Unit I – Common Power Tools Lesson 1: Safe Use and Maintenance • Inspect Each Tool Before Using It to Make Sure It Is of Power Tools for Woodworking Working Properly
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Classification of Engineering Materials, and Their Properties: 1
ACS College of Engineering, Bangalore Assistant professor/Aeronautical Classification Of Engineering Materials, And Their Properties: 1] Material classification: There are different ways of classifying materials. One way is to describe five groups or families 1 ACS College of Engineering, Bangalore Assistant professor/Aeronautical Metals and alloys; Ceramics, glasses, and glass-ceramics; Polymers (plastics); Semiconductors Composite materials Metals and Alloys: Metals and alloys include steels, aluminum, magnesium, zinc, cast iron, titanium, copper, and nickel. An alloy is a metal that contains additions of one or more metals or non-metals. In general, metals have good electrical and thermal conductivity. Metals and alloys have relatively high strength, high stiffness, ductility or formability, and shock resistance. They are particularly useful for structural or load-bearing applications. Although pure metals are occasionally used, alloys provide improvement in a particular desirable property or permit better combinations of properties. Ceramics: Ceramics can be defined as inorganic crystalline materials. Beach sand and rocks are examples of naturally occurring ceramics. Advanced ceramics are materials made by refining naturally occurring ceramics and other special processes. Advanced ceramics are used in substrates that house computer chips, sensors and capacitors, wireless communications, inductors, and electrical insulation. Some ceramics are used as barrier coatings to protect metallic substrates in turbine engines. Ceramics are also used in such consumer products as paints, and tires, and for industrial applications such as the tiles for the space shuttle. Traditional ceramics are used to make bricks, tableware, toilets, bathroom sinks, refractories (heat-resistant material), and abrasives. In general, due to the presence of porosity (small holes), ceramics do not conduct heat well; they must be heated to very high temperatures before melting. -
Study and Characterization of EN AW 6181/6082-T6 and EN AC
metals Article Study and Characterization of EN AW 6181/6082-T6 and EN AC 42100-T6 Aluminum Alloy Welding of Structural Applications: Metal Inert Gas (MIG), Cold Metal Transfer (CMT), and Fiber Laser-MIG Hybrid Comparison Giovanna Cornacchia * and Silvia Cecchel DIMI, Department of Industrial and Mechanical Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-030-371-5827; Fax: +39-030-370-2448 Received: 18 February 2020; Accepted: 26 March 2020; Published: 27 March 2020 Abstract: The present research investigates the effects of different welding techniques, namely traditional metal inert gas (MIG), cold metal transfer (CMT), and fiber laser-MIG hybrid, on the microstructural and mechanical properties of joints between extruded EN AW 6181/6082-T6 and cast EN AC 42100-T6 aluminum alloys. These types of weld are very interesting for junctions of Al-alloys parts in the transportation field to promote the lightweight of a large scale chassis. The weld joints were characterized through various metallurgical methods including optical microscopy and hardness measurements to assess their microstructure and to individuate the nature of the intermetallics, their morphology, and distribution. The results allowed for the evaluation of the discrepancies between the welding technologies (MIG, CMT, fiber laser) on different aluminum alloys that represent an exhaustive range of possible joints of a frame. For this reason, both simple bar samples and real junctions of a prototype frame of a sports car were studied and, compared where possible. The study demonstrated the higher quality of innovative CMT and fiber laser-MIG hybrid welding than traditional MIG and the comparison between casting and extrusion techniques provide some inputs for future developments in the automotive field. -
Holemaking Products & Accessories
® Holemaking 7 5 Products & 8 1 Accessories e Klein drill bits and holemaking products c provide accuracy and consistency for professionals. Made of top-of-the-line n materials for longer-lasting performance, i Klein's diverse line of holemaking S products and accessories help get the job done right. s l a n o i s s e f o r P r o F Flexible Drill Bits Flex Bit Augers 53719 • Used to drill holes through wood within a wall. • Tapered back for easy bit retrieval. • Spring steel shaft resists deformation. 53720 • Screw point tip pulls the bit through wood. • Hole in tip allows for use with wire or cable pulling grip. Cat. No. Length Weight (lbs.) 53719 53716 3/8" x 54" (9.5 mm x 1372 mm) 1.00 53717 3/8" x 72" (9.5 mm x 1829 mm) 1.00 Holemaking Products 53718 9/16" x 54" (14 mm x 1372 mm) 1.00 53718 53719 3/4" x 54" (19 mm x 1372 mm) 2.00 53751 3/4" x 72" (19 mm x 1829 mm) 2.00 53720 1" x 54" (25 mm x 1829 mm) 2.00 53716 & Accessories Flex Bit Extensions 53722 • Connects to the end of a flex bit and extends the length. • For use with flex bits 3/4" and larger (Cat. No. 53722). • Connection diameter is 5/8" (Cat. No. 53722). • For use with flex bits 9/16" and smaller (Cat. No. 53723). • Connection diameter is 7/16" (Cat. No. 53723). Cat. No. Length Connection Diameter Weight (lbs.) 53722 54" (1372 mm) 5/8" (14 mm) 1.00 53723 54" (1372 mm) 7/16" (11 mm) 1.00 Flex Bit Placement Tool • Folding design stores more compactly than standard tool. -
