Show full text]
  • Copyrighted Material
    319 Index a oral cavity 195 guanocytes 228, 231, 233 accessory sex glands 125, 316 parasites 210–11 heart 235 acidophils 209, 254 pharynx 195, 197 hemocytes 236 acinar glands 304 podocytes 203–4 hemolymph 234–5, 236 acontia 68 pseudohearts 206, 208 immune system 236 air sacs 305 reproductive system 186, 214–17 life expectancy 222 alimentary canal see digestive setae 191–2 Malpighian tubules 232, 233 system taxonomy 185 musculoskeletal system amoebocytes testis 214 226–9 Cnidaria 70, 77 typhlosole 203 nephrocytes 233 Porifera 28 antennae nervous system 237–8 ampullae 10 Decapoda 278 ocelli 240 Annelida 185–218 Insecta 301, 315 oral cavity 230 blood vessels 206–8 Myriapoda 264, 275 ovary 238 body wall 189–94 aphodus 38 pedipalps 222–3 calciferous glands 197–200 apodemes 285 pharynx 230 ciliated funnel 204–5 apophallation 87–8 reproductive system 238–40 circulatory system 205–8 apopylar cell 26 respiratory system 236–7 clitellum 192–4 apopyle 38 silk glands 226, 242–3 coelomocytes 208–10 aquiferous system 21–2, 33–8 stercoral sac 231 crop 200–1 Arachnida 221–43 sucking stomach 230 cuticle 189 biomedical applications 222 taxonomy 221 diet 186–7 body wall 226–9 testis 239–40 digestive system 194–203 book lungs 236–7 tracheal tube system 237 dissection 187–9 brain 237 traded species 222 epidermis 189–91 chelicera 222, 229 venom gland 241–2 esophagus 197–200 circulatory system 234–6 walking legs 223 excretory system 203–5 COPYRIGHTEDconnective tissue 228–9 MATERIALzoonosis 222 ganglia 211–13 coxal glands 232, 233–4 archaeocytes 28–9 giant nerve
    [Show full text]
  • Akoya Pearl Production from Hainan Province Is Less Than One Tonne (A
    1.2 Overview of the cultured marine pearl industry 13 Xuwen, harvest approximately 9-10 tonnes of pearls annually; Akoya pearl production from Hainan Province is less than one tonne (A. Wang, pers. comm., 2007). China produced 5-6 tonnes of marketable cultured marine pearls in 1993 and this stimulated Japanese investment in Chinese pearl farms and pearl factories. Pearl processing is done either in Japan or in Japanese- supported pearl factories in China. The majority of the higher quality Chinese Akoya pearls are exported to Japan. Additionally, MOP from pearl shells is used in handicrafts and as an ingredient Pearl farm workers clean and sort nets used for pearl oyster culture on a floating pontoon in Li’an Bay, Hainan Island, China. in cosmetics, while oyster meat is sold at local markets. India and other countries India began Akoya pearl culture research at the Central Marine Fisheries Research Institute (CMFRI) at Tuticorin in 1972 and the first experimental round pearl production occurred in 1973. Although a number of farms have been established, particularly along the southeastern coast, commercial pearl farming has not become established on a large scale (Upare, 2001). Akoya pearls from India generally have a diameter of less than 5-6 mm (Mohamed et al., 2006; Kripa et al., 2007). Halong Bay in the Gulf of Tonking in Viet Nam has been famous for its natural pearls for many centuries (Strack, 2006). Since 1990, more than twenty companies have established Akoya pearl farms in Viet Nam and production exceeded 1 000 kg in 2001. Akoya pearl culture has also been investigated on the Atlantic coast of South America (Urban, 2000; Lodeiros et al., 2002), in Australia (O’Connor et al., 2003), Korea (Choi and Chang, 2003) and in the Arabian Gulf (Behzadi, Parivak and Roustaian, 1997).