Product Catalog This Hobart® Catalog Represents an Interim Stage in the Brand Consolidation Process Announced by Hobart Brothers Company in May 2013
Product Catalog This Hobart® catalog represents an interim stage in the brand consolidation process announced by Hobart Brothers Company in May 2013. Included are products branded Tri-Mark® by Hobart alongside Hobart products. In these instances, the products are identical in formulation and manufacturing. Ultimately, Hobart will replace all Tri-Mark options. The catalog now also includes aluminum products formerly under the MAXAL® brand. Why the consolidation and this transition? In one word: simplification. Offering a single Hobart brand allows distributors and end users access to a full line of filler metals, ensuring the right product for the right application — every time. The addition of our collaborative-based service and filler metal expertise helps provide solutions to lower costs and increase productivity. For further information, contact our customer service team at 800-424-1543 or call our Applications Engineering Team at 800-532-2618 or email [email protected] Table of Contents Mild Steel & Low Alloy Stick Electrodes AWS Classifications and Oven Storage and Reconditioning of Stick Electrodes ............................................................... 2 Pipemaster® Pro-60, Pipemaster® 60, Hobart® 610 ...................................................................................................... 3 Pipemaster® 70, Pipemaster® 80, Pipemaster® 90 ......................................................................................................... 4 Hobart® 335A, Hobart® 335C, Hobart® 447A -
An Inventory of US Navy Courses Suitable for Use in Training Civiliam
DOCUMENT RESUME ED 118 915 CE 006 479 AUTHOR Rogers, William A., Jr.; Nisos, Michael J. TITLE An Inventory of U.S. Navy Courses Suitable for Use in Training Civiliam Personnel in Basic Technical Skills. INSTITUTION Aerospace Education Foundation, Washington, D.C.; Naval Inst., Annapolis, Md. SPONS AGENCY Maryland State Dept. of Education, Baltimore. PUB DATE 15 Apr 75 NOTE 336p. AVAILABLE. FROM For more detailed information about course contents, contact U.S. Naval Institute, Annapolis, Maryland 21402 (No price given) EDRS PRICE MF-$0.83 HC-$18.07 Plus Postage DESCRIPTORS Auto Mechanics (Occupation); Aviation Technology; *Catalogs; Construction Industry; Course Content; *Course Descriptions; *Educational Equipment; Electrical Occupations; Food Service Occupations; Marine Technicians; Medical Services; *Military Training; *Technical Education; Technical Occupations; Trade and Industrial Education IDENTIFIERS *Navy ABSTRACT An inventory of courses of study developed by the United States Navy which might be useful to other private and public institutions in training civilian students in basic technological skills is presented. Individual course reports contain the following information: course description, comments, course content (including blocks of instruction and hours), support materials,, training aids, equipment, tools, and supplies and materials. Courses are listed for the following career fields: air conditioning and refrigeration, audiovisual equipment (operation), audiovisual equipment (repair) , automotive trades, aviation trades, -
Alcotec Aluminum Technical Guide
AlcoTec Aluminum Technical Guide Contents AlcoTec Aluminum Wire & Equipment Technical Guide Table of Contents AlcoTec Aluminum Wire & Equipment Technical Guide ......................................................................................................... 1 Table of Contents ................................................................................................................................................................ 1 Environmental Health and Safety ......................................................................................................................................... 3 Technical Services Heat Treatable & Non-Heat Treatable Base & Fillers ............................................................................................................. 6 Filler Alloys: Chemical Composition Limits & Physical Properties ......................................................................................... 7 Conversion Factors ............................................................................................................................................................ 7 Welded Joint Strength ......................................................................................................................................................... 8 Typical Tensile Properties - Groove Welds ............................................................................................................................ 9 Weld Profiles ..................................................................................................................................................................... -
Corneal Rust Removal by Electric Drill Clinical Trial by Comparison with Manual Removal
Brit. Ophthal. (I975) 59, 586 Br J Ophthalmol: first published as 10.1136/bjo.59.10.586 on 1 October 1975. Downloaded from Corneal rust removal by electric drill Clinical trial by comparison with manual removal NICHOLAS BROWN, RICHARD CLEMETT, AND RODNEY GREY From the Department of Clinical Ophthalmology, Moorfields Eye Hospital, London The rusty ferrous corneal foreign body is a common In spite of the number of corneal electric drills reason for attendance at casualty departments. described, there appears to have been no clinical Improved efficiency in the treatment of this con- trial of their performance. A study is now reported dition would reduce both the clinician's time in which electric drill rust removal is compared spent with each patient and the patient's time off with manual removal. Design criteria for electric work. drills are also considered. Rust has a toxic effect on the corneal stroma, and if left in situ, after removal of the foreign body the rust-stained tissue undergoes necrosis and sloughs. Materials and methods Early removal of all rust without damage to the INSTRUMENTS cornea is therefore the aim of any form of treatment. After experience with a prototype instrument, a new Medical treatment in the form of local Des- slim electric drill (Fig. i) which can be held in the hand ferrioxamine has been used in the hope of removing like a pencil has been built to our design. It has a spring copyright. rust without causing any stromal destruction. A friction chuck to hold dental burrs and is operated by clinical trial to test Desferrioxamine against surgical light finger pressure from any side on a ring. -
Argyle Police Department
ARGYLE POLICE DEPARTMENT Policy 1.1 Mission, Values, and Written Directive System Effective Date: 02Feb12 Replaces: Reference: TBP 1.04.1 I. POLICY Law enforcement agencies provide essential services to foster safe communities through crime reduction and deterrence. Administrators of these law enforcement agencies are obligated to train, supervise, and guide personnel in performing the variety of tasks which create safe communities. At the same time, these administrators seek to improve employees' confidence and competence in performing tasks while reducing vulnerability to liability. To meet these obligations, agencies must manage themselves according to written directives. A manual of policies and procedures guides the day-to-day legal and ethical functioning of a law enforcement agency. To that end, this manual furnishes a blueprint for the performance of this agency’s activities in accordance with established state and national standards. Providing all members of the department with an understanding of the department’s mission and values provides guidance for decision making when situations are not covered by direct policy or procedure. II. PURPOSE This document outlines the organization of the Department, its Policy and Procedure Manual, its authority, and defines three kinds of statements that appear in these documents: policy, rule, and procedure. It also states the department’s mission and core values. III. AGENCY MISSION AND VALUES A. Mission The mission of the Argyle Police Department is to work with the citizens of Argyle to maintain effectively and efficiently provide for the protection of lives and property, preserve the public peace, and promote individual responsibility and community commitment with the highest level of professionalism and ethical standards. -
Aluminum Selection Chart
ALUMINUM FILLER Pure Aluminum - METAL GROUPS Aluminum - Copper Aluminum - Magnesium AL-Mg Si AL - Zinc AL - Castings METAL GROUPS METAL SELECTION CHART Aluminum Manganese 2 1100, 1060, 5086, 511.0, 512.0 6061,6005 7005, 7021 413.0, 443.0 319.0, 333.0 BASE 5005, 5050 513.0, 514.0 6063,6070 444.0, 356.0 FILLER 1070, 1080, 2014, 2036 2219 3003, 3004, 5083, 5454 7039, 7046 354.0, 355.0 FILLER BASE Alclad 3003 Alclad 3004 5052, 5652 535.0 6151,6201 A356.0, 357.0 METAL METAL 1350 5456, 5383 7146 METAL METAL WELD METAL PROPERTIES 5154, 5254 6351,6951,6082 359.0 C355.0, 380.0 C S DUC T C P T C STDUC T C P T C STDUC T C P T C STDUC T C P T C S DUC T C P T C S DUC T C P T C S DUC T C P T C S DUC T C P T C S DUC T C P T C S DUC T C P T C710.0,S DUC 711.0T C P T C S DUC T C P T C S DUC T C P T C CRACK SENSITIVITY The Probability of Hot Cracking - this rating is established through use R T ORROE OLORW O R ORROE OLORW O R ORROE OLORW O R ORROE OLORW O R T ORROE OLORW O R T ORROE OLORW O R T ORROE OLORW O R T ORROE OLORW O R T ORROE OLORW O R T ORROE OLORW O R T ORROE OLORW O R T ORROE OLORW O R T ORROE OLORW O R of crack sensitivity curves (Developed by Alcoa) and the consideration of filler metal and base ACREC M H U ACREC M H U A REC M H U ACREC M H U A REC M H U A REC M H U A REC M H U A REC M H U A REC M H U A REC M H U A REC M H U A REC M H U A REC M H U A T P T GH T P T GHC T P T GH T P T GHC T P T GHC T P T GHC T P T GHC T P T GHC T P T GHC T P T GHC T P T GHC T P T GHC T P T GH C metal chemistry combinations. -