    [Show full text]
  • Mir-29A Participated in Nacre Formation and Immune Response by Targeting Y2R in Pinctada Martensii
    Article miR-29a Participated in Nacre Formation and Immune Response by Targeting Y2R in Pinctada martensii Rongrong Tian 1, Zhe Zheng 1, Ronglian Huang 1, Yu Jiao 1,* and Xiaodong Du 1,2,* Received: 17 September 2015; Accepted: 1 December 2015; Published: 10 December 2015 Academic Editor: Constantinos Stathopoulos 1 Fishery College, Guangdong Ocean University, Zhanjiang 524025, China; [email protected] (R.T.); [email protected] (Z.Z.); [email protected] (R.H.) 2 Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang 524025, China * Correspondence: [email protected] (Y.J.); [email protected] (X.D.); Tel.: +86-759-238-3346 (Y.J. & X.D.); Fax: +86-759-238-2404 (Y.J. & X.D.) Abstract: miR-29a is a conserved miRNA that participates in bone formation and immune response in vertebrates. miR-29a of Pinctada martensii (Pm-miR-29a) was identified in the previous research though deep sequencing. In this report, the precise sequence of mature Pm-miR-29a was validated using miRNA rapid amplification of cDNA ends (miR-RACE) technology. The precursor sequence of Pm-miR-29a was predicted to have 87 bp. Stem loop qRT-PCR analysis showed that Pm-miR-29a was easily detected in all the tissues, although expressions in the mantle and gill were low. The microstructure showed the disrupted growth of the nacre after Pm-miR-29a over-expression, which was induced by mimic injection into P. martensii. Results of the target analysis indicated that neuropeptide Y receptor type 2 (Y2R) was the potential target of Pm-miR-29a. Meanwhile, Pm-miR-29a mimics could obviously inhibit the relative luciferase activity of the reporter containing 31 UTR (Untranslated Regions) of the Y2R gene.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Embryonic and Larval Development of Ensis Arcuatus (Jeffreys, 1865) (Bivalvia: Pharidae)
    EMBRYONIC AND LARVAL DEVELOPMENT OF ENSIS ARCUATUS (JEFFREYS, 1865) (BIVALVIA: PHARIDAE) FIZ DA COSTA, SUSANA DARRIBA AND DOROTEA MARTI´NEZ-PATIN˜O Centro de Investigacio´ns Marin˜as, Consellerı´a de Pesca e Asuntos Marı´timos, Xunta de Galicia, Apdo. 94, 27700 Ribadeo, Lugo, Spain (Received 5 December 2006; accepted 19 November 2007) ABSTRACT The razor clam Ensis arcuatus (Jeffreys, 1865) is distributed from Norway to Spain and along the British coast, where it lives buried in sand in low intertidal and subtidal areas. This work is the first study to research the embryology and larval development of this species of razor clam, using light and scanning electron microscopy. A new method, consisting of changing water levels using tide simulations with brief Downloaded from https://academic.oup.com/mollus/article/74/2/103/1161011 by guest on 23 September 2021 dry periods, was developed to induce spawning in this species. The blastula was the first motile stage and in the gastrula stage the vitelline coat was lost. The shell field appeared in the late gastrula. The trocho- phore developed by about 19 h post-fertilization (hpf) (198C). At 30 hpf the D-shaped larva showed a developed digestive system consisting of a mouth, a foregut, a digestive gland followed by an intestine and an anus. Larvae spontaneously settled after 20 days at a length of 378 mm. INTRODUCTION following families: Mytilidae (Redfearn, Chanley & Chanley, 1986; Fuller & Lutz, 1989; Bellolio, Toledo & Dupre´, 1996; Ensis arcuatus (Jeffreys, 1865) is the most abundant species of Hanyu et al., 2001), Ostreidae (Le Pennec & Coatanea, 1985; Pharidae in Spain.
    [Show full text]
  • Are Pinctada Radiata
    Biodiversity Journal, 2019, 10 (4): 415–426 https://doi.org/10.31396/Biodiv.Jour.2019.10.4.415.426 MONOGRAPH Are Pinctada radiata (Leach, 1814) and Pinctada fucata (Gould, 1850) (Bivalvia Pteriidae) only synonyms or really different species? The case of some Mediterranean populations 2 Danilo Scuderi1*, Paolo Balistreri & Alfio Germanà3 1I.I.S.S. “E. Majorana”, via L. Capuana 36, 95048 Scordia, Italy; e-mail: [email protected] 2ARPA Sicilia Trapani, Viale della Provincia, Casa Santa, Erice, 91016 Trapani, Italy; e-mail: [email protected] 3Via A. De Pretis 30, 95039, Trecastagni, Catania, Italy; e-mail: [email protected] *Corresponding author ABSTRACT The earliest reported alien species that entered the Mediterranean after only nine years from the inauguration of the Suez Canal was “Meleagrina” sp., which was subsequently identified as the Gulf pearl-oyster, Pinctada radiata (Leach, 1814) (Bivalvia Pteriidae). Thereafter, an increasing series of records of this species followed. In fact, nowadays it can be considered a well-established species throughout the Mediterranean basin. Since the Red Sea isthmus was considered to be the only natural way of migration, nobody has ever doubted about the name to be assigned to the species, P. radiata, since this was the only Pinctada Röding, 1798 cited in literature for the Mediterranean Sea. Taxonomy of Pinctada is complicated since it lacks precise constant morphological characteristics to distinguish one species from the oth- ers. Thus, distribution and specimens location are particularly important since different species mostly live in different geographical areas. Some researchers also used a molecular phylogenetic approach, but the results were discordant.