The Importance of Proper Inspection
The Importance of Proper Inspection Rocky Capehart How Do We Help Prevent: PROPER INSPECTION All of the below should be performed as specified in the contract documents: •product specified is being used, •specified surface preparation has been completed, •product is applied as per manufacture’s recommendation, •AND Post application INSPECTION Manhole Preparation Quality Assurance and Testing •Substrate surface preparation requirements – Hydroblasting, Sand blasting, Grinding •Inspection before material application – Clean, dry, sound, surface profile, pH Test – Equipment KEY FACTORS FOR PREP SUCCESS Obtain a clean, dry and sound surface! • Understand repair procedures: • infiltration or substrate loss • Understand preparation procedures • Know how to test preparation results Coating • Know common termination methods of: keys • cleaning power • abrasive choices • coating removal Moisture Level Definition Saturated Surface Dry describes the condition of the aggregate in which the pores in each particle of the aggregate particle are filled with water and no excess water is on the particle surface. This allows the absorption and the specific gravity of the aggregate to be measured. Moisture content of aggregate is described by four categories: pH Test Complications with a product application may occur if pH levels (number designation) are: – too high (alkaline) or too low (acid). EQUIPMENT • Equipment is product dependent • Some can be mobilized into underground structures as necessary • Material output is meeting proper ratio Manhole Preparation -
1. Hand Tools 3. Related Tools 4. Chisels 5. Hammer 6. Saw Terminology 7. Pliers Introduction
1 1. Hand Tools 2. Types 2.1 Hand tools 2.2 Hammer Drill 2.3 Rotary hammer drill 2.4 Cordless drills 2.5 Drill press 2.6 Geared head drill 2.7 Radial arm drill 2.8 Mill drill 3. Related tools 4. Chisels 4.1. Types 4.1.1 Woodworking chisels 4.1.1.1 Lathe tools 4.2 Metalworking chisels 4.2.1 Cold chisel 4.2.2 Hardy chisel 4.3 Stone chisels 4.4 Masonry chisels 4.4.1 Joint chisel 5. Hammer 5.1 Basic design and variations 5.2 The physics of hammering 5.2.1 Hammer as a force amplifier 5.2.2 Effect of the head's mass 5.2.3 Effect of the handle 5.3 War hammers 5.4 Symbolic hammers 6. Saw terminology 6.1 Types of saws 6.1.1 Hand saws 6.1.2. Back saws 6.1.3 Mechanically powered saws 6.1.4. Circular blade saws 6.1.5. Reciprocating blade saws 6.1.6..Continuous band 6.2. Types of saw blades and the cuts they make 6.3. Materials used for saws 7. Pliers Introduction 7.1. Design 7.2.Common types 7.2.1 Gripping pliers (used to improve grip) 7.2 2.Cutting pliers (used to sever or pinch off) 2 7.2.3 Crimping pliers 7.2.4 Rotational pliers 8. Common wrenches / spanners 8.1 Other general wrenches / spanners 8.2. Spe cialized wrenches / spanners 8.3. Spanners in popular culture 9. Hacksaw, surface plate, surface gauge, , vee-block, files 10. -
Titanium, Aluminum Or Steel?
Titanium, Aluminum or Steel? Thomas G Stoebe Professor Emeritus, University of Washington, Seattle, WA and National Resource Center for Materials Technology Education Edmonds Community College 20000 68 Ave West Lynnwood, WA 98036 425-890-4652; [email protected] Copyright Edmonds Community College 2008 Abstract: Testing of metals is usually undertaken with sophisticated instruments. However, you can demonstrate to your students the basic differences between certain classes of metals using the simple spark test, presented here. You can even have your students test their “titanium” sports equipment to see if it really titanium! In many cases, they will find that the name “titanium” is used for marketing but little will be found in the product. In the process, students see the visible result of the carbon content in steel, and the lack of carbon in other materials, plus realize the reactivity of titanium metal. Module Objective: This simple demonstration provides an introduction to materials and materials testing. Even though this technique is limited to certain metals, it helps the student understand that different materials are different, and that materials that look alike are not necessarily the same. It also provides an opportunity to describe ferrous and non-ferrous materials and their basic differences, and one effect of heating on these different materials. Titanium is sufficiently reactive in air that it gives off sparks even with no carbon present. Since so many products today indicate that they are made of titanium, this test also provides a simple means to test for titanium in a product. This demonstration can also be expanded into a lab experiment to identify unknown materials.