    [Show full text]
  • Micro Tablet of Nacre Layer in the Shell of Freshwater Bivalve Anodonta Woodiana 1Cyska Lumenta, 2Gybert Mamuaya, 1Ockstan J
    Micro tablet of nacre layer in the shell of freshwater bivalve Anodonta woodiana 1Cyska Lumenta, 2Gybert Mamuaya, 1Ockstan J. Kalesaran 1 Study Program of Aquaculture, Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia; 2 Study Program of Aquatic Science, Faculty of Fisheries and Marine Science, Sam Ratulangi University, Manado, Indonesia. Corresponding author: C. Lumenta, [email protected] Abstract. The presence of shell nacre layer in bivalves is important information for pearl culture. Freshwater mussel, Anodonta woodiana, can be used in pearl culture maintained in a controlled manner to determine shell development, microstructure of nacre layer in particular. Using a Scanning Electron Microscope, observations were made on the structure of micro tablet nacre. Results concluded that the crystal size of the nacre of A. woodiana varied in thickness with space and shell size, rearing time, and rearing media. The optimum thickness of the tablet was averagely 0.720 µm at 110 mm shell length. The size of these shells could be a maximum size and should be considered in the cultivation of pearl oysters, A. woodiana. Key Words: nacre microstructure, pearl, SEM, crystals, thickness. Introduction. Pearl from freshwater oysters has recently been known, and become an interesting object in aquaculture development (Dan & Ruobo 2002; Misra et al 2009; Liu et al 2014; Bai et al 2016; Li et al 2017). Pearl formation in nature, in deed, occurs when an alien material enters the shell and cannot be removed so that irritation occurs (Hänni 2012). As a response to the irritation, the oyster activates calcium carbonate secretion as the ‘nacre’ on the shell is formed which then gradually covers the material.
    [Show full text]
  • Brief Glossary and Bibliography of Mollusks
    A Brief Glossary of Molluscan Terms Compiled by Bruce Neville Bivalve. A member of the second most speciose class of Mollusca, generally bearing a shell of two valves, left and right, and lacking a radula. Commonly called clams, mussels, oysters, scallops, cockles, shipworms, etc. Formerly called pelecypods (class Pelecypoda). Cephalopoda. The third dominant class of Mollusca, generally without a true shell, though various internal hard structures may be present, highly specialized anatomically for mobility. Commonly called octopuses, squids, cuttles, nautiluses. Columella. The axis, real or imaginary, around and along which a gastropod shell grows. Dextral. Right-handed, with the aperture on the right when the spire is at the top. Most gastropods are dextral. Gastropod. A member of the largest class of Mollusca, often bearing a shell of one valve and an operculum. Commonly called snails, slugs, limpets, conchs, whelks, sea hares, nudibranchs, etc. Mantle. The organ that secretes the shell. Mollusk (or mollusc). A member of the second largest phylum of animals, generally with a non-segmented body divided into head, foot, and visceral regions; often bearing a shell secreted by a mantle; and having a radula. Operculum. A horny or calcareous pad that partially or completely closes the aperture of some gastropodsl. Periostracum. The proteinaceous layer covering the exterior of some mollusk shells. Protoconch. The larval shell of the veliger, often remains as the tip of the adult shell. Also called prodissoconch in bivlavles. Radula. A ribbon of teeth, unique to mollusks, used to procure food. Sinistral. Left-handed, with the aperture on the left when the spire is at the top.
    [Show full text]